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Abstract: Natural-fiber-reinforced polymer composites have recently drawn attention as new materials
for ballistic armor due to sustainability benefits and lower cost as compared to conventional synthetic
fibers, such as aramid and ultra-high-molecular-weight polyethylene (UHMWPE). In the present
work, a comparison was carried out between the ballistic performance of UHMWPE composite,
commercially known as Dyneema, and epoxy composite reinforced with 30 vol % natural fibers
extracted from pineapple leaves (PALF) in a hard armor system. This hard armor system aims to
provide additional protection to conventional level IIIA ballistic armor vests, made with Kevlar,
by introducing the PALF composite plate, effectively changing the ballistic armor into level III.
This level of protection allows the ballistic armor to be safely subjected to higher impact projectiles,
such as 7.62 mm caliber rifle ammunition. The results indicate that a hard armor with a ceramic front
followed by the PALF/epoxy composite meets the National Institute of Justice (NIJ) international
standard for level III protection and performs comparably to that of the Dyneema plate, commonly
used in armor vests.
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1. Introduction

Since the beginning of human civilization, the scenario of armed conflicts around the world has
been marked by the constant evolution of weapons and armor. Nowadays, new materials are being
researched and developed in an effort to offer protection against not only high-velocity single projectiles
but also multiple bullet strikes, explosive devices, and fragments from explosives [1]. However,
the increase in protection capacity of monolithic armor [2–4] normally causes an increase in its weight.
This is an important matter for the protection of soldiers, for whom mobility is a basic requirement,
thus demanding lighter and more flexible materials. Studies have been conducted aiming to develop
less dense armor systems by joining different materials to create what is known as a multilayered
armor system (MAS), which might offer even more protection [3–5].

Since World War II, high-performance composites with low density have been gaining preference
in armor vests [3]. Currently, synthetic laminates based on aramid fiber (Kevlar/Twaron) [6,7];
ultra-high-molecular-weight polyethylene (Dyneema/SpectraShield) [8], and PBO fiber (Zylon) [9] are
commonly used as backing in bulletproof vests. In a recent review, Benzait and Trabzon [10] stated that
the emergence of new materials with outstanding stiffness and strength, as well as light density and
high energy absorption, makes them a future choice for ballistic armor materials. They also reported
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another recent research tendency where natural fiber polymer composites are used as alternatives
for replacing Kevlar in multilayered armor systems (MASs). These systems are specially designed
with a front ceramic for protection against high-velocity (>800 m/s) ammunitions classified as level
III [11], such as 7.62 mm caliber, mostly used by military armed forces. Although much weaker than
aramid fiber, the investigated natural fiber polymer composites [12–23], as an MAS second layer,
display comparable ballistic performance to Kevlar with the same thickness. This performance is
measured by the behind armor blunt trauma (indentation) caused in a clay witness, simulating a
human body, that was placed behind the MAS target. As required by the standard [11], the indentation,
also known as back-face signature (BFS), must be smaller than 44 mm. The reason for the unexpected
ballistic performance of natural fiber composites is that the role played by the MAS second layer in
impact energy dissipation depends on the fiber’s ability to capture ceramic/bullet fragments, but not
on the fiber strength [24]. In addition, the articles cited by Benzait and Trabzon [10] and other recent
works [25–33] also confirmed the superior ballistic performance of natural fiber composites as an
MAS second layer. It is worth mentioning the significant number of publications focused on ballistic
performance of hybrid composites reinforced with synthetic and natural fibers [34–38]. A common
point of these publications is the marked contribution of the natural lignocellulosic fiber in absorbing
the ballistic impact energy. In particular, Naveen et al. [34] indicated that the higher energy absorption
of their hybrid composite is attributed to lower cellulose and higher lignin in addition to the randomly
interlaced dense weaving of the natural coir fiber (Cocos nucifera). Among the strongest natural fibers,
the one extracted from the pineapple leaf (Ananas comosus), also known as PALF, has been extensively
investigated as a reinforcement of polymer composites. Indeed, the PALF can reach an ultimate stress
over 1.6 GPa and elastic modulus above 80 GPa [24], which significantly improves the strength and
stiffness of any polymer matrix.

Besides, the use of natural lignocellulosic fibers (NLFs) is incentivized by their low cost, which
can be up to 70 times cheaper than Dyneema [39], commonly used in armor vests. This and
other advantages such as low environmental impact, abundant availability, and low degree of
industrialization, make natural-fiber-based composites a promising alternative to replace synthetic
fibers [40–45].

Although the use of natural fiber composites in ballistic armors has been reported in many
papers [13–32], most of the published work thus far involves a possible third layer in the MAS.
This layer is an aluminum alloy, which compromises the armor vest weight. Considering this fact,
the present work reports on the development of a double-layer hard armor system with PALF/epoxy
composite plate, which can improve the protection level of conventional Kevlar vests (level IIIA).
In fact, this combined armor system is capable of offering protection against 7.62 mm caliber rifle
ammunition, without the need to add an Al alloy layer.

2. Materials and Methods

The hard armor system (armor plate) consists of two distinct layers, a ceramic front layer followed
by a PALF-reinforced epoxy composite, both with the same thickness of 10 mm. These two layers were
joined by a thin layer of polyurethane (PU)-based adhesive (Parabrisas Marechal Ltda., Rio de Janeiro,
RJ, Brazil). Figure 1 schematically shows the armor plate proposed and where it is accommodated
in a conventional level IIIA bulletproof vest to upgrade the protection to level III. As illustrated in
Figure 1, the ceramic front layer is composed of an Al2O3 + 4 wt % Nb2O5 hexagonal tile mosaic,
which was sintered at 1400 ◦C for 3 h, according to the instructions described in a previous work [46].
The aluminum oxide (Al2O3) and niobium oxide (Nb2O5) powders were supplied by the Brazilian firms
Treibacher Schleifmittel (São Paulo, SP, Brazil) and CBMM (Poços de Caldas, MG, Brazil), respectively.
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Figure 1. A schematic of the hard armor system proposed and its accommodation in a conventional 
bulletproof vest (Illustration done by the authors). 

The composite plates were produced by compression molding using the epoxy resin diglycidyl 
ether bisphenol-A (DGEBA) with the hardener triethylene tetramine (TETA), added in the 
stoichiometric ratio phr 13, both supplied by the Epoxyfiber Indústria Química, (Rio de Janeiro, RJ, 
Brazil). The fiber extracted from pineapple leaves (Ananas comosus), also known as PALF, was 
supplied by Desigan Ltda (Paraná, Brazil), and used as a reinforcement of polymer composites. First, 
the PALF was cleaned and dried at 60 °C in an air-oven to remove moisture and to not impair 
interfacial adhesion between the fiber and the matrix, as reported in the literature [47]. In fact, the 
PALF was not treated; it was used as received aiming for a low degree of industrialization and, 
consequently, a low production cost. According to previously obtained results by the authors [27], a 
good interfacial adhesion was attained for this composite even without any fiber treatment. Then, 
composites with 30 vol % of continuous and aligned fibers and 70 vol % of epoxy were prepared by 
the hand lay-up process, presented schematically in Figure 2. This process consists of four steps: (1) 
hand combing of PALF bundle (Figure 2b), (2) manually placing layers of continuous and aligned 
PALF (up to 30 vol %) into the mold, alternating with the epoxy resin matrix, to guarantee the 
complete impregnation of the fibers, (3) closing the mold under compressive pressure of 5 MPa, and 
(4) curing at room temperature for 24 h.  

Figure 1. A schematic of the hard armor system proposed and its accommodation in a conventional
bulletproof vest (Illustration done by the authors).

The composite plates were produced by compression molding using the epoxy resin diglycidyl
ether bisphenol-A (DGEBA) with the hardener triethylene tetramine (TETA), added in the stoichiometric
ratio phr 13, both supplied by the Epoxyfiber Indústria Química, (Rio de Janeiro, RJ, Brazil). The fiber
extracted from pineapple leaves (Ananas comosus), also known as PALF, was supplied by Desigan Ltda
(Paraná, Brazil), and used as a reinforcement of polymer composites. First, the PALF was cleaned
and dried at 60 ◦C in an air-oven to remove moisture and to not impair interfacial adhesion between
the fiber and the matrix, as reported in the literature [47]. In fact, the PALF was not treated; it was
used as received aiming for a low degree of industrialization and, consequently, a low production
cost. According to previously obtained results by the authors [27], a good interfacial adhesion was
attained for this composite even without any fiber treatment. Then, composites with 30 vol % of
continuous and aligned fibers and 70 vol % of epoxy were prepared by the hand lay-up process,
presented schematically in Figure 2. This process consists of four steps: (1) hand combing of PALF
bundle (Figure 2b), (2) manually placing layers of continuous and aligned PALF (up to 30 vol %) into
the mold, alternating with the epoxy resin matrix, to guarantee the complete impregnation of the fibers,
(3) closing the mold under compressive pressure of 5 MPa, and (4) curing at room temperature for 24 h.

Ballistic tests were conducted by inserting a PALF composite with a ceramic front layer, as a hard
armor plate (Figure 1) in a ballistic vest level IIIA, which was simulated by placing 12 layers of Kevlar
S745 fabric, supplied by LFJ Blindagens (Brazil), on the back face of the armor plate. Tests with a single
layer of ceramic as a single armor plate were also performed. Additionally, for comparative purposes,
a 25 mm thick Dyneema plate was tested. This plate is conventionally used as a hard armor plate in
level III vests.

The back-face signature (BFS) test was carried out to measure the armor perforation resistance.
In this test, the back face of the armor system was held in direct contact with the clay witness (backing
material), which is plastically deformed to capture and measure the depth of trauma (indentation) left
after nonperforating ballistic impact [11]. For each test, 7.62 mm caliber ammunition with an impact
velocity of 847 ± 9 m/s was used. The armor plate was positioned 15 m from the shooting gun barrel,
and the optical barrier system was mounted at 12 m, as shown in the diagram of Figure 3. Ballistic
tests were performed at the Brazilian Army Assessment Center (CAEx, Rio de Janeiro, Brazil).
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Although the NIJ standard [11] indicated that the group test for level III hard armor should be
made up of two armor panels large enough to allow a minimum of six shots, in the present work,
tests were performed on reduced armor panels with only one shot per panel. This procedure was done
to verify the application feasibility of the PALF-reinforced epoxy composite in a hard armor plate.
All other specifications of the NIJ standard [11] were followed. As acceptance criterion, the depth
measurement of BFS in the backing material was used. The armor panel was considered efficient when
the indentation depth was less than 44 mm, as per standard [11].

The depth measurement of indentation was performed by means of a Banner model Q4X laser
sensor (Figure 3). In order to verify the difference between results, they were evaluated by statistical
analysis of variance (ANOVA).

Both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were
performed in a model Quanta FEG 250, FEI microscope (Field Electron and Ion Co.), Hillsboro,
OR, USA.

3. Results and Discussion

A previous overview [24] showed that a multilayered armor system (MAS) with three layers,
consisting of ceramic + NLF composite + Al alloy, already acts as level III protection, meeting the
criteria of BFS depth established by NIJ standard [11]. However, level IIIA ballistic vests, which protect
against ammunition with an impact velocity lower than 450 m/s, such as 9 mm and .44 Magnum bullets,
are often transformed into level III for protection against 7.62 mm bullets by placing inserts (armor
plates) on the vest front, which was the objective of the present work. A comparison between the
results obtained in previous works for the MASs with three layers [12–22,27–31] and the BFS depth of
hard armor systems (without the Al alloy) tested in this work is shown in Figure 4. All MASs presented
in this figure have a composite plate with 30 vol % of natural fiber, which is the same as the volume
fraction for the tested PALF composite.Polymers 2020, 12, x FOR PEER REVIEW 6 of 14 
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For all tested cases, there was no complete perforation of the target. Indeed, the most important
result, common in all studies, concerning the ballistic performance of natural fiber composites as an
MAS second layer was that they met the standard requirement of indentation depth, i.e., less than
44 mm (Figure 4). It was observed that the majority of MASs with NLF composite exhibited an average
BFS depth similar to that of the MAS using Kevlar [17] with the same thickness (10 mm) as the second
layer, highlighted in orange in Figure 4. It was also possible to verify that the hard armor plate of
Dyneema with 25 mm of thickness met the NIJ criteria, although the average value of 41.5 ± 1.8 mm
was on the specified limit [11]. It is worth mentioning that the values obtained for the hard armor
system with the proposed PALF composite were significantly different in comparison to the ceramic
(single layer) and the Dyneema layer, as shown by the ANOVA results in Table 1, since the p-value was
lower than 5%. In other words, the ceramic/PALF composite armor plate exhibited higher ballistic
performance, with a BFS depth of 26.6 ± 2.0 mm, while the ceramic (single layer) exhibited a value of
35.9 ± 3.0 mm, which indicates the possibility of further reducing the thickness of the ceramic layer in
the ceramic/PALF composite armor plate system, consequently reducing its weight.

Table 1. Analysis of variance (ANOVA) applied to the back-face signature (BFS) results of all armor
plates tested.

Source Sum of
Squares

Degrees of
Freedom

Mean of
Squares

F
(Calculated) p-Value F Critical

Treatment 799 2 399 74 2 × 10−9 3.6
Residual 97 18 5

Total 896 20

Note: “Treatment” is the type of hard armor, “total” equals the number of treatments times the number of samples,
“residual” is the difference between the “total” and “treatment” values, “degrees of freedom” is the minimum
number of independent parameters, “mean of squares” is the ratio of “sum of squares” to “degrees of freedom”,
“F calculated” is the ratio between the mean squares of treatments and residues, “F critical” is tabulated (Snedecor F),
and “p-value” is the probability of obtaining test results at least as extreme as the results actually observed.

The results in Figure 4 show that there is a higher ballistic performance (lower BFS) of the armor
plate with PALF composite in comparison to three MAS layers (ceramic/composite/Al alloy) and to
sugarcane bagasse/epoxy and coir (aligned/epoxy composites). A possible explanation for this is the
strong interfacial interaction between the PALF and the epoxy matrix [27], and the excessively weak
adhesion between the epoxy resin and fibers, sugarcane bagasse and coir, which might result in the
premature failure of the composite. The interfacial interaction between untreated PALF and epoxy
composites was measured by a single fiber pullout test and discussed by the authors elsewhere [27].
In fact, the coir fiber exhibited interfacial shear strength of 1.42 MPa, a value 3.5 times weaker than
the PALF, as obtained previously by the authors [27]. The PALF presented a naturally rough surface
morphology, as illustrated in Figure 5a, which provides efficient penetration and anchoring of the
epoxy matrix, resulting in a good interface adhesion (Figure 5b). This strong adhesion allowed the load
to transfer more efficiently from the PALF to the composite matrix, resulting in the PALF composites
having a Young’s modulus and tensile strength that were 301% and 251% higher, respectively, than those
of the coir composites [27]. A comparison between PALF/epoxy composite and other natural fiber
composites is presented in Figure 6. In this comparison, the good relationship is noted between the
physical and mechanical properties, such as density, stiffness, and strength, of the PALF composite. It is
worth mentioning that, although the jute composite presents higher strength and stiffness, the PALF
composite has a lower density and greater interfacial shear strength. In addition, the mechanical
testing results are supported by DMA results reported elsewhere [48], which revealed an increase of
loss modulus and glass transition temperature values, indicating an efficient load transfer through the
PALF/epoxy interface.
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Figure 6. The comparison of physical and mechanical properties between PALF/epoxy [27], jute/epoxy [49],
piassava/epoxy [50], and coir/epoxy [27] composites (illustration done by the authors).

Another relevant point regarding the use of natural fiber polymer composites as an MAS second
layer in ballistic tests is the impedance of shock waves, which is directly proportional to the material’s
density. In fact, due to the relatively lower density of these composites, compared to the ceramic
front layer, a compressive shock wave of the projectile impact is reflected as a tensile wave at the
interface, helping to fragment the frontal ceramic and increase the amount of energy dissipated [51].
In other words, as these composites have a lower density than Kevlar, their impedance is also lower,
which results in a reflected tensile wave with higher amplitude and in the consequent dissipation of
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more energy. This might be the case for the jute/polyester and ramie/epoxy fabric composites shown in
Figure 4.

Figure 7 presents the armor plates before and after the ballistic test for the ceramic/PALF composite
system (Figure 7a), a single layer of ceramic (Figure 7b), and a Dyneema plate (Figure 7c). The complete
shattering of the ceramic layer is observed after the test (Figure 7a,b).Polymers 2020, 12, x FOR PEER REVIEW 9 of 14 
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Figure 7. Armor plates before and after the ballistic test. The ceramic/PALF composite system (a),
A single layer of ceramic (b), and a Dyneema plate (c).

The behavior of the ceramic layer is explained by the intergranular fragmentation that occurs due
to the Nb2O5 embrittlement shown in Figure 8. In this fracture mode, it is possible to observe a crack
branching throughout the grain boundaries, which helps to dissipate energy and consequently results
in better dynamic fracture toughness [47].

On the other hand, a depression with a semispherical shape was observed in the frontal face of
the Dyneema plate, with the occurrence of delamination between the composite layers (Figure 7c),
which is its main energy dissipation mechanism. Although only partial penetration was verified,
the blunt trauma (indentation) was, as aforementioned, close to the NIJ standard limit (44 mm) [11],
and it was higher than those observed for all composites with natural fibers (Figure 4).
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Figure 8. SEM image of ceramic intergranular fragmentation after ballistic test.

Scanning electron microscopy (SEM) images of fracture surface of the PALF composite after
the ballistic test are shown in Figure 9. For this composite, energy absorption mechanisms such as
elongation, delamination, pullout, and fiber rupture were identified. However, the main mechanism
of energy dissipation was the capture of fragments resulting from the ceramic shattering (Figure 9a),
similar to the mechanism disclosed for the Kevlar as the second layer in a MAS [51]. Details of the
PALF covered with small ceramic fragments are revealed in Figure 7b. The presence of these ceramic
aggregates in the composite surface is assigned to van der Waals force and electrostatic attraction,
which contribute to the arrangement and piling of these fragments. Figure 8 presents the energy
dispersive spectroscopy (EDS) analysis of these aggregates. The results show that these aggregates
must be ceramic (Al2O3 + Nb2O5) fragments, given by the content of Al, O, and Nb listed in Figure 10.
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4. Conclusions

1. A comparison between the ballistic performance of pineapple leaf fiber (PALF) epoxy
composites and ultra-high-molecular-weight polyethylene (Dyneema) backing the front ceramic of
multilayered armor systems revealed that no perforation of the target occurred in all armor plates.

2. All the armor plates (single-layer ceramic tested targets, Dyneema, and the ceramic/PALF
composite) met the NIJ standard. However, the Dyneema, a material conventionally used in
bulletproof vests, tested as a 25 mm thick hard armor plate, exhibited a back-face signature (BFS)
depth (41.5 mm) that was close to the NIJ standard limit (44 mm) and performed significantly
worse than the ceramic/PALF composite.

3. The hard armor system with the ceramic front layer followed by the epoxy composite incorporated
with 30 vol % of pineapple leaf fibers (PALF) exhibited a BFS depth of 26.6 mm, which meets the
NIJ standard for ballistic protection against a rifle with 7.62 mm caliber ammunition. Tests using
single-layer ceramic as an armor plate presented a 35% higher BFS depth, but the depth was still
below the 44 mm required by the standard criterion.

4. Therefore, these results indicate the possibility of optimizing the thickness of this armor plate.
They also highlight the potential of using the PALF composite in a hard armor system in order to
transform a ballistic vest from level IIIA to level III. However, further experimental work in an
enlarged armor plate with six-shot testing is needed to validate the application of this composite
in a hard, multilayered armor system.
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