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Numerical investigation 
of a squeezing flow 
between concentric cylinders 
under the variable magnetic field 
of intensity
Shabnam1, Sun Mei1*, Muhammad Sohail Khan1, Omar Mahmoud2 & Ahmed M. Galal3,4

The ongoing research aims to examine the mass and heat transmission phenomena of squeezing flow 
between two concentric cylinders under the effect of heat sources and magnetic fields. The impacts 
of the Lorentz force on the behavior of the liquid flow are elucidated via a magnetic field incorporated 
in the momentum equation. Furthermore, within concentric cylinders, the expression Q =

Q
0

1−βt
 has 

been employed as a source/sink. The proposed model of PDEs formulates the physical phenomena 
of time-dependent incompressible two-dimensional squeezing flow via modified Navier-Stokes 
equation, energy equation, and mass transfer equation, and variable magnetic field. The proposed 
model involved a highly nonlinear system of PDEs, which has been reduced into a system of ODEs via 
Lie group of similarity transformation and subsequently solved numerically in MATLAB by Parametric 
Continuation Method. The direct impact of the squeezing parameter on the profile of temperature and 
concentration has been observed. The results shown that an increment in the heat source indicates 
a decline in the liquid temperature profile, that an increment in the heat source indicates a decline 
in the liquid temperature profile. An increment in the heat source indicates a decline in the liquid 
temperature prof. At the same time, an inverse relationship is observed for the concentration profile. 
Therefore, we have witnessed a significant increase in the velocity profiles of the flow, mainly as a 
result of the heat absorption coefficient. In addition, the declining effect of the Soret number on the 
concentration profile is noticed. It has been found that it enhanced the entropy generation rate for Pr, 
� , and Ec, while an opposite impact has been noticed at the Bejan number. The numerical outcomes 
of the proposed model that explain fluid flow characteristics and fluid flow characteristics are 
quantitatively elucidated by tables and displayed graphically. The comparison of two numerical results 
in the cases are found to be in good agreement, as shown in Tables.

List of symbols
P  Pressure
r, z  Cylindrical Coordinates
u  r-axis velocity
w  z-axis velocity
t  time
Sr  Soret number
Rem  Rynold’s Magnetic Parameter
Pr  Prandtl number
(ρCp)  Specific Heat
S  Squeezing number
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b1, b3  Components of Magnetic field
Sc  Schmidt number
Ec  Eckert number
κ  Thermal conductivity
µ  Viscosity
ν  Kinematic viscosity
M  Magnetic parameter
σ  Electrical conductivity
ρ  Density
Hs  Heat Source/Sink
a(t)  Inner Cylinder
C1  Chemical reaction paramter
b(t)  Outer Cylinder
Tm−T0
Th−T0

  Temperature difference

Work on the movement of liquids with stretching cylinders has attracted the attention of many researchers. It 
should be noted that the flow of the boundary layer due to surface shrinkage or stretching is a related type of flow 
that is reflected in several engineering and industrial processes. There are many uses of such flow in the engineer-
ing process, for instance, in the polymer and metallurgy process such as extraction and manufacturing of polymer 
and rubber sheets, melting, hot rolling, paper manufacturing, wire drawing, and glass fiber manufacturing.

It is noteworthy that the unsteady nature of many liquid movements plays a more practical role and has 
gained considerable attention in recent years. In several applications, the ideal liquid flow problems around the 
instrument is not usually steady, but the undesirable volatile effects are either due to the body’s own involvement 
or due to fluctuations or inconsistencies in the surrounding fluid. Otherwise, some types of equipment require 
the time-dependent movement of fluid to perform their basic functions has been analyzed by  McCroskey1. The 
work on the time-dependent boundary layers is important because all boundary layers, which exist in practice, 
are in a sense, time-dependent. The time-dependent viscous fluid movement has been extensively studied, and 
all the features of transient impacts are now less or more familiar to the researcher in mechanics.  Wang2 ana-
lyzed the incompressible steady viscous liquid movement outside the stretching hollow cylinder while the fluid 
was not flowing. The same problem has been expanded by incorporating the effects of suction and injection by 
 Ishaketal3. Talion  is4,  Wang5 and  Riley6 have summarized the basic ideas and significant contributions to the 
subject. A better interpretation of unsteady liquid flow and applying this approach to newly designed methods 
provide significant enhancements in the performance, reliability, and price of several fluid dynamic equipment. 
McLaughlin and  Wang7 seem to have been the first in the field to study the fluid flow at a shrinking surface. To 
adjust this fluid flow, the liquid is pushed in the slot direction and the fluid flow is completely unlike the stretching 
case. These authors have shown that massive suction is usually required to maintain flow on a shrinking sheet. 
Another instance of fluid moving towards a shrinking sheet is the incrementing shrinkage done by  Wang8. It has 
been reported that injection reduces the rate of heat transfer and skin friction to the surface, whereas suction 
works in the opposite direction.

In the recent past, Fang et al.9 investigated the time-dependent viscous fluid movement on an extended 
stretching cylinder that gives the exact solution of the Navier-Stokes equation. They pointed out that due to the 
cylinder’s expansion, there is a reverse flow, and the flow field is firmly affected by the Reynolds number and 
unsteady parameter. Later on, Fang et al.10 studied the time-dependent viscous fluid flow numerically in the 
outside region of the extending or contracting type cylinder.  Stefan11 presented his work on squeezing fluid flow 
under the lubricating approximation approach. Domain and  Aziz12 have analyzed the impacts and properties 
of a squeezing flow of viscous liquid under the magnetic field between two parallel discs. Siddiqui et al.13 inves-
tigated the impact of hydro-magnetic squeezing flow of the thick liquid between two long parallel plates. The 
models were solved using the Homotopy Perturbation Method (HPM) in both of these studies. likewise, Rashdi 
et al.14 studied the hydrodynamic of the viscous squeezing fluid flow using Homotopy Analysis Method (HAM).

The unsteady/steady electroosmotic liquid motion through an infinite expanded cylindrical channel of diame-
ters 10 to 100 nm has been investigated by  Nayak15. They have used a combination of (NaCl + H2O) for numerical 
computation of mass, velocity, potential, and mixing efficiency, the outcomes are acquired in steady and unsteady 
cases for small, large, or equal to the outcomes developed in steady and unsteady cases for small, large, or equal to 
electric double layer (EDL). Likewise, Shekholeslami et al.16 analyzed the behavior of time-dependent nanofluid 
flow between two parallel squeezing plates, solved the proposed model by (ADM), and concluded that the Nusselt 
number increments with the increment in the volume fraction and Eckert number. In contrast, it reduces with 
the enhancement of the squeezing number. Rajvanshi et al.17 used the Brinkman model to investigate the MHD 
squeezing flow of viscous non-compressible liquid in a porous medium between two permeable revolving plates. 
Sangapatnam et al.18 studied the radiation and mass transfer impact on the MHD flow past natural convection 
through iso-thermal vertical plate under viscous dissipation. The effect of radiation, MHD, and mass transfer on 
the transient flow of natural convection through hot vertical porous plates in the presence of viscous dissipation 
was analyzed by Prasad and  Reddy19. Rajvanshi et al.20 studied the incompressible viscous squeezing fluid flow 
between two highly absorbent revolving plates in a porous medium. Solutions are acquired for relatively low 
density optically thin mediums, and are suitable for liquids with a thickness much higher than wall roughness.

Pattnaik et al.21 analyzed the coupled effects of convective heating, Ohmic electro thermal dissipation, and 
exponential heat source on magnetized micropolar nanofluid on an expanded plate by shooting quadrature. The 
comprehensive impacts of conjugate wall conduction and convective boundary heating on the flow of magnet-
ized thermo-solute layer from the nonlinear long container with hydrodynamic thermal concentration slip and 
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radioactive heat transfer were analyzed by Uddin et al.22. Hosseinzadeh et al.23 performed the hydrothermal 
assessment with the conventional fluid of ethylene glycol-water (50%-50%) consistingof hybrid nanomateri-
als (TiO2-MoS2) in an octagon with the elliptical cavity in the center. Their outcomes showed that with an 
increment in the Rayleigh number from 10 to 100, the mean Nusselt number improved by about (61.82%). The 
flow of hybrid nanofluid obtained by the combination of ethylene glycol-water (50%-50%) with nanomaterials 
(MWCNT-Ag) at a vertical stretching cylinder was studied by Hosseinzadeh et al.24. The outcomes indicated 
that the spherical ana lamina geometries of nanomaterials have larger variation, and lamina gives (6%) smaller 
value. They also show that with rising Hartman numbers, the radial velocity for hybrid nanomaterials decreased 
by (9.68%). Marathi et al.25 analyzed the influence of magnetic nanomaterials in incrementingheat transport 
in a tribological system under connective type heating boundary conditions (Robin). Rehan et al.26–28 studied 
the augmented viscosity pattern and heat transfer behavior of a transient two-dimensional non-compressible 
squeezing flow of ion-nano-fluid between two long parallel concentric cylinders. To check heat transfer capacity, 
three different nano components like Titanium oxide, Copper, and Aluminum of volume fraction from 0.1 to 
0.7 nm are suspended into an ionic fluid in turns. The Maxwell Garnet model of thermal conductivity andthe 
Brinkman viscosity model of nanomaterials have been adopted.

Philip et al.29, studied the influence of slip velocity, magnetic field, and concentration for an unsteady fluid 
flow and heat transfer on parallel plates. For its numerical results, they have used Range-Kutta of order (four-
five) in the frame of shooting techniques which produced interesting results for the following parameters as 
Schmidt number, Hartman number, Nusselt number, velocity and concentration on Sherwood number, velocity 
slip parameter, Skin friction, squeeze number and volume fraction of nanoparticle on temperature. Further, Sid-
diqui et al.30 studied the hydromagnetic influences of a viscous fluid in horizontal parallel plates, and solves the 
proposed model by HPM. Sheikholeslami et al.31the numerical scheme then solved interesting results and the 
proposed model investigated the effect of forced convection heat transfer and nano-uniform magnetic field on 
nanofluid and found interesting results. The numerical schemethe numerical scheme then solved the proposed 
model solved interesting developments and the proposed model. Further, Sheikholeslami et al.32 studied the 
nanofluid flow in a two-stage simulation with heat transfer on parallel plates, and solves the constructed model 
by HPM. Next, Sheikholeslami and  Ganji33, examined the provision of mass transfer and heat transfer in a parallel 
channel on unsteady nanofluid in the viscous dissipation existence and the effect of radiation. A group,Okango 
et al.34, studied Hall?s current effect in the presence of variable magnetic fields in the vertical porous flat plates 
and the flow between them. The flow is steady and the selected domain is laminar, but the whole system rotates 
with a uniform angular velocity around the normal axis of the plate.  Bejan35,36, suggested in their proposed 
model that the flow of variable parameters can be taken to reduce the Irreversibility in the heat transfer process 
through specific convective. Hijleh et al.37, observed through a rotating cylinder the laminar mixed convective 
of the entropy and concluded that the increase in buoyancy parameter and Reynolds number occur due to the 
rise of entropy generation. Tasnim et al.38, reviewed the study of the first law and second law of thermodynam-
ics regarding the flow properties and heat transfer in a magnetic field through two parallel vertical plates with a 
porous medium. Odat et al.39, studied the effects of entropy generation through the laminar flow past a flat plate 
in a magnetic field. They noticed that the magnetic field intensity leads to an increased entropy generation rate.

We can readily review from the literature as mentioned earlier that Rehan et al.26 examined the impact of a 
changeable magnetic field in a tribological process between two concentric cylinders regarding the enhance-
ment of heat and mass transfer. The method that has been scrutinized comprises the transmission of Newtonian 
magnetic lubricant between two concentric cylinders under the influence of magnetism. The present study is 
about the entropy investigation of two-dimensional fluid movement and the heat transfer with the coupled Lor-
entz force in the presence of a heat sink/source. The numerical outcomes of different emerging parameters like 
heat source Hs, Schmidt number Sc, Prandtl number Pr, Magnetic parameter M, Bejan number Be, squeezing 
number S, magnetic field, skin friction coefficient, Nusselt number, and entropy production are computed and 
subsequently displayed through various tables and graphs. The proposed fluid flow model has several applica-
tions in the field of transport, biomedical, industries, and electronics.

We have mainly focused on the following objectives, To developed and analyzed mathematical model for an 
unsteady flow and incompressible flow on two concentric cylinders with variable magnetic ?eld.

To investigated physical properties such as skin friction, velocity field, magnetic field, temperature, concentric 
distribution, entropy generation and Bejan number.

To reduce skin friction, to control flow speed and to enhance temperature distribution. Thought this analy-
sis the model partial differential equations is transformed to ordinary differential equations and has analyzed 
numerically through parametric continuation method. For comparison results is also be calculated with the 
help of BVP4C package.

Formulation
We consider time-dependent two-dimensional laminar liquid boundary layer flow between two concentric 
cylinders in the presence of a variable magnetic field to analyze heat transfer behavior. The liquid updated in 
the positive z-direction is presumed to be infinite. The coordinate system in the polar form (r, 0, z), has been 
taken at the centerof the inside cylinder, and hence the velocity components u and w lie along the direction of 
r-axis and z-axis, respectively, as displayed in Fig. 1. It is presumed that the diameters of the concentric cylinder 
dependent on time, and its time-dependent radii a(t) =

√
1− βt and b(t) =

√
1− βt of the inside and outside 

cylinders respectively , where b represents the extension/contraction power, t shows time, and a0 shows radius 
of the inside cylinder at t = 0 . The liquid is assumed to be a symmetric flow with fixed viscosity µ , and density 
ρ . Further, the heat source Q = Q0

1−βt , is employed between the two concentric cylinders.
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The mathematical formulation of the proposed model by continuity, momentum, magnetic field, energy, and 
mass transfer equations are as  follow26.

Continuity equation:

The Momentum equations with variable magnetic  effect26–28:

Maxwell  Equations27,28:

The Energy  Equation26:

The Mass Transfer  Equation29:

where b1, b3 are the components of magnetic field, u and w are the component of velocity field, (ρCp) is the heat 
capacity, P is fluid pressure, T is the temperature, ρ is fluid density, σ is electrical conductivity, µ is kinematic 
viscosity, κ is the thermal conductivity.

Boundary conditions. The boundary conditions of the proposed model as  follow26:
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Figure 1.  Geometry of the problem with Coordinate system.
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The following similarity transformations have been used for reducing a system of PDEs (1− 7) into a non-
linear system of ODEs,

Therefore, Eq. (1) of the model has satisfied automatically, and the reduced form of the remaining equations 
(2− 7) are as follow:

and the boundary conditions in the reduced form as follow,

where M = M2
0σf
ρ

 Magnetic parameter, S = a20α
4ν

 squeeze parameter, Rem = σνµe Rynold’s Magnetic parameter, 

Pr = ν(ρCp)
κ

 Prandtl number, Hs = Q0a
2
0

κ
 heat source parameter, Sc = ν

Dm
 Schmidt number, Sr = Dl(Tm−T0)

Cm−C0
 Soret 

number, C1 = k0(1−βt)
β

 Chemical reaction parameter, 1Cp (
2ν
r )

2 Eckert number and T0 and C0 are the ambient tem-
perature and concentration, Th and Ch are any reference temperature and concentration chosen unequal to T0 and 
C0 . Further assumption, the inner cylinder are maintained at fixed temperature and concentration Tm and Cm.

Entropy generation
The volumetric rate in the magnetic field can be taken as a part of the entropy  generation27,28.

 the transformed form as follow as,

 where V is the velocity vector,(Tm − T0) is a reference temperature κ is the thermal conductivity, Ns = Ng

Ng0
 , is 

the rate of entropy generation, Ng0 = κ(Tm−T0)
(Th−T0)2r2

 is the entropy generation rate behavior, � = Th−T0
Tm−T0

 is the dimen-
sionless temperature difference. Hence, the dimensionless form of the entropy generation as follow.

Where Nf  , NH and Nmf  are denoting the entropy generation due friction of the fluid, entropy generation due 
to heat transfer and local entropy generation due to magnetic field respectively. The viscosity and heat transfer 
effects are described in the Bejan number as follows.
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Emerging physical parameters in the reduced form of system are the Nusselt number and skin friction coef-

ficient, and can be defined as,

In case of Eq. (19), we get

Numerical solution by PCM
In this section, optimal choices of continuation parameters are made through the algorithm of  PCM27 for the 
solution of non-linear equations (10− 13) with boundary conditions in equation (14):

• First order of ODE To transform the equations (10− 13) into first order of ODE’s, consider the following 

 putting these transformations in Eqs. (10− 13) , which becomes 

 and the boundary conditions becomes 
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• Differentiation by p, reaches at the following system w.r.t the sensitivities to the parameter-p Differentiat-
ing the Eqs. (27− 30) w.r.t by p

where h1 is the coefficient matrix, e1 is the remainder and d1 = dpi
dτ  , 1 ≤ i ≤ 10.

• Cauchy Problem

where y1 , v1 are vector functions. By resolving the two Cauchy problems for every component. We are 
satisfied then automatically to ODE’s 

and left the boundary conditions.
• Using by Numerical Solution An absolute scheme has been used for the resolution of the problem 

• Taking of the corresponding coefficients As given boundaries are usually applied for pi , where 1 ≤ i ≤ 10 , 
for the solution of ODE’s, we required to apply d2 = 0 , which seems to be in matrix form as 

 where a1 = −l1.y1
l1.v1

Results and discussions
We have analyzed time-dependent non-compressible two-dimensional squeezing flow between concentric 
cylinders concerning heat transfer and the behavior of the magnetic effect. The impacts of various emerging 
parameters, including Prandtl number Pr,Magnetic number M, squeezing parameter S, Schmidt parameter 
Sc, magnetic Reynolds number Rem , Soret parameter Sr, Chemical reaction parameter C1, Eckert number Ec 
and difference temperature � have been investigated regarding the fluid flow, heat transmission, mass transfer, 
entropy generation and Bejan number in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14. It is noteworthy that the 
outcomes of our proposed model produce better effects than the current model in the literature. Tables 1, 2, 3) 

(28)s′6 =
RemM

2ξ
(S(s5 + 2ξ s6)− 2s1(s6 − 1)q+ 2s1s2),

(29)s′8 = −
1

2ξ
s8 +

Pr

ξ
(Sξ − s1)(s8 − 1)q+

Hs

ξ
s7,

(30)s′10 = −
1

2ξ
φ′ +

Sc

ξ
(Sξ s10 − s1(s10 − 1)q+ C1Ss9 +

SrSc

2ξ
s8 −

ScSrPr

ξ
(Sξ − s1)s8 −

ScSrHs

ξ
s7,

(31)d′1 = h1d1 + e1

(32)d1 = y1 + a1v1,

(33)e1 + h1(a1v1 + y1) = (a1v1 + y1)
′

(34)
vi+1
1 − vi1
△η

= h1v
i+1
1

(35)
yi+1 − yi

△η
= h1y

i+1 + e1

(36)l1.d1 = 0orl1.(a1v1 + y1) = 0

Table 1.  Comparison of the numerical results by two methods PCM and BVP4C for Skin friction and Nusselt 
number, with various physical parameters.

S.

PCM BVP4C PCM BVP4C

f ′′(1). f ′′(1). −θ ′(1). −θ ′(1).

0.0 −4.5583 −4.5583 0.4785 0.4785

0.2 −4.7652 −4.7652 0.6137 0.6137

0.4 −4.9765 −4.9765 0.7754 0.7754

0.6 −5.1924 −5.1924 0.9650 0.9650

0.8 −5.4129 −5.4129 1.1829 1.1829

1.0 −5.6376 −5.6376 1.4286 1.4286

1.2 −5.8666 −5.8666 1.7007 1.7007

1.4 −6.0997 −6.0997 1.9973 1.9973

1.6 −6.3367 −6.3367 2.3158 2.3132
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are described the numerical results of two important flow parameters, skin friction and Nusselt number, which 
are acquired in MATLAB by two different numerical schemes (BVP4C and PCM).

It is indispensable to record that the squeezing number S explains the flow in the concentric cylinder as shown 
in Fig. 2a, where S > 0represents the two cylinders moving apart and S < 0represents the opposite trend of the 
cylinder for the so-called squeezing flow. In this ongoing analysis, the positive values of S > 0 are taken. As long 
as the value of the squeezing number S is incrementing, the horizontal velocity components decrement gradually. 
It is also necessary to mention that the influence of the magnetic field is declining the intensity of the velocity 
throughout the domain under consideration which gives existence to a new force known as Lorentz force. This 

Table 2.  Comparison of the numerical results by two methods PCM and BVP4C for Skin friction and Nusselt 
number, with various physical parameters.

Ha.

PCM BVP4C PCM BVP4C

f ′′(1). f ′′(1). −θ ′(1). −θ ′(1).

0.0 −6.0586 −6.0586 2.3946 2.3946

0.2 −6.0811 −6.0811 2.3952 2.3952

0.3 −6.0924 −6.0924 2.3955 2.3955

0.6 −6.1263 −6.1263 2.3963 2.3963

0.8 −6.1490 −6.1490 2.3968 2.3968

0.9 −6.1604 −6.1604 2.3971 2.3971

1.2 −6.1947 −6.1947 2.3980 2.3980

1.5 −6.2292 −6.2292 2.3988 2.3988

1.8 −6.2639 −6.2639 2.3997 2.3997

Table 3.  Comparison of the numerical results by two methods PCM and BVP4C for Skin friction and Nusselt 
number, with various physical parameters.

Pr.

PCM BVP4C PCM BVP4C

f ′′(1). f ′′(1). −θ ′(1). −θ ′(1).

0.1 −5.0839 −5.0839 0.7529 0.7529

0.5 −5.0839 −5.0839 0.7744 0.7744

1.0 −5.0839 −5.0839 0.8013 0.8013

1.5 −5.0839 −5.0839 0.8285 0.8285

2.0 −5.0839 −5.0839 0.8557 0.8557

2.5 −5.0839 −5.0839 0.8831 0.8831

3.0 −5.0839 −5.0839 0.9106 0.9106

3.5 −5.0839 −5.0839 0.9381 0.9381

4.0 −5.0839 −5.0839 0.9657 0.9657

Figure 2.  Influence of F(η) for S > 0 , S < 0 and fixed values of Rem = 2.5,M = 0.5,Pr = 3.2,Hs = 0.2,

C1 = 0.4, Sc = 0.4, Sr = 0.5.
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Figure 3.  Influence of F ′(η) for S > 0 , S < 0 and fixed values of Rem = 2.5,M = 0.5,Pr = 3.2,Hs = 0.2,

C1 = 0.4, Sc = 0.4, Sr = 0.5.

Figure 4.  Influence of F ′(η) for M and fixed values of S = 2.5,Pr = 6.2,Ec = 0.5, δ = 0.4,

�1 = 0.02,�2 = 0.5,m = 0.3.

Figure 5.  Influence of F ′(η) and G(η) for Rem and fixed values of S = 3.5,M = 3.4,Pr = 6.2,Hs = 1.2,

C1 = 1.4, Sc = 1.4, Sr = 1.5.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9148  | https://doi.org/10.1038/s41598-022-13050-2

www.nature.com/scientificreports/

Figure 6.  Influence of G(η) for S > 0 , S < 0 and fixed values of Rem = 2.5,M = 0.5,Pr = 3.2,Hs = 1.2,

C1 = 0.4, Sc = 1.4, Sr = 1.5.

Figure 7.  Influence of θ(η) for S > 0 , S < 0 and fixed values of Rem = 2.5,M = 0.5,Pr = 3.2,Hs = 1.2,

C1 = 0.4, Sc = 1.4, Sr = 1.5.

Figure 8.  Influence of φ(η) for S > 0 , S < 0 and fixed values of Rem = 2.5,M = 0.5,Pr = 6.2,Hs = 1.2,

C1 = 1.4, Sc = 1.4, Sr = 2.5.
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Figure 9.  Influence of θ(η) and φ(η) for Pr and fixed values of S = 2.5,M = 1.4,Rem = 2.5,Hs = 1.2,

C1 = 1.4, Sc = 1.4, Sr = 2.5.

Figure 10.  Influence of θ(η) and φ(η) for Hs and fixed values of S = 2.5,M = 1.4,Pr = 2.2,Rem = 2.5,

C1 = 1.4, Sc = 1.4, Sr = 2.5.

Figure 11.  Influence of φ(η) for C1 and fixed values of S = 2.5,M = 1.4,Pr = 2.2,Rem = 2.5,

Hs = 1.2, Sc = 1.4, Sr = 2.5.
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force acts in the opposite direction of the flow when the magnetic field is employed in the orthogonal direction 
to the flow. Such kind of opposing force gets slows the velocity of the fluid. Figure 2b illustrates the impact of 
squeezing number S at the horizontal components of the fluid velocity f (η) . Therefore, it is also noteworthy 
that incrementing the negative value of the squeezing number S expands the flow channel thus decreasing the 
horizontal components of the velocity f (η) with the increase in the absolute value of S < 0 . Figure 3a,b describe 

Figure 12.  Influence of φ(η) for Sc and Sr and fixed values of S = 2.5,M = 1.4,Pr = 2.2,Rem = 2.5,

C1 = 1.4,Hs = 1.2.

Figure 13.  Influence of Ns(η) for Pr, Ec, � and M and fixed values of S = 3.3,Rem = 1.7,C1 = 1.6,Hs = 2.2,

Sc = 0.9, Sr = 1.6, δ = 0.5.
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the behavior of the squeezing parameter Sconcerning two parallel concentric cylinders, the channel of the flow 
between two parallel concentric cylinders expands when S > 0 , as a result, the vertical components of the veloc-
ity f ′(η) decrements in the domain η < 1.5 , and increments in the domain η > 1.5 . Similarly, the channel of 
the flow between two parallel concentric cylinders contracts when S < 0 , as a result, the vertical components of 
the velocity f ′(η) increments in the domain η < 1.45 , and decrements onwards. Figure 4 illustrates the impact 
of magnetic parameter M, while Fig. 5a explains the effect of magnetic Reynold’s number Remconcerning hori-
zontal velocity in the flow direction. It can be seen in Figures 4 and 5a that the horizontal components of fluid 
velocity decrements with the increase in the Magnetic parameter M and magnetic Reynold’s number Rem . The 
fact that intensifying the magnetic field causes the opposite force to the flow to rise is known as the Lorentz 
force. This force acts opposite to the flow direction, and hence, the velocity gets decreases but it is completely 
showing opposite behavior for the flow domain, where η > 1.4 . The velocity profile is maximum in the center of 
the annulus cylinder, and the velocity profile follows a parabolic type shape vertically in the upward direction. 
Figure 5b illustrates the effect of the radius of the inner cylinder and the magnetic Reynolds number Rem on the 
magnetic profile, which shows that the electron is moving from outer to inner; in a conventional sense, we can 
say the current is flowing from inner to outer. On the other hand, If the Rem , rises gradually, the fluid’s velocity 
approaches the boundary and is negligible far away from it. This is obvious that the profile of the magnetic field 
decrements with increase in Rem.

Figure 6a illustrates that, as long as the value of the squeezing parameter S increments, the magnetic field’s 
profile decrements due to the existence of Lorentz force, which gets slows the motion of the fluid. In addition, 
when S < 0 , the annulus formed by an outer and inner cylinder contracts, and two of the cylinders get close to 
one another, this condition, together with declining Lorentz force, produces an unfavorable pressure gradient. 
Furthermore, the magnetic profile increments with the increase in the intensity of the squeezing parameter S > 0 , 
as shown in Fig. 6b. It has been noticed from the graph that the magnetic field can be utilized to improve the 
fluid flow; as a result, the squeezing number increases, which augment the magnetic field. Figure 7a explains the 
impact of S > 0 on θ(η) profile. For the higher positive values of S, the temperature profile rises, as the kinetic 
energy of the molecules rises and the attraction between molecules weakens. Therefore, the viscosity of a fluid 
decrements with an increment temperature profile. The effect of squeezing parameter S < 0 on temperature in 

Figure 14.  Influence of Be(η) for Pr, Ec, � and M and fixed values of S = 3.3,Rem = 1.7,C1 = 1.6,Hs = 2.2,

Sc = 0.9, Sr = 1.6, δ = 0.5.
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Fig. 7b. It is shown that due to the increase in the attractive binding energy and hence, the temperature profile 
reduces. In Fig. 8a, it is displayed that the concentration profile decrements with the augmenting value of the 
squeezing number S > 0 , and thus, more squeezing generates cooling effects in the viscous liquid system. Fig-
ure 8b depicts the impact of squeezing number S on the concentration profile, and it shows that the concentra-
tion profile augments with the rise in the squeezing number S when η < 1.5 . Nevertheless, it decrements with 
the increments of these parameters when η > 1.5 . Figure 9a,b shown that the increment in Prandtl number Pr 
increases heat transfer and decreases mass transfer due to the increments the kinetic energy that move faster i.e.. 
They are running their bearing charge fast. As a result, the conductivity rises. Hence, the temperature decreases 
with increasing Pr. An increase in the Prandtl number rises the thermal boundary layer thickness. The ratio of 
momentum diffusivity to thermal diffusivity is referred to Prandtl number.

Therefore, an increment in the Prandtl number indicates that the momentum spreads rapidly and that the 
velocity boundary layer is relatively thicker than the layer of the thermal boundary, resulting in less heat transfer 
through bulk motion. This means that the convection dominates the conduction. Therefore, the mass transfer 
decrements with an increment in Pr. The impact of heat source Hs on concentration and temperature profiles 
is shown in Fig. 10a,b. The temperature profile decrements and the mass transfer increments and at the same 
time becomes linear at the augmenting value of the heat source Hs. Due to the domination of the heat absorp-
tion coefficient, we have observed a raised in the velocity profiles of the flow. Figure 11 explains the impact 
of the chemical reaction parameter C1 on the concentration profile. We can observe from the graph that the 
concentration profile is greatly influenced by the values of the chemical reaction parameter cause an increase in 
chemical molecule diffusivity and hence retards in the flow domain. However, the behavior of the flow becomes 
opposite in the region where η > 1.6 . Figure 12a illustrates the impact of Schmidt number Sc, and it has been 
noticed that the increment in Schmidt number Sc decrements the mass transfer due to the thermal boundary 
layer thickness decreases. The reality is that the larger values of Sc have smaller diffusivity of mass, which causes 
a thinner concentration boundary layer. As the molecular diffusion rate is dominated the viscous diffusion rate, 
the concentration profile decreases. Figure 12b explains the impact of the Soret parameter Sr at the concentra-
tion profile. In this paper, the following values of Sr are taken as Sr = 0.1, 0.4, 0.7, 1.0, it shows that the values 
of the Soret parameter are augmented. The contribution of concentration gradients to the thermal energy flux 
in a fluid flow is shown by the Soret number Sr. A rise in the Soret number Sr is associated with an increase in 
velocity and temperature, as well as a decrease in concentration.

Figure 13a–c illustrate the behavior of entropy generation, it has been observed that entropy generation aug-
ments in the entire domain with the increment in Ec, Pr, and � . Whereas minor variation is seen in the middle 
of the cylinder. The impacts of entropy generation with the rising value of the Pr are sketched in Fig. 13a. It has 
been observed that entropy generation is optimized for a fixed value at the stretching surface inside the domain 
and slows down as the distance from the sheet increases. Further, the surface of the stretching sheet is a good 
source of entropy generation because heat transfer and fluid friction are significant at the surface. So, as shown 
in figure, the entropy generation increases due to the viscous dissipation thus encourages heat irreversibility 
because of heat transport within the flow channel. The Ec is sketched in Fig. 13b describes the thermal energy 
heating measurement, it shows that the Eckert number is producing more entropy generation under the influ-
ence of stretching surface. As a result, decreases the Eckert number achieves the basic goal of the second law of 
thermodynamics, which is to minimize the entropy genera rate per unit volume. The influence of increasing Ec 
on entropy generation is most noticeable near the stretched sheet’s surface, but it has no significant influence in 
the main flow domain. The effect of � on entropy generation in Fig. 13c, consequently increasing the molecular 
disorganization and, therefore, Increasing the entropy production within the boundary layer. Moreover, heat is 
a disorganized shape of energy that increases due to the increment in � of viscous heat, so entropy construction 
increases. Therefore, entropy construction will be minimal due to low viscous heating. No considerable impact of 
the magnetic parameter M at the dimensionless form of total entropy generation is noticed in the middle of the 
channel as shown in Fig. 13d. There is a consistency in the various curves of the entropy generation. That is why 
entropy generation in brief form is basically a relatively important magnetic random and magnetic parameter. 
The variation in Bejan number due to the fluctuation of Pr, Ec, � and M is sketched in Figure 14a–d. We have 
seen that graphs gradually become linear from parabolic and reveal that the Bejan number inside the cylinder 
increases with the increment in Pr and Ec in Fig. 14a,b. In the middle region of the cylinder for η = 1.6 , the 
irreversible phenomenon has been observed in the Bejan number. The Bejan number in the flow system decre-
ments with the rising value of � as shown in Fig. 14c. It has been observed that heat transfer dominates the 
irreversible flow process. Therefore, the fluid friction and irreversibility of the magnetic field dominated near the 
stretching sheet, as can be shown. It is also noticed that when the value of � the Be declines, the influence due to 
heat transfer prevails far away from the stretched sheet, and for small values of � , the influence caused by heat 
transfer dominates. The magnetic parameter M is sketched in Fig. 14d. The Bejan number decreases with increase 
in M. No influence is observed at the point η = 1.58 on Be. On the surface of the stretching sheet the influence 
of magnetic and viscous irreversibility dominates the conductive irreversibility and due to heat transfer to the 
upper cylinder but due to these two factors, Irreversibility equally contributes at η = 1.58.

Concluding remarks
In the ongoing paper, we have studied the fluid flow, Maxwell equation, and mass and heat characteristics between 
two concentric parallel cylinders under the variable magnetic field to see the flow behavior concerning the fol-
lowing emerging parameters like a magnetic parameter, squeezing parameter, Soret number, Prandtl number, 
magnetic Reynold’s number and heat sink/source. The proposed model formulated the fluid flow by continuity 
equation, momentum equation, Maxwell equation, and coupled energy and species equation with boundary con-
ditions has been reduced into a set of highly nonlinear systems of ODEs by Lie group of similarity transformation. 



15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9148  | https://doi.org/10.1038/s41598-022-13050-2

www.nature.com/scientificreports/

The proposed model is solved numerically by a highly efficient and extensively validated Parametric Continua-
tion Method (PCM). In addition, the model outcomes and numerical scheme have been validated by solving the 
proposed model through another numerical system (BVP4C) in MATLAB and found a close correspondence. 
From the results of the model, we have drawn the following conclusion:

• The squeezing number S effect on the velocity profile reveals that the trend of the velocity profile is opposite 
and becomes parabolic.

• The temperature profile augments with augmenting values of the Prandtl number.
• The contradicting behavior between temperature and concentration profiles has been observed due to the 

augmenting values of the heat source parameter (Hs).
• The impact of the Schmidt and Soret number on the concentration profile reveals that the incrementing 

values of the Schmidt and Soret number decrements the concentration profile.
• The existence of the magnetic field reduces the magnetic profile due to the Lorentz force which slows down 

the movement of the fluid.
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