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Background: The rapid and accurate diagnosis of fractures is crucial for timely treatment of trauma 
patients. Deep learning, one of the most widely used forms of artificial intelligence (AI), is now commonly 
employed in medical imaging for fracture detection. This study aimed to construct a deep learning model 
using big data to recognize multiple-fracture X-ray images of extremity bones. 
Methods: Radiographic imaging data of extremities were retrospectively collected from five hospitals 
between January 2017 and September 2020. The total number of people finally included was 25,635 and the 
total number of images included was 26,098. After labeling the lesions, the randomized method used 90% of 
the data as the training set to develop the fracture detection model, and the remaining 10% was used as the 
validation set to verify the model. The faster region convolutional neural networks (R-CNN) algorithm was 
adopted to construct diagnostic models for detection. The Dice coefficient was used to evaluate the image 
segmentation accuracy. The performances of detection models were evaluated with sensitivity, specificity, and 
area under the receiver operating characteristic curve (AUC).
Results: The free-response receiver operating characteristic (FROC) curve value was 0.886 and 0.843 for 
the detection of single and multiple fractures, respectively. Additionally, the effective identification AUC for 
all parts was higher than 0.920. Notably, the AUC for wrist fractures reached 0.952. The average accuracy in 
detecting bone fracture regions in the extremities was 0.865. When analyzing single and multiple lesions at 
the patient level, the sensitivity was 0.957 for patients with multiple lesions and 0.852 for those with single 
lesions. In the segmentation task, the training set (the data set used by the machine learning model to train 
and learn) and the validation set (the data set used to evaluate the performance of the model) reached 0.996 
and 0.975, respectively.
Conclusions: The faster R-CNN training algorithm exhibits excellent performance in simultaneously 
identifying fractures in the hands, feet, wrists, ankles, radius and ulna, and tibia and fibula on X-ray images. 
It demonstrates high accuracy, low false-negative rates, and controllable false-positive rates. It can serve as a 
valuable screening tool.
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Introduction

Fractures are a common problem in trauma cases (1). 
Studies have shown that the worldwide annual incidence 
of fractures ranges from 9.0 to 22.8 per 1,000 people (2). 
There is a growing clinical demand for imaging patients 
with extremity fractures, including magnetic resonance 
imaging (MRI),  computed tomography (CT), and 
radiography (3,4). This demand will continue to increase 
in the coming years, especially for radiography (5). X-rays 
are the primary means of diagnosing fractures and are 
widely accepted by most trauma emergency patients due 
to their speed, convenience, low dose, and affordability. 
However, the diagnostic error rate still reaches 17.9% (6,7). 
Misdiagnosis and omission rates have increased due to the 
growing workloads of physicians (8,9). Limb fractures are 
the second most commonly missed diagnosis in medical 
malpractice litigations in radiology departments (10).  
More experienced clinical and imaging physicians are 
needed to accurately identify fractures, especially in primary 
hospitals where clinical and radiology staff may lack 
experience in X-ray diagnosis. These settings may result in 
higher rates of diagnostic errors, leading to serious patient 
consequences (11). Therefore, it is urgent to implement 
technology that can reduce physician workload and decrease 
misdiagnosis and missed diagnosis rates effectively.

Deep learning, which is one of the most widely used 
forms of artificial intelligence (AI), has found extensive 
application in medical imaging for fracture detection, 
including fractures of the hip, shoulder, wrist, and ankle 
(12,13). Several studies have demonstrated the potential 
benefits of computerized analysis based on deep learning 
as a diagnostic strategy, and this has recently become 
feasible (14). The applications and achievements of deep 
convolutional neural networks (DCNNs) in the medical 
field are expected to grow rapidly, with several studies 
offering significant opportunities to apply deep learning 
to trauma (15-17). DCNNs have demonstrated their 
proficiency in accurately classifying skeletal structures 
and pinpointing site-specific fractures with expert-level 
precision (18-20). Cheng et al. (21) demonstrated the 
performance of DCNNs to help junior physicians achieve 
urgent screening and assessment of hip fractures with 

91% accuracy, 98% sensitivity, 2% false negative rate, 
and 0.98 area under the receiver operating characteristic 
curve (AUC), based on 29,210 X-ray images. Adams  
et al. (22) used DCNNs to detect the accuracy of femoral 
neck fractures on radiographs and compared them with 
subjective human perceptual judgments, showing that 
DCNNs can perform similarly to radiologists. Kim  
et al. (3) implemented an accurate classification model for 
wrist fractures based on X-ray lateral wrist films using 
transfer learning techniques, with an AUC of 0.954, a 
sensitivity of 0.90, and a specificity of 0.88. However, in the 
emergency department, a single examination often includes 
radiography from multiple sites to observe the presence of 
multisite fractures, and a deep learning model using only 
a single site is likely to miss the diagnosis (23). Single-
region deep-learning models may fail to detect multiple 
fractures. Moreover, there is a lack of adequate reports in 
the literature on the X-ray AI detection of ulna, radius and 
tibiofibular fractures.

Hence, in this research, we utilized deep learning 
algorithms to develop intricate multiple skeletal deep 
learning models of the limbs, utilizing extensive data 
collected from various centers, to automatically and precisely 
identify fractures in the extremities. The aim was to employ 
these models to detect fractures across multiple regions, 
enhance the precision of single fracture identification, and 
address the challenge of accurately pinpointing multiple 
fractures. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-878/rc).

Methods 

Study population 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the review boards of Southwest Hospital 
of Army Medical University (AMU), Tianjin People’s 
Hospital, Tianjin First Central Hospital, Second Hospital 
of Tianjin Medical University, and Third Hospital of 
Nanchang, and informed consent was waived due to the 
retrospective study design. We retrospectively gathered 
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radiographic imaging data from five hospitals between 
January 2017 and September 2020. The data were collected 
from patients diagnosed with fractures of the ulnar radius, 
wrist, hand, tibia-fibula, ankle, and foot. The hospitals 
included in the study were Southwest Hospital of AMU, 
Tianjin People’s Hospital, Tianjin First Central Hospital, 
Second Hospital of Tianjin Medical University, and Third 
Hospital of Nanchang.

The inclusion criteria for this study were as follows: (I) 
only images of the ulnar radius, wrist joint, hand, tibia-
fibula, ankle joint, and foot were included; (II) the imaging 
diagnosis of fracture was consistent with the clinical 
diagnosis; (III) the images were compliant with Digital 
Imaging and Communications in Medicine (DICOM) 3.0. 

The exclusion criteria were as follows: (I) duplicate image 
data; (II) patients under 18 years of age; (III) images with 
postoperative internal and external fixations; (IV) poor image 
quality; (V) the images did not pass the labeling-review-
sample check process of the gold standard for fracture area 
labeling. All images were anonymized, and a total of 26,098 
images were included in the follow-up study. The randomized 
method used 90% of the data as the training set to develop 

the fracture detection model, and the other 10% was used as 
the validation set to verify the model (see Figure 1).

Scanning parameters

The requirements for tube current, tube voltage, and 
exposure time of the limb bone are listed in Table 1. 
Any digital radiography equipment that satisfies these 
requirements can be utilized as acquisition equipment.

The data acquisition equipment selected for this study 
included Fujifilm (Japan), Simens (Germany), Kodak 
(USA), United Imaging (China), Cannon (Japan), Philips 
(Netherlands), GE (USA), Shinva (China), ECOM 
(China), Samsung (Korea), Orich (China), Orich (USA), 
Neusoft (China), Angell (China), GMM (China), Wandong 
(China), and Mindray (China). These devices meet the tube 
voltage, tube current, and exposure time requirements for 
photographing limb bones.

Image annotation

In reference to the gold standard fracture detection 

Inclusion criteria: 

(I) Only images of the ulnar radius, wrist joint, hand, 

tibia-fibula, ankle joint, and foot were included;

(II) Tthe imaging diagnosis of fracture was consistent 

with the clinical diagnosis; 

(III) The images were compliant with DICOM 3.0;

(55,531 images from 53,927 patients)

The eligible data volume

(35,318 images from 34,682 patients)

The data included in the study

(26,098 images from 25,635 patients)

The training set

(24,541 images from 24,108 patients)
 The validation set

(1,557 images from 1,527 patients)

Date excluded (20,213 images from 19,245 patients):

(I) duplicate image data; 

(II) patients under 18 years of age; 

(III)  images with postoperative internal and external 

fixations; 

(IV) poor image quality cannot be diagnosed.

Date excluded (9,220 images from 9,047 patients):

(V) The images did not pass the labeling-review-

sample check process of the gold standard for 

fracture area labeling

Figure 1 The original image were screened and grouped. DICOM, Digital Imaging and Communications in Medicine. 
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Table 1 Scanning parameters of different parts of the extremity bones

Part KV mA mAs Ms

Ulnar radius 50 100 10 100

Wrist joint 50 100 8 80

Hand 45 100 8 80

Tibiofibular 55 100 12.5 125

Ankle joint 55 100 12.5 125

Foot 50 100 10 100

KV can be increased when the overall color of the image is white; when it is dark, KV is reduced appropriately.

method used by OsteoDetect [a similar Food and Drug 
Administration (FDA)-approved fracture diagnostic 
product], the gold standard fracture detection algorithm in 
this study was developed by four imaging specialists. Two 
annotating physicians (with 6 and 7 years of experience, 
respectively) manually marked all images, one physician 
(with 15 years of experience) reviewed the gold standard, 
and another physician (with 30 years of experience) spot-
checked it; all the three of these duties were not being 
performed by the same physician. The final gold standard 
involved marking the location of the fracture lesion with 
the smallest enclosed box for images determined to be 
positive for fracture. The process of developing the gold 
standard involved two annotators independently reviewing 
the images, annotating the fracture lesions, and providing 
the annotated results to the reviewer. The reviewer then 
reviewed and modified the results of both annotators to 
form a unique final annotation result for each datum. The 
final annotations were randomly checked by experts to 
ensure quality.

Accurate annotation is an essential indicator of the 
absence of mislabeling or omission when annotating a 
single instance of a data lesion. Annotators must achieve 
an accuracy rate of at least 85%, while reviewers and spot 
checkers must achieve an accuracy rate of at least 90%. Only 
when the annotation accuracy meets these requirements 
can the data annotation work be formally performed. In this 
context, accuracy rate was defined as the ratio of correctly 
labeled images to all labeled images.

Image pre-processing

Image enhancement
We employed contrast enhancement techniques to 
attain image enhancement, particularly with the aim of 

ameliorating the gray-scale contrast within the desired 
gray-scale interval. This was accomplished through 
the suppression of aberrant pixels in the image and 
the extension of the gray-scale range for the pixels of 
significance. Additionally, image enhancement was applied 
to make the distribution of data more uniform, thereby 
increasing algorithm stability. The grayscale range 
stretching (13) method was used for image enhancement, 
as shown in Figure 2. The horizontal axis represents the 
original image pixel value, while the vertical axis represents 
the image pixel range mapped after enhancement. The 
black solid line indicates no enhancement, while the red 
solid line represents the result of enhancement. As seen in 
the image, the effective pixel range is stretched and overall 
contrast is greatly improved. After enhancement, grayscale 
values were normalized and the pixel range was adjusted to 
between 0 and 255.

Data amplification
The algorithm model was trained using online data 
augmentation. The data augmentation techniques employed 
included random flipping (both horizontal and vertical) and 
random grayscale transformation (as shown in Figures 3,4). 
The augmented data resulted in three times the amount 
of the original data. The distribution of the amplified data 
samples in terms of sex, age, device manufacturer, and site 
remained consistent with that of the original training set.

Unet-based bone segmentation algorithm
The target detection area for fracture detection was the 
bone region. Often, the images contain a large background 
area and some clutter, which can cause interference in 
fracture detection. Accurately localizing the target detection 
region is important for improving the accuracy of fracture 
detection. The bone segmentation algorithm located the 
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bone region segmentation of the input image. After locating 
the bone region, it took the minimum enclosing frame and 
crops the image to obtain the region of interest (ROI). This 
region became the input of the fracture detection module.

Unet is a segmentation network proposed based on 
Fully Convolutional Networks (FCN) and applied to 
medical influence. Unet consists of an encoding network 
on the left half and a decoding network on the right half, 
with feature fusion between the encoding and decoding 
modules via jump connections (Figure 5). The encoder 
network iteratively consisted of two 3×3 convolutional 

layers and 2×2 maximum pooling layers (stride =2), with a 
total of four downsamplings. The number of channels was 
doubled with each downsampling. The decoder network 
iteratively consisted of one 2×2 upsampling convolutional 
layer and two 3×3 convolutional layers, with a total of four 
upsamplings. The last layer of the network used a 1×1 
convolution to turn the number of channels into the desired 
category number.

The Unet network was 19 layers, 24.44 million 
parameters (crop size =256×256; batch size =32; learning 
rate =3E−4; epoch =60), and 31.3 GMAC (Giga Multiply-

y

X

Figure 2 Example image enhancement with gray-scale range stretching. x-axis represents the pixel value of the original image, y-axis 
represents the mapped image pixel range after image enhancement, where the black solid line represents no image enhancement, and the red 
solid line represents the result after image enhancement.

Figure 3 Example diagram of flip transformation.
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Figure 4 Grayscale transformation example diagram (left 1: grayscale 0.8, left 2: grayscale 0.9, left 3: original image, left 4: grayscale 1.1, left 
5: grayscale 1.2).
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Figure 5 Model architecture of Unet partition network.
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Add Operations per Second) computation.

Post-processing

The predictive tendency of the model can be adjusted by 
adjusting the thresholds for prediction in practical clinical 
applications. Our model considered the model sensitivity 
and accuracy with a threshold of 0.4 false positives per 
image, with a threshold of 0.193. The specific false positives 
were 0.4 false positive detections generated per image. 
The specific evaluation parameters are summarized in the 
following Table 2.

Training and validation dataset

The total number of people finally included was 25,635 
and the total number of images included was 26,098. We 
did image ID number binding for the same patient when 
grouping the data to ensure that the images of the same 
patient were grouped into the same group. A total of 
24,541 images were utilized as an independent training 
set to develop the fracture-detection model. The images 
varied in size from 2,128×2,248 pixels to 2,688×2,688 pixels 
and were in 8-bit grayscale color. Within the training set, 
14,196 images contained fractures while 10,345 images did 
not. The images were categorized into six groups: hand, 
foot, wrist, ankle, tibiofibular and ulnar radius, with 6,641, 
5,722, 4,324, 3,004, 2,548, and 2,302 images respectively. 
The validation set consisted of 1,557 samples, of which 842 
contained fractures. The images in the validation set were 
categorized into six groups as well: hand, foot, wrist, ankle, 
tibiofibular, and ulnar radius, with 358, 299, 219, 214, 249, 
and 218 images respectively.

Development of faster region convolutional neural 
networks (R-CNN) detection algorithm

The faster R-CNN model is a classical algorithm for 
target recognition in computer vision. It integrates feature 
extraction, candidate frame extraction, rectangular frame 
regression, and target detection and classification into a 
single network. The network architecture is illustrated in 
Figure 6.

In the feature extraction stage, Resnet 50 (a pre-trained 
model) was utilized as the backbone network for feature 
extraction, while Feature Pyramid Network (FPN) (24) 
was employed for multi-scale feature extraction. FPN is 
a feature pyramid structure, as shown in Figure 7. This 
structure leverages both the high-resolution characteristics 
of low-level features and the high semantic information of 
high-level features to enhance the detection of targets of 
varying sizes by fusing the features of these different layers. 
The region proposal network (RPN) was then utilized to 
generate candidate target frames, determine their category 
through classification, and obtain the exact candidate frames 
through regression network correction. ROI pooling (or 
ROI alignment) was used to extract proposal (the output 
box of RPN in the two-stage approach) features from the 
feature map and scale them to a fixed size for proposal 
category discrimination. Finally, the proposed feature map 
was used to calculate the proposed category and further 
optimize the target frame boundaries.

The loss function (optimization objective function) 
used for faster R-CNN is the sum of classification loss 
and regression loss. The categorization loss is the cross-
entropy loss and the regression loss is the smooth L1 loss. 
The cross-entropy loss is used to determine how close the 

Table 2 The specific evaluation parameters

Confidence threshold Recall rate Accuracy rate
Average number of false positive 

detections per image

0.576 0.742 0.862 0.1

0.379 0.785 0.768 0.2

0.262 0.805 0.693 0.3

0.193 0.824 0.634 0.4

0.149 0.840 0.586 0.5
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predicted category probabilities are to the true category 
probabilities, and the smooth L1 loss is used to determine 
how close the predicted border coordinates are to the true 
border coordinates. The loss function is used to measure 
the difference between the predicted value and the real 
value of the model. It is a non-negative real value function. 
The smaller the loss function, the better the robustness of 
the model. The loss function of the algorithm includes the 
RPN and fast R-CNN phases, which are defined as follows 
Eqs. [1–3]:

{ } { }( ) ( ) ( )* * *1 1, , ,i i cls i i i reg i i
i icls reg

L p t L p p p L t t
N N

λ= +∑ ∑  [1]

( ) ( )* *,reg i i i iL t t R t t= −
 

[2]

( ) ( ) ( )( )* * *, log 1 log 1cls i i i i i iL p p p p p p= − + − −
 

[3]

Among them, the Pi, ti are the predicted target probabilities 
and coordinate parameters, respectively *

ip , and *
it  are the truth 

target probabilities and coordinate parameters, respectively, 
and R is the smooth L1 loss function. 

Our model relied on the Detectron 2 framework, 
utilizing the Pytorch deep learning environment and 
Python as the programming language.

Statistical analysis and software

The basic data were analyzed using R-4.0.4 and expressed as 
counts (percentages), while numerical data were expressed 
as means (standard deviations). The Chi-squared test and 
t-test were utilized to analyze the variability of patients with 
and without fractures under different indicators. To evaluate 
the performance of the fracture region segmentation 
algorithm, this study utilized the Dice coefficient as the 
metric. The Dice coefficient takes values in the range of 
[0–1], with higher values indicating greater consistency 
between the two sets. A value of 0 indicates that the two sets 
have no intersection, while a value of 1 indicates complete 
consistency. In image segmentation, A represents the gold 
standard segmented image, while B represents the model-
predicted segmented image.

( ) 2
,

A B
Dice A B

A B
∩

=
+  [4]

Input Backbone FPN

RPN

Reg

Cls

ROI Alian ROIs Head Output

Figure 6 Network structure of fracture detection model. The red box indicates the detected fracture lesion area. FPN, feature pyramid 
network; RPN, region proposal network; ROI, region of interest; Reg is reg-layer (it predicts the coordinates of the proposal corresponding 
to the central anchor of the proposal); Cls is cls-layer (it determines whether a proposal is in the foreground or background). 

2× up

1×1 conv

Predict

Predict

Predict

Figure 7 Schematic diagram of the feature pyramid structure. 
Conv, convolution.
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Among them, the term |A∩B| denotes the intersection 
of sets A and B, while |A| and |B| signify the cardinality 
of sets A and B, respectively. In this context, the coefficient 
of two accounts for the presence of common elements 
between A and B in the denominator. The formula can 
be comprehended as a doubling of the predicted correct 
outcomes divided by the sum of the real outcomes and the 
predicted outcomes.

The metrics used for the performance metrics of 
the faster R-CNN fracture detection algorithm were 
categorized into the lesion and patient levels. The lesion 
level: categorized by single lesion and multiple lesions, 
the assay detection performance evaluation was based on 
the FROC curve, which is a curve with lesion recall as the 
vertical coordinate and the number of false-positive lesions 
averaged over all images as the horizontal coordinate. The 
patient level: the highest predicted probability of detecting 
a lesion in an image was taken as the probability that the 
image was predicted to have a fracture. If no lesion was 
predicted, the probability of a fracture was predicted to be 
zero for that image. Thus each image had a probability that 
could be used to calculate receiver operating characteristic 
(ROC) classification performance. If the patient had 
multiple images, the highest probability of a fracture lesion 
in multiple images was used as the patient’s probability 

of fracture. And if no lesion was predicted in any of the 
patient’s multiple images, the patient’s probability of 
fracture was predicted to be zero. At the lesion-based 
level, the free-response receiver operating characteristic 
(FROC) curve, recall rate, and precision rate were utilized 
as evaluation metrics. At the patient-based level, the 
ROC curve, AUC, recall rate, and specificity were used as 
evaluation indices. These metrics were calculated as follows: 
Recall (Sensitivity)=TP/(TP+FN), Precision=TP/(TP+FP), 
where TP represents the number of targets with positive 
predicted results and positive true results; and FN represents 
the number of targets with negative predicted results and 
positive true results; and FP represents the number of 
targets with positive predicted results and negative true 
results.

Results 

Study population 

Table 3 displays the distribution of data for the cases 
included in this study, categorized into training and 
validation sets. A total of 26,098 valid X-ray images were 
obtained to construct the model, comprising of 6,999 
radiographs of the hand, 4,543 of the wrist, 2,520 of the 
radius-ulna, 6,021 of the foot, 3,218 of the ankle, and 2,797 

Table 3 Data distribution of the included cases in the training and validation sets

Part Dataset
Number of 

images

Gender Results

Male, n (%) Female, n (%) P value Positives, n (%) Negatives, n (%) P value

Hand Training set 6,641 4,124 (62.1) 2,517 (37.9) 0.472 3,389 (51.03) 3,252 (48.97) 0.127

Validation set 358 215 (60.06) 143 (39.94) 198 (55.3) 160 (44.7)

Wrist joint Training set 4,324 2,059 (47.62) 2,261 (52.29) 0.611 2,515 (58.17) 1,809 (41.83) 0.607

Validation set 219 100 (45.66) 119 (54.34) 123 (56.01) 96 (43.99)

Ulnar radius Training set 2,302 1,290 (56.04) 1,012 (43.96) 0.576 1,440 (62.55) 862 (37.45) 0.002

Validation set 218 127 (58.26) 91 (41.74) 113 (51.78) 105 (48.22)

Foot Training set 5,722 2,802 (48.97) 2,920 (51.03) 0.141 3,106 (54.28) 2,616 (45.72) 0.355

Validation set 299 160 (53.51) 139 (46.49) 171 (57.27) 128 (42.73)

Ankle joint Training set 3,004 1,431 (47.64) 1,571 (52.29) 0.262 1,959 (65.2) 1,045 (34.8) <0.001

Validation set 214 93 (43.46) 121 (56.54) 103 (48.19) 111 (51.81)

Tibiofibular Training set 2,548 1,236 (48.51) 1,312 (51.49) 0.526 1,787 (70.13) 761 (29.87) <0.001

Validation set 249 115 (46.18) 134 (53.82) 139 (55.73) 110 (44.27)

Columns with no gender information are not displayed in the table.
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of the tibia fibula. The data collected were well balanced 
in terms of gender and fracture presence, ensuring that the 
subsequent training of the algorithm generalized well across 
the training and validation sets.

The impact factors analysis results

The study results revealed that the performance of the 
algorithm stabilized after the training data volume reached 
18,000, as indicated by a FROC-AUC of 0.865. To further 
investigate, separate analyses were conducted based on 
gender, age, collection devices, and sites using the validation 
set. Between-group comparisons were performed using 
the Chi-squared test for the area under two independent 
ROC curves. Notably, there were no statistically significant 
differences in algorithm performance observed across 
different genders, ages, acquisition devices, or sites (P>0.05). 
This suggests that the aforementioned factors do not exert 
an influence on the algorithm’s performance. Additionally, 
in analyzing the impact of noise level on algorithm 
performance, it was observed that when the noise level 
exceeded 2.4E−02, there was a notable decline in algorithm 
performance. This finding emphasizes the influence of noise 
level, or image quality, on the algorithm’s effectiveness.

Bone region segmentation results and fracture detection 
results

The model was trained on a dataset of radiographs of 
extremity bone fractures. In the segmentation task, the 
training set (the data set used by the machine learning 

model to train and learn) and the validation set (the data 
set used to evaluate the performance of the model) reached 
0.996 and 0.975, respectively. The final validation dataset 
showed that the Dice values for bone region segmentation 
were 0.978 for the ankle, 0.977 for the hand, 0.969 for the 
foot, 0.959 for the wrist, 0.973 for the radius-ulna, and 0.992 
for the tibia-fibula. The average accuracy in detecting bone 
fracture regions in the extremities was 0.865. The ulnar 
flexure had the highest calibration efficacy with an FROC 
value of 0.922, while the foot was the most difficult to 
detect with an FROC value of 0.849. Additionally, this study 
predicted the presence or absence of fractures in patients, 
with an average predictive AUC of 0.933. Figure 8 displays 
the FROC and ROC curves of the validation set for the 
two tasks of fracture detection and classification of patients 
with and without fractures. Table 4 presents the evaluation 
metrics for fracture detection and prediction in different 
parts of the extremity bones at the lesion and patient levels.

Single and multiple fracture detection results

In this study, the faster R-CNN algorithm was used to 
detect single and multiple fracture lesions simultaneously. 
A single fracture is one image containing one fracture, and 
multiple fractures are multiple fractures in the same image. 
FROC-AUC for the evaluation of the accuracy of lesion 
detection, according to an image containing one fracture or 
multiple fractures that can be divided into fracture single 
dataset and fracture multiple datasets, for different datasets 
were performed FROC calculation respectively. The 
results indicated that the FROC-AUC values were 0.886 
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and 0.843 for single and multiple lesions, respectively. The 
multiple lesion assay demonstrated a higher precision of 
0.892, but a lower sensitivity of 0.796. Furthermore, when 
analyzing single and multiple lesions at the patient level, the 
sensitivity was 0.957 for patients with multiple lesions and 
0.852 for those with single lesions.

Discussion 

The results of the study demonstrate that deep learning 
can accurately identify fractures in multiple parts of the 
extremities. We utilized a Unet network-based skeletal 
region segmentation and fracture region detection task 
for extremity bones using deep learning algorithms, based 
on extremity bone X-ray image data. The faster R-CNN 
algorithm was also effective in identifying fracture regions 
in the ulnar radius, wrist, hand, tibia, fibula, ankle, and 
foot in the detection task. In the independent validation 
set, the FROC values for single and multiple fracture 
detection were 0.886 and 0.843, respectively. Moreover, 
detection based on the image level was superior, with an 
effective identification AUC higher than 0.920 for all 
sites, particularly for wrist joint fractures, which had an 
AUC value of 0.952. In the segmentation task, the model 
demonstrated excellent segmentation performance, with the 
Dice value in the bone segmentation area of the training set 
and validation set reached 0.996 and 0.975, respectively.

Deep learning demonstrated outstanding performance 
in image processing tasks. Numerous studies have reported 
the effective use of deep learning in identifying fractures in 
various locations, including the ribs (16), lumbar spine (25), 
shoulder (26), hip (27), wrist (3,8), and ankle (28), with 
a diagnostic accuracy of over 0.90. Kalmet et al. utilized 

DCNNs to accurately identify fractures on plain wrist films, 
and the AUC of the validation set was greater than 0.95, 
outperforming traditional computational methods such as 
segmentation and feature extraction (14). Additionally, it has 
been reported in the literature that deep learning models 
show superior performance in fracture detection, similar to 
intermediate or advanced radiologists and superior to junior 
radiologists (29). Lindsey et al. (8) evaluated emergency 
physicians’ ability to diagnose fractures with and without the 
use of machines and showed an average of 47% reduction 
in the rate of misdiagnosis by emergency physicians when 
using machine-assisted detection of fractures in radiographs. 
In this study, the evaluation metrics of detection and 
segmentation reached 0.886 and 0.996, respectively, in the 
simultaneous multiple-fracture detection and segmentation 
task scenario.

Although our study achieved satisfactory prediction 
results, there were still limitations to our model. Firstly, 
the sensitivity is lower for multiple fractures, especially in 
the more complex anatomy of the hand, wrist and foot, 
which can lead to missing some lesion in an image. Given 
that the sensitivity for detecting multiple foci at the patient 
level reaches an impressive 0.957, and the likelihood of 
direct missed diagnosis in patients with multiple foci is 
exceedingly low, our model can serve as a valuable tool in 
aiding physicians with diagnosis. However, it is important to 
note that our model cannot entirely substitute the expertise 
and judgment of a diagnosing physician. Furthermore, it 
is worth noting that our trained fracture detection model 
utilizes data from five different centers, encompassing 
multiple devices and device parameters. This grants our 
model a certain degree of generalizability when predicting 
data from other centers and devices. However, we have not 

Table 4 Fracture detection and fracture prediction evaluation indexes in different parts of extremity bones based on lesion and based on patient 
level

Part
Lesions Patients

FROC-AUC Sensitivity Precision AUC (95% CI) Sensitivity Precision

Ulnar radius 0.889 0.824 0.651 0.924 (0.879–0.969) 0.839 0.783

Hand 0.851 0.786 0.775 0.934 (0.911–0.958) 0.868 0.840

Wrist 0.878 0.795 0.813 0.952 (0.928–0.977) 0.894 0.846

Tibiofibular 0.922 0.852 0.810 0.939 (0.913–0.965) 0.888 0.902

Foot 0.849 0.792 0.776 0.924 (0.899–0.950) 0.910 0.790

Ankle 0.886 0.804 0.682 0.922 (0.893–0.950) 0.869 0.851

FROC, free-response receiver operating characteristic; AUC, area under the curve; CI, confidence interval.
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examined whether factors such as racial diversity, domestic 
or foreign, or geographic variations have an impact on the 
results. Moreover, it is important to acknowledge that our 
model is currently only capable of detecting fractures in 
the extremities and not all fractures visible on radiography. 
Further optimization is required to expand its capabilities 
in this regard. In future studies, our plan is to extend the 
model to encompass other types of fractures. However, we 
anticipate several challenges in this process, including the 
need for more comprehensive multicenter data to detect 
a wider range of fracture types, as well as the requirement 
for more advanced fracture feature extraction and detection 
networks. As the volume of data and complexity of the 
model increase, the hardware demands for training will 
also escalate. In upcoming research endeavors, we aim to 
collaborate with additional hospitals to gather data from 
various fracture locations, enabling us to train, validate, and 
ultimately implement the model in clinical settings.

Conclusions

In conclusion, the faster R-CNN training algorithm 
exhibits excellent performance in simultaneously identifying 
fractures in the hands, feet, wrists, ankles, radius and ulna, 
and tibia and fibula on X-ray images. It demonstrates high 
accuracy, low false-negative rates, and controllable false-
positive rates. It can serve as a valuable screening tool. 
Furthermore, our algorithms can accurately localize the 
fracture site and assist doctors in diagnosis. This will not 
only improve the diagnostic efficiency of physicians but also 
reduce the rate of missed fractures.
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