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Abstract: In this study, silica in the form of raw local natural sand was added to high-density-
polyethylene (HDPE) in order to develop a composite material in the form of sheets that could have
potential applications in thin film industries, such as packaging, or recycling industries, such as in
3D printing. The silica/HDPE composite sheets were developed using a melt extruder followed by
using a hot press for compression molding. The impact of two different particle sizes (25 µm and
5 µm) of the silica particles on selected properties such as toughness, elastic modulus, ductility, and
composite density were analyzed. A considerable increase in the toughness and elastic modulus was
observed from 0 wt% to 20 wt% with a 25 µm filler size. However, a general decreasing trend was
observed in the material’s toughness and elastic modulus with decreasing particle size. A similar
trend was observed for the ductility and the tensile strength of the sheets prepared from both filler
particle sizes. In terms of the composite density, as the filler was increased from 20 wt% to 50 wt%,
an increase in the composite densities was noticed for both particle sizes. Additionally, the sheets
developed with 25 µm particle size had a slightly higher density than the 5 µm particle size, which is
expected as the size can account for the higher weight. Results from this work aim to analyze the
use of local sand as a filler material that can contribute towards maximizing the potential of such
composite materials developed in extrusion industries.
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1. Introduction

Over the past century, the use of plastics has been on the rise globally and is becoming
alarming due to its disposal techniques that are damaging the environment, and at this
current rate of usage, it is estimated that the earth will hold over 3 billion tons of plastic
in the next 30 years [1]. Furthermore, it is approximated that over 50% of all the current
plastic consumed ends up in nature, whether in landfills or the ocean [2]. Additionally, the
waste from plastics is reported to be harmful to living organisms as their pigmentation
consists of toxic and hazardous trace elements if left in the environment for long [3].

Researchers globally are developing solutions to utilize plastics in a more efficient way
to incorporate them in a variety of industries for a prolonged duration of time to sustain
their consumption.

Polymers are widely used in industrial applications ranging from automotive, to
petroleum, to medicine, and even upcoming industries such as 3D printing [4–11]. One of
the common types of polymers that is widely used in sheet-type applications is polyethy-
lene, which includes all its variants such as HDPE, low-density polyethylene (LDPE), linear
low-density polyethylene (LLDPE), etc. These polymeric materials exhibit higher mechan-
ical strength and greater resistance to environmental stresses than other polymers [12].
These long-chained polymeric plastics are relatively easy to mold and manufacture and
provide a cost-effective base polymer to start with good overall qualities [3].

Polymers 2022, 14, 4830. https://doi.org/10.3390/polym14224830 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14224830
https://doi.org/10.3390/polym14224830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5995-9190
https://orcid.org/0000-0003-0008-6978
https://orcid.org/0000-0001-5369-5588
https://orcid.org/0000-0002-8294-0981
https://doi.org/10.3390/polym14224830
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14224830?type=check_update&version=3


Polymers 2022, 14, 4830 2 of 18

The blown-film process or extrusion is the key technique typically used in fabricating
thin sheets or films for packaging applications, food packaging, trashcan liners, merchan-
dise packaging, etc. One of the critical features of any packaging material is its durability
and high stability. Another key feature for thin packaging material is its high strength.
However, incorporating additives and additional components is preferred to lower the use
of developing completely plastic-based products. To tackle this issue, it is reported that the
use of inorganic fillers is employed as it enhances the thermal and mechanical properties
of the polymer as well as their durability [13–17]. Studies report that minerals, fillers, and
hard particles increase the overall dimensional stability of the polymers [18]. Significant
improvements, particularly in the mechanical properties, can be observed with increasing
filler additions of inorganic exfoliated clay minerals in polymer matrices, including layered
silicate compounds [19]. Studies report that the addition of small-size mineral particles
with smooth spherical surfaces can result in increased matrix compactness that can lead to
higher friction bonding [20].

Additionally, the elastic modulus is a property that can be easily enhanced by adding
micro- or nanoscale particles since the particles have a higher stiffness than the polymeric
matrices. The applied stress can be easily transferred from the polymer matrix to the
particles, enhancing the material’s tensile strength [19,21]. Studies report that the addition of
hard particles in polymers, such as in polyethylene, resulted in improved impact toughness
as well [22–24]. Moreover, it can be said that the addition of particles has an effect at smaller
stress levels. For instance, the plastic deformation can be distributed by the cavitation
caused by adding fillers, which allows the polymer to yield. This results in extended areas
of plastic deformation and, thus, increases the amount of energy that can be absorbed by
the composite material, thereby improving the overall toughness [22]

Mineral fillers such as calcium carbonate (CaCO3), titanium dioxide (TiO2), silicon
dioxide (SiO2), etc., are widely used to develop polymer composite materials [25–31].
Combinations of several minerals to develop hybrid composites have also contributed
to improved mechanical properties. Studies report that the element detected the most
is considered the first primary phase, which mainly contributes and impacts the proper-
ties [15]. However, if the same filler with the same combination of mineral content is added,
mechanical comparisons can be performed on composites with varying filler additions [32].
It is to be noted that the mechanical properties of a polymer-composite material depend
strongly on key factors, such as the particle size of the filler, the interface adhesion between
the particle and the matrix, and the particle loading [19]. Adding fillers can even enhance
the tight packing of the polymer matrices; for instance, smaller particles can provide higher
strength and increase the compactness of a polymer matrix Additionally, fillers can appear
spherical but be present in clusters rather than individual particles due to interparticle
interactions. The particles can vary anywhere from 0.1 µm up to 1000 µm depending on
the application type and properties desired at the micro scale [19,20,33].

Overall, composites developed with fillers are reported to exhibit several advantages
over conventional materials or their individual components, for instance providing key
benefits in bulk weight and costs [34]. Inorganic fillers such as silica are also considered
because they fulfil the purpose of enhancing mechanical properties such as strength and
durability and, at the same time, are safe for human health; therefore, they can be incorpo-
rated into products that involve human interaction, such as packaging or even in building
construction materials [35].

Due to its unreactive nature, high thermal stability, and high durability, silica is
one of the most widely chosen fillers in a variety of fields such as electronics, textiles,
construction, 3D printing, etc. [10,36–42]. It is also reported that the surface of precipitated
or hydrated silica is hydrophilic due to the presence of a high number of silanol groups that
can bond and adhere through the presence of hydrogen bonding [43]. Studies also show
the incorporation of sand into polymers in building materials, recycling, and managing
wastes [44–48]. Furthermore, silica can be easily surface-modified as per the need of an
application to increase or decrease the hydrophilicity, making it a very versatile mineral to
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use as a filler material [49,50]. For instance, studies report that hydrophobic silica has the
ability to double the adhesion of binders in contrast to hydrophilic silica, which halves it [51].
Moreover, modifying silica particles’ surface hydrophobicity leads to improved overall
compound stability [52]. This gives the ability to finely tune the interparticle interactions,
which can modify the way the particles assemble under applied stress [53]. Silica and its
derivates are also expected to self-aggregate and form a network of particles within the
matrix, increasing the formation of links and resulting in an overall integrated structure [54].

Furthermore, geographically speaking, the middle east has a vast abundance of areas
with raw sand whose main component is usually silica. Since variants of silica are exten-
sively used as fillers to improve the properties of composite materials, the consideration
of using local raw sand by itself was decided to be studied. Additionally, in terms of
polymers, since HDPE is widely used as a large-scale commodity polymer for thin film
products [36,55], and due to its ease of availability, recyclability [56], good mechanical
strength, high chemical resistance, and low cost [54,57], HDPE was considered as the choice
of polymer for this study. HDPE is very light in weight, is water-resistant, and can be
easily recycled, making it a good choice for packaging applications. HDPE also has good
impact resistance, as well as has shown good resistance to insects, molds, and mildew.
Fillers can enhance several properties of HDPE, for instance, strength, modulus, toughness,
hardness, and durability, as well as improve thermal conductivity [57,58]. The addition
of fillers to HDPE also helps prevents shrinkage of the material and is also reported to
adsorb high-energy photons when exposed to UV light, prolonging its ability to extended
outdoor exposure [59,60].

Moreover, since in thin film applications, extrusion is considered the major tech-
nique [61], a lab-scale twin-screw extruder setup is a great bench-scale option to be consid-
ered for developing such composites employed in this study [62].

There is a significant rise globally in the use or reuse of natural items and industrial
by-products as raw materials or additional supplementary materials in order to maximize
material usage and potential and reduce their negative environmental and economic
impacts. Since these by-products or raw materials are abundant, it is smart to incorporate
them into products to reduce the ecological and economic burden caused due to an increase
in plastics and limited natural resources [20]. Several industries also prefer opting for low-
cost reinforcements that can improve the properties of the material and, at the same time,
also take into consideration how easily the material can be accessed and manufactured.
Additionally, the already existing industrial-scale processing techniques, such as casting,
extrusion, or compression, are an added advantage as they involve low fixed capital and
production costs to utilize these materials [15]. Moreover, according to a study conducted
for a silica based composite material, one of the key mechanical properties, i.e., the elastic
modulus, increased linearly with the content of the silica added and the impact of the
particle size was insignificant. Since filler at a micro level is easier to access and develop,
opting for a filler at the microscale to enhance properties is a more efficient and cost-effective
approach to develop composite materials rather than investing in expensive technology
to obtain finer particles that essentially will perform a similar job at the nanoscale with a
higher loading [19]. Another study highlights the comparison of values of Young’s modulus
between micro silica and nano-silica, which demonstrated values higher in the micro case
up to a certain filler weight loading [21]. Another study suggested that filler loading is
the determining property for mechanical properties, for instance, for the elastic modulus.
In contrast, other filler characteristics such as shape and size are secondary fine-tuning
factors that contribute towards altering the properties of the material [63]. Additionally,
research also suggests that it is difficult to recognize the effect of filler size and shape on
the mechanical property of composites [64]. Another property to keenly monitor with
smaller particles is their high surface-free energy. When the interparticle forces exceed the
particulate mass, agglomerations can easily occur and this may contribute negatively by
reducing the polymer–filler interactions [63]. It all comes down to the desired outcome
one requires for their developed material, and how much time, technology, and energy
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one is willing to invest to obtain the filler size they are satisfied with that gives them
acceptable results.

The results from this study will explore the possibility of using raw sand (silica)
in sheets that could be used in packaging applications. Therefore, the key objective of
this study was to incorporate local sand as a filler material to develop composite sheets
and study the impact of particle size on some of the mechano-physical properties of the
developed material. The novelty of this study lies in the efforts and contributions made
towards studying the potential of using local sand as a filler particle that can be of great
interest to further research in this geographical area. The aim here is to develop simple yet
effective solutions focused on utilizing local resources that simultaneously can be focused
on utilizing local resources and contributing towards developing sustainable products
that can lower ecological and economical burdens. Such a study can open pathways to
develop innovations focused on sustainable materials and promote the incorporation of
local resources that are abundant in nature to decrease the negative environmental impacts.

2. Materials and Methods

The sand (mainly in the form of silica) was collected from local areas of the country.
The obtained sand was handpicked to remove any more oversized items and sieved through
a 25 microns aperture sieve (200 mm diameter, stainless steel mesh) to obtain 25 µm size of
particles and further ground using a planetary ball mill (PL-400, Retsch, Haan, Germany)
to obtain 5 µm size of particles. The composition of the local sand was reported to be
47 wt% silicates, with 26 wt% carbonates and approximately 14 wt% quartz. Additionally,
the mineral component of SiO2 was reported to be approximately 37 wt% [55]. HDPE
pellets were purchased from Sigma-Aldrich, Saint Louis, MO, USA (Density = 0.98 g/cm3,
Mw~125,000 g/mol, melt flow index 2.2 g/10 min, shear rate 0.004 s−1) [65–68].

The two sets of particle sizes were added to the HDPE pellets in a chosen set of weight
ratios (20, 35, and 50 wt%). The mix was added into a twin-screw melt-blend extruder
(MiniLab HAAKE Rheomex CTW5, Karlsruhe, Germany). The closed loop cycle followed
a set temperature of 170 ◦C, 15 min at an rpm of 100. These parameters were kept constant
through all the ratios. A similar run was also performed for pure HDPE pellets [69–72].
The total feed to the extruder was kept constant at 4 g as required by the setup [8,55].
Once the run was complete, the composite material was collected as the extruded material
from the exit valve of the setup. The material was chopped into small sizes of 1 g and
placed into the hot press for compression molding to obtain the composite sheets. The
hot press (Carver’s press (CarverTM Lab Presses)) was operated under 5000 psi and at the
same extrusion temperature for approximately 10 min. All the processing conditions were
chosen after following literature reviews for similar systems and successful results from
trial and error [12,22,73]. The only variables that would be changed in this experiment are
the particle size and the filler loading. The sheets were then cut into dumbbell-shaped
mechanical testing specimens using a blanking machine to analyze their toughness, elastic
modulus, and ductility properties. Figure 1 presents the process, Table 1 presents chosen
weight percentages for the preparation of the sand/polymer composite sheets, and the
experimental conditions are illustrated in Table 2. Additionally, the data in Tables 1 and 2
are also represented in a simple table format for the ease of any researcher trying to replicate
the experiment and for the ease of anyone only referring to the amounts needed while
experimenting for such a system of composite material.
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Figure 1. Experimental process.

Table 1. Chosen weight percentages for sand, and HDPE.

Sample Sand (wt%) HDPE (wt%)

Sand/polymer composite sheets prepared
from 25 µm and 5 µm sand particles

0 wt% 0 100
20 wt% 20 80
35 wt% 35 65
50 wt% 50 50

Table 2. Experimental conditions.

Parameters

Temperature
(◦C) Time (min) Particle Size (µm) Total Input (g) Screw Speed (rpm) Pressure (psi)

Melt extrusion 170 15 25 and 5 4 100 -

Hot press
compression 170 10 25 and 5 1 - 5000

Table 3 shows images of sand/polymer composite sheets prepared from 25 µm sand
particles and 5 µm sand particles, respectively. All the sheets were roughly 100 mm in
diameter. The sheets were inspected visually. It was evident that increasing the filler led to a
darker appearance of the sheets. Additionally, it could also be seen that the dispersion of the
particles in the composite sheets was quite random, and an increase in the non-homogeneity
was observed with increasing particle wt% for both sets of particle sizes.
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Table 3. Prepared composite sheets with varying filler wt%.

0 wt% 20 wt% 35 wt% 50 wt%

Sand/polymer
composite sheets

prepared from 25 µm
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bell-shaped test specimens (as seen in Figure 2) were prepared using a blanking machine. 
Slight variations in sample thicknesses were observed, which is attributed directly to the 
processing itself [3]. The study was conducted on a Zwick 50 kN. The crosshead motion 
rate was set to 100 mm/min, which was taken from the ASTM D 790 standard. Replicates 
of each sample test were performed for increased accuracy. The sample thickness was 
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2.1.1. Scanning Electron Microscope (SEM)

A JEOL/EO scanning electron microscope (SEM) with a spot size of 40 was operated
at 2 kV to image the particles of sand measuring 25 µm and 5 µm at their surface. Using a
vacuum sputter coater, samples were coated with Au/C to improve the image’s conduc-
tivity and quality. Similarly, SEM analysis was used to observe the surface morphology
of the selected composite sheets as well as neat HDPE sheets. Using double-sided carbon
tape, the selected composite sheets were placed on an aluminum pin-mount adapter and
then using a sputter-coater, they were coated with gold to avoid any electrostatic charging
during the examination. A high vacuum mode with an acceleration voltage of 15 kV was
used and the images were obtained.

2.1.2. Mechanical Properties

The universal testing machine (UTM) determined the composite sheets’ mechanical
properties using the American Society for Testing and Materials (ASTM)-D 638. Dumbbell-
shaped test specimens (as seen in Figure 2) were prepared using a blanking machine.
Slight variations in sample thicknesses were observed, which is attributed directly to the
processing itself [3]. The study was conducted on a Zwick 50 kN. The crosshead motion
rate was set to 100 mm/min, which was taken from the ASTM D 790 standard. Replicates
of each sample test were performed for increased accuracy. The sample thickness was
measured at several locations along the gage length, and the samples with consistent and
similar values were selected for further analysis [74]. All dimensions (i.e., the length (l),
width (w), and thickness (t)) of the samples are tabulated in Table 4.
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Table 4. Dimensions of prepared composite sheets.

Sample Dimensions (l × w × t)

Sand/polymer composite sheets
prepared from 25 µm sand particles

0 wt% 10 × 4 × 0.62
20 wt% 10 × 4 × 0.41
35 wt% 10 × 4 × 0.45
50 wt% 10 × 4 × 0.57

Sand/polymer composite sheets
prepared from 5 µm sand particles

20 wt% 10 × 4 × 0.33
35 wt% 10 × 4 × 0.44
50 wt% 10 × 4 × 0.53

One of the mechanical properties that is of great significance is the toughness of a
material. It indicates the amount of energy the material can absorb on an impact, and this
value can be estimated by determining the area under the stress-strain curve. Using the
following Equation (1):

Toughness [MPa] = σ × ε (1)

where σ is the stress in MPa and ε is the strain.
Additionally, the elastic modulus for the developed composite material was analyzed

by examining the data obtained from the linear part of their corresponding stress-strain
plots. The elastic modulus is the stiffness or the ratio between the stress–strain plot of the
material undergoing elastic deformation in a tensile test [19]. The modulus of elasticity was
estimated by using the average initial cross-sectional area concerning the gage length of
the sample. Equation (2) represents how the elastic modulus can be calculated.

E [MPa] =
F × Lo

A × ∆L
(2)

where E is the elastic modulus in MPa, F is the force exerted on the sample under tension
in N, Lo is the original gage length of the sample in mm, A represents the original cross-
sectional area of the sample material in mm2, and ∆L is the change in length of the sample
in mm.

When the uniform deformation for gage length is a property of consideration, measur-
ing elongation is quite helpful. This property quantifies the importance of good engineering
design. Additionally, the elongation at break (ductility) can be prevented by observing
the extension of the sample at the final breakpoint. Ductility can be calculated using the
following Equation (3):

Ductility (%) =
Lf − Lo

Lo
× 100 (3)

where Lo is the original gage length in mm, and Lf is the final length at the break in mm.

2.1.3. Composite Density

In order to calculate the dry density of the filler, ASTM D7263-09 was followed [75]. A
controlled drying process in an electric drying oven was used to dry the sand. Using the
following Equation (4), the density of the sand was calculated [76].

ρfiller =
mfiller

Volume
(4)

where ρfiller is the density in kg/m3 of the filler particle, mfiller is the mass in kg of the filler
particle and Volume is the measured cylinder used in m3

In order to calculate the apparent densities of the polymers, ASTM D792-20 was
followed [75]. The masses of the samples were measured in air and water and using this
data, the apparent densities can be estimated using the following Equation (5):

ρpol =
massair ρwater

massair + masswater
(5)
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where ρpol is the apparent density in kg/m3 of the polymer, massair is the mass in kg of the
measured sample in air, masswater is the mass in kg of the measured sample in water, and
ρwater is the density in kg/m3 of water.

Next, the linear rule of mixing assumes that the volume-weighted average of the
matrix and the dispersed phases can account for the composite material’s theoretical
density. The equation also assumes that the filler does not affect the polymer matrix in
any crystal formation nor is there any air in the composite material. The density of the
composite material can simply be defined as the ratio of the densities of the filler and
polymer to the total volume, which is represented by the sum of the products of the filler
and polymer densities and their corresponding masses [77].The equation for composite
density is represented in Equation (6):

ρcomposite =
ρf ρm

ρm mf + ρf (1 − mf)
(6)

where ρcomposite is the density in kg/m3 of the composite material, ρf is the density in
kg/m3 of the sand (silica filler), ρm is the density of the polymer matrix (HDPE) in kg/m3,
and mf is the mass fraction of the filler used.

The samples were cut as per ASTM D6287-17 to measure their volumes [78], and the
thickness of the samples was measured using a thickness gauge (model 547–526S, Mitutoyo,
Kawasaki, Japan, resolution 0.001 mm) along several points to ensure uniformity, First, their
weights were measured using a weighing balance (Citizen-CX 220, d 0.001 g, ManualsLib,
Bangalore, India) for the experimental densities of the developed composite. These values
were used to estimate the experiential densities of the composite material by calculating
their respective mass-to-volume ratios.

3. Results and Discussion
3.1. Morphology

SEM analysis was conducted to estimate the particle sizes and shapes of the local raw
sand used as the filler in the experiment. Table 5 represents the SEM images of sand filler
of both 25 µm and 5 µm particle size as selected sheets prepared, respectively.

Table 5. SEM images of 25 µm, 5 µm, 0 wt%, and 35 wt% were prepared from both particle sizes.

25 µm
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Table 5. Cont.
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The images illustrate that the 25 µm particle has a higher inter-particle distance than
those in 5 µm particles. Additionally, the 25 µm are larger and more irregular in size
compared to the 5 µm particle size, which is smaller and finer in appearance. A few sheets
were selected to observe the morphology. Table 5 also shows a neat HDPE sheet (0 wt%)
and selected 35 wt% particle size composite sheets prepared from 25 µm and 5 µm particles,
respectively. The pure HDPE sheet shows a smooth structure with an absence of any
particles in it. The outcome of the variation in the particle size as fillers in the composite
sheets can be well observed as in the case of 25 µm, the particles are much further apart,
whereas in the case of 5 µm, the particles appear closer together. However, it is to be noted
that a decreased inter-particle distance can led to agglomeration formation, which can lead
to material with a brittle nature [36].

3.2. Mechanical Properties

The impact of the filler particle size was assessed on selected mechanical properties
such as toughness, elastic modulus, and ductility of the prepared composite sheets.

Toughness is associated with the energy a material can absorb in an impact, which
can be a critical value to monitor based on the type of application. Figure 3 represents the
toughness value for both 25 µm and 5 µm filler sizes. It can be seen that the toughness
value experiences a sharp increase from around 611 MPa at 0 wt% to 811 MPa at 20 wt% in
the case of 25 µm. Beyond this point, the toughness starts to decrease. Such a substantial
increase is noted in some other composite studies as well [79], and it can be associated
with the adsorption of silica clusters to the polymeric chains [80,81] and due to the silica
particles promoting partial stress within the matrix, which can change the direction of crack
development [82–84].
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Furthermore, as the filler wt% was increased, the toughness decreased for sheets
prepared from the 5 µm filler size. The decrease in these values can be associated with
the agglomerate formation, which leads to structural instability of the material, thereby
reducing the ability of the composite to have a higher absorption of energy at impact,
leading to the formation of cracks at the surface and eventually breaking. Many researchers
add modifying agents to increase the impact resistance of materials [85,86]. However, it
is noteworthy that at 35 wt%, the toughness of the 5 µm particle is higher than the 25 µm
particle. This can probably be based on how the particles have arranged themselves in the
matrix. Due to 25 µm being a larger size, the random dispersion of bigger particles could
have created more stress concentrations than in the case of smaller-sized particles, leading
to such a possibility.

Furthermore, it was observed that an increase in filler addition from 0 wt% to 20 wt%
increased the elastic modulus from 1201 MPa to 1298 MPa for a filler size of 25 µm, which
is comparable to the literature values [1,87,88]. Beyond this point, a gradual decrease was
observed. For the composite material developed with a 5 µm filler size, a similar decreasing
trend was observed with the exception at 50 wt%. Moreover, as a comparison, it could be
said that all the composite sheets prepared from 5 µm filler particles resulted in a lower
elastic modulus value than those prepared from 25 µm particles with an exception at 50 wt%.
The decrease in values can be associated with the development of stress concentrations
weakening the matrix. Additionally, the formation of hydrogen bonding can also propagate
cracks at weak interfaces, which can facilitate the brittle nature of the sheets, leading to
failure [56,87,89]. Moreover, the possible variation at a higher wt% could be due to extensive
molecular orientation that could occur in thermoplastic-based films, along with random
dispersion of the filler particles leading to inconsistent results [1]. Figure 4 represents the
elastic modulus for composite sheets prepared with both sets of filler particles.

The strain at the point of failure can be better understood by studying the material’s
ductility. A material’s ability to deform plastically and adapt to the load applied can be of
great value in several industrial applications requiring highly flexible materials. Figure 5
represents the ductility of all the prepared composite sheets. The pure HDPE sheet had
a high ductility of over 150%, which is well reported [90,91]. Almost similar decreasing
trends in the ductility were observed with an increase in filler addition from 0 wt% to
50 wt% for sheets prepared from both particle sizes. Additionally, it can be said that a
substantial decrease in the ductility (up to 98%) was noted for both 25 µm and 5 µm filler
sizes from 0 wt% to 50 wt%. This degrading behavior can possibly be linked to unexfoliated
aggregate development and the formation of structural voids, which reduces the matrix to
show improved ductility. This kind of behavior is also noted in other polymer-composite
studies [85,92]. The literature reports that the addition of particles and aggregates delays the
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initiation of cracks and inhibits the steady-state flat crack propagation resulting in a loss of
the ductility of the material. Additionally, particles larger than the fiber spacing contribute
to the balling of fibers, resulting in poor dispersion and lowering the property [20].
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Figure 6 represents the effect of varying filler concentrations and particle size on the
tensile strength of the developed composites. In general, a decrease in the tensile strength
was noticed for the composite material developed from both 25 µm and 5 µm size filler
particles. For instance, for the composite developed from 25 µm particles, the tensile
strength decreased from approximately 20 MPa at 10 wt% to 10 MPa at 50 wt%, whereas
with the composites prepared from 5 µm particles, the value decreased from 22 MPa at
10 wt% to 16 MPa at 50 wt%. Such a decreasing trend can be explained by the particles
randomly arranging themselves in a way that limits the stress transfer [93]. Not much
difference was observed for the values at 20 wt% and 25 wt% at both filler sizes. However,
a large variation in properties, for instance, at 50 wt% is expected to occur in thermoplastic-
based thin films undergoing extensive molecular orientation [93]. Moreover, the decreased
tensile strength also causes increased brittleness, and this can be attributed to the formation
of agglomerates. These agglomerates form initiation spots of stress concentrations that
lead to failure. Moreover, the formation of voids in matrices is also reported to contribute
towards decreased strength values [94,95]. All the mechanical data for all the prepared
composite sheets are tabulated in Table 6.
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Table 6. Mechanical properties of the composite sheets.

Sample Toughness (MPa) Elastic Modulus
(MPa) Ductility (%) Tensile Strength (MPa)

0 wt% 643.5 ± 40.3 1200.77 ± 127.3 215 ± 49.5 33.76 ± 6.2
Sand/polymer composite

sheets prepared from
25 µm sand particles

20 wt% 810.75 ± 8.1 1298.33 ± 169.8 29.67 ± 1.41 20.23 ± 3.5
35 wt% 44.80 ± 15.9 1182.33 ± 328.4 3.7 ± 0.72 18.96 ± 5.5
50 wt% 26.85 ± 22.7 905.72 ± 343.1 3.25 ± 1.34 9.93 ± 4.7

Sand/polymer composite
sheets prepared from
5 µm sand particles

20 wt% 217.33 ± 42.4 950.59 ± 86.6 20.67 ± 0.58 21.56 ± 0.6
35 wt% 95.33 ± 38.6 887.47 ± 96.2 11.87 ± 4.51 17.28 ± 2.8
50 wt% 18.85 ± 1.6 1137.05 ± 8.2 2.07 ± 0.25 16.3 ± 1.48

3.3. Composite Density

In general, the experimental composite density experienced a decrease from 0 wt%
to 20 wt% in both the cases of composite sheets prepared from 25 µm and 5 µm particles,
respectively. This could be due to the matrix’s random filler dispersion of the introduced
filler particles. Additionally, since the sand particles’ density (1047.53 kg/m3) [55] is slightly
higher than that of the polymer, it could have impacted the calculated value. Beyond this
point, a slight increase was noted with an increase in filler addition. In the case of 25 µm
particles, that density varied from 766 kg/m3 at 20 wt% to 789 kg/m3 at 50 wt%. For the
composite sheets prepared from 5 µm particles, the density ranged from 750 kg/m3 to
780 kg/m3. In all cases, the density of the sheets prepared from 25 µm particles was more
than its corresponding sheets prepared from 5 µm particles. These representations can be
seen in Figure 7. This can be possibly explained by the fact that the 25 µm particles are
bigger in size and nature than the 5 µm particles, thereby contributing to a greater density
value. Furthermore, both cases obtained significantly lower values than theoretical values.
For instance, a decrease of up to 23% was observed for sheets prepared from 25 µm particles
and close to 25% for the sheets prepared from 25 µm particles at 20 wt% filler addition. Such
high variations can be associated with the high temperatures applied during the processing
of the sample material. Moreover, residual moisture can be degassed with the sample
material due to inadequate and non-homogeneous mixing, which can also contribute to
the lowered density value as the polymer matrix attains high viscosity [96,97]. In industrial
applications requiring materials to have a lower density, for instance, applications requiring
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floating, fillers can be a great way to lower this property [98]. Furthermore, handling the
materials can benefit from it as lighter materials can be easier to transport, thereby reducing
cost [99]. Table 7 reports the composite density data for all the prepared composite sheets.
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Table 7. Composite density of the composite sheets.

Sample
Composite Density

Theoretical
(kg/m3)

Composite Density for
Sheets with 25 µm

(kg/m3)

Composite Density
for Sheets with 5 µm

(kg/m3)

0 wt% 980.00 812.5 812.5
20 wt% 992.80 766.14 750.0
35 wt% 1002.62 772.92 767.71
50 wt% 1012.64 788.82 780.0

4. Conclusions

This study developed composite sheets using silica microparticles of two different sizes
as a filler in a HDPE polymeric matrix. This was analyzed on the mechanical properties and
composite densities. In general, the majority of the mechanical characterization showed
a decrease in their values with the filler addition. However, a notable increase in the
toughness and elastic modulus of the composite material was observed with 20 wt% filler
at 25 µm particle size, promoting that at this particle size and wt%, enhanced properties
were obtained. As for the ductility of the material, a sharp decrease was observed in both
cases of particle size, implying the idea that the filler addition led to agglomerates that
resulted in several areas of stress concentrations, leading to such lowered values, which is
expected in composite materials. In terms of the composite densities, increasing the filler
particles at both particle sizes led to a decrease in the density value from 0 wt% to 20 wt%,
and this can be considered an enhanced property, depending on the type of application, for
instance, when transportation is considered. Further studies on silica with polymers are
underway to understand its potential to be used as a filler material in thin film applications.
The data from this research promote the promising use of local sand as a filler material
that can enhance composites’ mechanical and density properties and open pathways to
conduct more studies to explore suitable applications for such an abundant filler. Future
work is recommended to be directed towards studying and analyzing the rheology of the
developed composite materials, as rheological properties can further help in understanding
the microscopic and mesoscopic level of structures within the matrix as the filler dispersion
and filler–matrix interactions are highly linked to the viscoelastic properties of the material.
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Additionally, the impact of potential additives such as coupling agents and compatibilizers
that can improve the interfacial adhesion in the composite material, which can further
enhance the mechanical properties, must be explored. Moreover, this research can further
be extended by extensively studying the hydrophobization of the surface of the silica filler
particles and the evaluation of the impact on the nature of the surface of the filler particle
and the influence on the properties of the developed composite material [100,101]. Future
studies can also be aimed at utilizing recycled HDPE to lower the ecological impact further
and promote an even more sustainable approach to developing such a composite material.
The potential to recycle such a product can invite scientific and business interests that could
be vital to contributing towards global economic strategy [15,47,68,102–104]. This study
aimed to highlight the potential of using a local resource and test its feasibility to be used
as a useful material in developing an innovative product that can be easily commercialized
with further development.
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