
I. Introduction

Spreading across all regions of the world, seasonal influenza 
is an acute respiratory infection caused by influenza viruses. 
The disease is estimated to affect more than one billion 
people, leading to 3 to 5 million severe cases, and 300,000 
to 500,000 deaths annually [1]. Despite high annual rates of 
influenza and its threat to public health, understanding its 
behavior and key factors in virus transmission is challeng-
ing for public health experts and epidemiologists. Quan-
titative models and computer simulations are important 
tools to build and evaluate infectious disease theories. The 
standard approach to modeling the transmission dynamics 
of influenza viruses is to use conventional models, such as 
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the susceptible-infected-recovered (SIR) and susceptible-
exposed-infected-recovered (SEIR) models. However, the 
assumptions on which these models are based (e.g., the ho-
mogeneity of the underlying population) are not realistic in 
practice; therefore, several improved versions of the classic 
models have been developed in recent decades.
	 In total, a few quantitative studies have been conducted 
to investigate the association between environmental vari-
ables and influenza outbreaks in Iran. That is, the role of 
environmental factors in the severity and spread pattern of 
virus epidemics has remained under question [2-5]. Early 
experimental studies showed that sun exposure reduces the 
survival of influenza viruses [6]. In another work, the au-
thors pointed out that low temperatures and specific humid-
ity increase influenza infection rates and its survival time [7]. 
Other results also have shown a correlation between absolute 
humidity and mortality rate [8]. On the contrary, recent ex-
periments have shown that the epidemic peak time in tem-
perate regions happens when the specific humidity content 
is at the highest level [9,10]. 
	 The potential burden of an influenza epidemic can be as-
sessed by evaluating its transmission characteristics; one of 
the key parameters of influenza epidemic severity is the ‘ef-
fective reproductive number’, denoted by R, defined as the 
average number of secondary cases infected by one primary 
infected person [11]. Thus, when value of R is greater than 
one, the size of the infected population may increase or re-
main constant. Otherwise, the size of the infected population 
decreases [12].
	 The heterogeneity and diversity of the studies carried out 
on influenza modeling in Iran suggest that there is a need to 
focus more attention on influential factors, such as gender, 
population size, environmental factors, and latent conditions 
[13]. Hence, more comprehensive studies of the influence of 
external factors, such as environmental factors, on influenza 
contagion mechanisms and transmission dynamics in the 
area of interest are required. The central aim of this study 
was to develop a methodology based on the standard SIR 
model to enhance its performance by introducing environ-
mental factors into the model. The proposed methodology 
investigates the behavior of the influenza virus subtype 
H3N2 because few studies have been conducted on this sub-
type in Iran [13] and it was the dominant virus from 2013 to 
2015.

II. Methods

We used the weekly numbers of overall laboratory-con-

firmed influenza cases in Iran provided by World Health 
Organization (WHO) for two seasons, namely, 2013/14 and 
2014/15 [14]. Climate data (precipitation, temperature, and 
specific humidity) from that period was obtained from the 
National Centers for Environmental Prediction-Department 
of Energy (NCEP-DOE) Reanalysis 2 data collection. The 
data is publicly available at the Earth System Research Labo-
ratory (ESRL), which is a division of the National Oceanic 
and Atmospheric Administration (NOAA) [15,16]. In the 
data preparation phase, the stream flow of the original cli-
mate data was downscaled from daily to weekly scale to 
make it consistent with the influenza data.
	 The SIR model is the backbone of mathematical modeling 
of epidemic diseases [17]. However, due to the sophisticated 
behavior of the influenza virus dynamics, many modified 
versions of the classic models have been developed [18]. 
Given that social and environmental parameters are among 
the important factors affecting influenza virus behavior, 
potential modifications can be made based on these factors 
[19]. In our investigation, the SIR model was used as the 
benchmark model. In the SIR model, the population is di-
vided into three subgroups: susceptible (S), infected (I), and 
recovered individuals (R) [17]:

                                         

 дs = –βSI,дt

 дI = βSI – γI,дt

 дR = γI,дt

	 (1)

where β and γ are the transmission and recovery rates, 
respectively. In the following, an extended model is intro-
duced, which incorporates the climate complementary data 
into the transmission rate from Equation (1):

                            βt = β(1 + c1P + c2T + c3H)	 (2)

where cis are constant coefficients that varied from –1 to 1; 
and P, T, and H are normalized precipitation, temperature, 
and specific humidity, respectively. Every one, two, or three 
possible combinations of these climate parameters corre-
spond to a modified compartmental model. Simultaneously, 
each extended model is denoted by a notation consisting of 
‘SIR’, ‘+’, and a set of letters from {P, T, H}. For example, the 
SIR+T+P model is constructed by combining the SIR model 
with temperature and precipitation.
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	 The classical SIR model has shown great efficiency in cap-
turing the non-linear nature of influenza dynamics; however, 
considering external factors, such as climate conditions that 
are not included in standard model, may yield more accurate 
and robust models. To validate the efficiency of the proposed 
approach, model parameters were estimated with Iran influ-
enza data sourced from WHO. A straightforward iterative 
model-fitting strategy was used to estimate the unknown 
parameters for both the basic and extended models. In fact, 
the model parameters are initial conditions β and γ (and cis 
in the case of extended model). At each iteration step, all 
parameters are determined by minimizing the difference 
between observations and model predictions. At step n = k, 
the number of weekly influenza cases (model output) is cal-
culated as

                                       Zti
 = ∫ ti βS(t)I(t)dt, (3)ti–1

	 where β, S, and I are given from step n = k – 1, and the 
integration is done over week k. In the model-fitting meth-
odology, the least-square cost function fits the model pa-
rameters θ = (S0, I0, β, γ) and,   ~

 θ   = (S0, I0, β, γ, c1
…), which 

correspond to the null and extended models, respectively. In 
summary, if Zti

 and Yti
 are the estimated and real numbers of 

infected cases, minimizing the least-square function l(θ) = 
||Zt – Yt|| will estimate the optimal values of θ and 

  ~
 θ . It should 

be mentioned that the number of estimated parameters is 
varied from 5 to 7 unknown variables depending on the used 
climate factors.
	 The central part of the curve-fitting methodology is to 
minimize the objective cost function l(θ). The numerical 

solution of the optimization problem is obtained by using 
a constrained ‘Trust-Region’ algorithm. Meanwhile, at each 
iteration the numerical solution of the involved differential 
equations is calculated. All simulations were conducted in 
MATLAB. The model comparisons were performed by us-
ing the Akaike information criterion (AIC) and root-mean-
square error (RMSE) criteria. Finally, for each case, the ef-
fective reproductive number, R(t) = S(t)β/γ, was calculated 
based on the estimated optimal parameters.

III. Results

To estimate the parameters of the classical and modified 
SIR models, a model-fitting methodology was used for the 
two influenza seasons of 2013/14 and 2014/15 in Iran. Two 
subsets were extracted from the WHO dataset consisting of 
the following: (i) 21 weeks of season 2013/14 starting from 
week 50 (2013) through week 18 (2014), and (ii) 26 weeks 
from week 46 (2014) to week 18 (2015). From a mathemati-
cal point of view, the SIR model has 4 unknown parameters 
(two initial conditions, β, and γ), and the proposed model, 
depending on its structure, consists of 5 to 7 parameters. 
Since specific humidity data did not significantly improve 
the model precision, it was not considered in the final imple-
mentation. Among all possible modifications of the original 
SIR model, the SIR+T, SIR+P, and SIR+P+T models are the 
most accurate in term of AIC and RMSE criteria. 
	 The performance of the proposed models was measured 
by using the criteria of RMSE and AIC. To avoid the effects 
of noise in the peak interval, peak timing/magnitude were 
not used to evaluate the accuracy. Figure 1 shows the esti-
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Figure 1. Predictions using SIR and three modified models. Solid squares indicate the weekly number of infections from World Health 
Organization data. (A) Real-data and predictions in season 2013/14 for the standard model and its three modifications. (B) Real-data 
and predictions in season 2014/15 for the standard model and its three modified models. SIR: susceptible-infected-recovered, P: pre-
cipitation, T: temperature.
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mated weekly number of infections obtained from the three 
modified models and the original model (SIR, SIR+T, SIR+P, 
SIR+P+T).
	 As seen in Figure 1, the best fitted curve (red color) cor-
responds to the SIR+P+T model, which is a modification of 
the SIR model in which the transmission rate is adjusted by 
using temperature and precipitation. Two bar graphs in Fig-
ure 2 present the RMSE and AIC errors for three modified 
models and the SIR model. The SIR+P+T-based estimation 
errors, represented by solid black bars, have the lowest val-
ues. For this model, the RMSE decreased from 8.76 to 7.05 
and from 8.57 to 6.45 compared to the benchmark model 
for seasons 2013/14 and 2014/15, respectively. Also, AIC 
decreased from 98.12 to 93.01 and from 118.69 to 107.91 for 
seasons 2013/14 and 2014/15, respectively. In summary, the 
embedded SIR model incorporating temperature and pre-
cipitation produces more precise results.
	 A residual error is the difference between observed values 
and the predictions made by a given model. The residuals 
show how far the data fall from the fitting curve and can be 
used to assess accuracy of a model. These errors versus pre-
dictions obtained from the standard and extended models 
(SIR+P+T) are presented in Figure 3. The asterisks and tri-
angles respectively indicate SIR and SIR+P+T errors. As seen 
in the graph, the triangles are more accumulated around the 
x axis. Additionally, linear regressions of the errors are sepa-
rately plotted for the two studied seasons (green and purple 
dashed lines correspond to the null and modified model, 
respectively). The lower slope of the green line compared to 
the purple line also indicates that SIR+P+T attained a higher 
precision than the SIR model.
	 Besides studying of possible extensions made by combina-
tion of the SIR model with three underlying climate factors, 

another important purpose of our study was the estimation 
of the effective reproductive number for both models. It 
should be mentioned that the basic reproductive number, R0 
= β/γ, is a vital epidemic estimator. On the other hand, the 
effective reproductive number, which measures the aver-
age number of secondary cases for each primary infected 
individual at time t, can be estimated using R(t) = S(t)β/γ. 
As shown in Figure 4, the SIR+P+T-based estimation of R(t)
for season 2013/14 lies between 0.36 and 2.10, while for the 
basic model, it varies from 0.21 to 3.34. Since the SIR+P+T 
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Figure 2. (A) AIC criteria for two influenza seasons 2013/14 and 2014/15. For both seasons, the SIR+P+T model has the low-
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Figure 3. Residual error for SIR and SIR+P+T model for the two 
studied seasons of 2013/14 (A) and 2014/15 (B). The residual 
error values for the latter model (triangle) are obviously smaller 
than those of the standard model (asterisk). Also, the linear 
regression for both models, green and purple dashed lines, are 
represented for two seasons. The green and purple dashed lines 
correspond to null and the modified model, respectively. RMSE: 
root-mean-square error, SIR: susceptible-infected-recovered, P: 
precipitation, T: temperature.
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model gives a more accurate prediction of the weekly num-
ber of cases, the estimated R(t) based on the extended model 
is more reliable.

IV. Discussion

This study highlighted the important role of environmental 
factors (e.g., temperature and precipitation) on influenza 
virus function by using modifications of the SIR model. 
The classical compartmental epidemic models, such as SIR 
and SEIR, divide the population into specific subgroups 
based on disease states and assign rates to every community 
member movement between these states. The time varying 
population of these subgroups and assigned rates are the 
key parameters of epidemic models. Despite the sophisti-
cated nature of influenza, the simple SIR model successfully 
captures the essence of flu dynamics behavior; however, the 
underlying assumptions are not realistic. Two limitations of 
such approaches are the following. First, the assumption of 
the homogeneity of the underlying population causes failure 
to capture the real contact pattern of the population. Second, 
host sensitivity, disease transmission, and survival virus 
channels are not fully understood.
	 In this study, three modified models constructed by incor-
porating one or both of temperature and precipitation data 
into the SIR model were assessed in detail. A least-square 
fitting technique was used to estimate the model parameters 
from influenza and climate data. Then, the model per-
formance was evaluated by using AIC and RMSE criteria. 
The key result of our investigation is that the embedding 

of auxiliary climate data into the SIR model led to accu-
racy improvement for the two studied seasons 2013/14 and 
2014/15. In comparison to SIR-based estimates, the model 
incorporating precipitation and temperature achieved the 
best performance among the modified models. In the early 
stage of our study, we found that implementation of specific 
humidity data does not improve the model accuracy. As a 
clear limitation of our investigation, it should be noted that 
the average values of climate data and the total number of 
influenza cases were used; since Iran is a vast country with 
various types of climate, further investigations should be 
conducted to assess the performance of the proposed models 
in various provinces and cities.
	 Estimation of the basic and effective reproductive numbers 
for seasonal influenza can help authorities with resource 
allocation and making appropriate decisions. Calculation 
of the reproductive number is an indirect process because 
there is no analytical solution of model parameters that 
R(t) depends on. In other words, the effective reproductive 
number is an indirect product of the parameter estimation 
methodology. According to the formulae presented in the 
results section, we know that R(t) ≤ R0. In other words, R0 is 
the upper bound of the basic reproductive number. Equality 
occurs only when the entire population is susceptible. Since 
the whole population is not susceptible, it is more practical 
to use R(t) instead of R0. Based on our findings, time-varying   
R(t) function, derived from SIR+P+T based estimates, spans 
a narrower range of 0.36 to 2.10 in comparison to SIR-based 
estimations.
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