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Abstract

Background: The a7 nicotinic acetylcholine receptors (nAChRs) play an important role in the pathophysiology of
neuropsychiatric diseases such as schizophrenia and Alzheimer’s disease. The goal of this study was to evaluate the two
carbon-11-labeled a7 nAChR agonists [11C]A-582941 and [11C]A-844606 for their potential as novel positron emission
tomography (PET) tracers.

Methodology/Principal Findings: The two tracers were synthesized by methylation of the corresponding desmethyl
precursors using [11C]methyl triflate. Effects of receptor blockade in mice were determined by coinjection of either tracer
along with a carrier or an excess amount of a selective a7 nAChR agonist (SSR180711). Metabolic stability was investigated
using radio-HPLC. Dynamic PET scans were performed in conscious monkeys with/without SSR180711-treatment. [11C]A-
582941 and [11C]A-844606 showed high uptake in the mouse brain. Most radioactive compounds in the brain were detected
as an unchanged form. However, regional selectivity and selective receptor blockade were not clearly observed for either
compound in the mouse brain. On the other hand, the total distribution volume of [11C]A-582941 and [11C]A-844606 was
high in the hippocampus and thalamus but low in the cerebellum in the conscious monkey brain, and reduced by
pretreatment with SSR180711.

Conclusions/Significance: A nonhuman primate study suggests that [11C]A-582941 and [11C]A-844606 would be potential
PET ligands for imaging a7 nAChRs in the human brain.
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Introduction

The nicotinic acetylcholine receptors (nAChRs) are ligand-

gated ion channels that are distributed throughout the human

central nervous system (CNS) and that each consist of five subunits

(a combination of a and b subunits). At present, nine a (a2–a10)

and three b (b2–b4) subunits have been identified in humans [1].

Among the several nAChRs subtypes in the CNS, the homomeric

a7 and heteromeric a4b2 subtypes are predominant in the brain

[2]. These subtypes are best characterized in terms of their ligand

selectivity, since they can be studied by means of binding

techniques: [3H]cytisine or [3H]nicotine can label a4b2 nAChRs,

and [125I]a-bungarotoxin or [3H]methyllycaconitine ([3H]MLA) is

used to label a7 nAChRs [3]. In the mouse brain, high

concentrations of a7 nAChRs are found in the pons, hippocampus

and colliculi [4]. In the rat brain, high densities of a7 nAChRs are

found in the hippocampus, hypothalamus, and cortical areas,

whereas they are expressed to lesser degrees in the striatum and

cerebellum [5]. Although the distribution of a7 nAChRs in

primates is still not completely known, the available data suggest

that it does not differ greatly, overall, from that in rodents. The a7

nAChRs are most dense in the thalamic nuclei and moderately

dense in the hippocampus, prefrontal cortex, caudate, putamen,

and substantia nigra in the monkey brain [6].

Several lines of evidence suggest that a7 nAChRs play a role in

the pathophysiology of neuropsychiatric diseases such as schizo-

phrenia, Alzheimer’s disease, anxiety, depression, and drug

addiction, and that a7 nAChRs are the attractive therapeutic

targets for these diseases [2,7–15]. Studies using postmortem

human brain samples have demonstrated alterations in the levels

of a7 nAChRs in the brains of patients with schizophrenia [16,17]

and Alzheimer’s disease [18–20]. It is thus of great interest to

examine whether a7 nAChRs are altered in the living brain of

patients with neuropsychiatric diseases such as schizophrenia and
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Alzheimer’s disease. It is also of interest to measure the receptor

occupancy of potential therapeutic a7 nAChR drugs in the intact

human brain. Therefore, several researchers have made an effort

to develop radioligands that can be used to selectively and

quantitatively examine the distribution of a7 nAChRs in the

human brain with positron emission tomography (PET) and single

photon emission computed tomography (SPECT). However, the

development of such radioligands has been challenging due to a

lack of lead structures with high affinity and with functional groups

that can be labeled with PET and SPECT radioisotopes.

Recently, our group developed the 1,4-diazabicyclo-[3.2.2]non-

ane analog 4-[11C]methylphenyl 2,5-diazabicyclo[3.2.2]noane-2-

carbocylate ([11C]CHIBA-1001) and confirmed its selective uptake

in the conscious monkey brain by PET [21]. Until now,

[11C]CHIBA-1001 has been the only PET ligand available for

clinical trials employing a7 nAChR imaging in the human brain

[22]. While [11C]CHIBA-1001 demonstrates some a7 nAChR-

selective properties, we considered that it would be beneficial to

identify another lead structure, and began a search for a more

suitable PET radioligand for imaging a7 nAChRs in the human

brain. Recently, a new series of octahydropyrrolo[3,4-c]pyrrole

derivatives were described by Abbott Laboratories as ligands for

the nAChRs [23,24]. We chose two octahydropyrrolo[3,4-

c]pyrrole derivatives as selective a7 nAChRs agonists for labeling

with carbon-11, 2-methyl-5-[6-phenylpyridazine-3-yl]octahydro-

pyrrolo[3,4-c]pyrrole (A-582941) and 2-(5-methyl-hexahydro-pyr-

rolo[3,4-c]pyrrol-2-yl)-xanthene-9-one (A-844606), since these

compounds were previously reported to be potent and selective

a7 nAChR agonists. A-582941 displaced specific binding of the a7

nAChR radioligand [3H]A-585539 to membranes of the rat brain

and human frontal cortex with Ki values of 10.8 and 17 nM,

respectively [25,26]. In contrast, A-582941 was found to have

much lower affinity for heteromeric a4b2 subtypes, as measured

using [3H]cytisine binding to rat brain membranes

(Ki.100,000 nM) [26]. Also, A-582941 (10 mM) did not show

significant displacement of binding of .75 binding sites, with the

single exception being 5-HT3 receptors, in which it displaced

[3H]-BRL 43694 (Granisetron) binding (.85% at 10 mM). The Ki

value of A-582941 for 5-HT3 receptors was 154 nM, which was

,15-fold higher than that for a7 nAChRs. A-844606 displaced

[3H]MLA binding to the rat brain membrane with an IC50 value

of 11 nM [27]. In contrast, A-844606 exhibited negligible

displacement of [3H]cytisine binding to a4b2 nAChRs

(IC50.30,000 nM) [27].

The goal of this study was to radiolabel the two potent and

selective a7 nAChR agonists A-582941 and A-844606 with the

positron emitter carbon-11, and to evaluate their potential for the

in vivo imaging of a7 nAChRs in the human brain.

Results

Radiosynthesis
Radiosynthesis of [11C]A-582941 and [11C]A-844606 by N-

[11C]-methylation of the desmethyl precursor was carried out

under various concentrations of NaOH as a base (Figure 1). The

use of [11C]methyl triflate in acetone with two equimolar amounts

of NaOH led to a sufficient radiochemical yield of each

compound. The radiochemical yields using [11C]methyl triflate

under these conditions for [11C]A-582941 and [11C]A-844606

were 16.8611.98% (n = 8) and 40.0616.8% (n = 7), respectively.

Large excess or equimolar amounts of NaOH as a base led to a

slight decrease of the radiochemical yields of [11C]A-582941

(10.3% for equimolar; 13.2% for 10 equimolar). The total

preparation time for each tracer, including purification and

formulation, was approximately 30 min from the end of

irradiation. The radiochemical purities of each tracer were over

97%, and the specific activities at 30 min after the end of

irradiation were in the range of 15–108 GBq/mmol for each

radiotracer. The absence of any residual traces of the starting

materials was verified by high performance liquid chromatography

(HPLC) analysis.

Tissue Distribution Study
The results of the tissue distribution studies of the two

radiotracers in mice are summarized in Tables 1 and 2. The

highest initial uptake (percentage of injected doses per gram of

tissue: %ID/g) of [11C]A-582941 was found in the lungs followed

by the kidneys, pancreas, heart, liver, small intestines, spleen, brain

and muscle (Table 1). The radioactivity level of [11C]A-582941

was low in the blood. The level of radioactivity in the brain

increased for the first 5 min and then gradually decreased. The

highest initial uptake (%ID/g) of [11C]A-844606 was found in the

lungs followed by the kidneys, heart, brain, pancreas, small

intestines, muscle, liver and spleen (Table 2). The radioactivity

levels of [11C]A-844606 were low in the blood. The level of

radioactivity in the brain increased gradually, peaked at 30 min,

and then decreased.

To detect the specific binding for a7 nAChRs, a blocking

experiment was carried out using the selective a7 nAChR agonists

(SSR180711, unlabeled A-582941 or A-844606), and the selective

a4b2 nAChR agonist A-85380 (Tables 3, 4, 5, and 6). In vehicle-

treated mice, the hippocampal (a7 rich) uptake of [11C]A-582941

was not significantly higher than the cerebellar (a7 poor) uptake at

15 min after injection. In contrast, the hippocampal uptake of

[11C]A-844606 in vehicle-treated mice was slightly higher than the

cerebellar uptake at 30 min after injection, although the difference

was not statistically significant. None of the three compounds

(SSR180711, A-85380 or A-844606) decreased the uptake of

[11C]A-582941 in brain tissues, with the exception of SSR180711

in the medulla oblongata (Table 3). Carrier-loading decreased the

uptake of [11C]A-582941 in the medulla oblongata and midbrain

(Table 4). In the case of [11C]A-844606, co-injection of the three

compounds (SSR180711, A-85380 and A-582941) did not

decrease the uptake of [11C]A-844606 in brain tissues (Table 5).

In contrast, carrier-loading decreased the uptake of [11C]A-

844606 in all the regions of the brain tissues (Table 6).

Metabolite Analysis
By deproteinization, most of the radioactivity of the plasma and

brain tissues was recovered in the soluble fraction in the metabolite

analysis of [11C]A-582941 (.95%) and [11C]A-844606 (.85%).

HPLC analysis of the plasma showed two major labeled

metabolites in addition to [11C]A-582941 (retention time = 6.4 -

min). The retention times of the two major metabolites were 2.4

and 4.3 min. In contrast, these metabolites were present at only

negligible levels in the brain. At 15 min after injection of [11C]A-

582941, the percentages of the unchanged form in the brain and

plasma were 95.461.9% and 40.567.1% (n = 3), respectively, and

the corresponding figures were 97.460.8 and 26.866.6% (n = 3) at

30 min after injection. Similarly, in the case of [11C]A-844606,

two major labeled metabolites were found in the plasma (retention

times = 2.0 and 4.0 min) in addition to [11C]A-844606 (retention

time = 8.8 min). Again, these metabolites were present at only

negligible levels in the brain. The percentages of the unchanged

form in the brain and plasma were 95.961.8% and 39.663.4%

(n = 3), respectively, at 15 min, and 94.9% (n = 2) and 28.965.1%

(n = 3), respectively, at 30 min.

Novel PET Ligands for a7 nAChR
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Conscious Monkey PET Studies
Figure 2 shows the static and corresponding parametric total

distribution volume (VT) images of [11C]A-582941 in the brain of a

conscious monkey at baseline and under SSR180711-blocking

conditions. Blocking effects by pretreatment with SSR180711 are

seen in both images. Figure 3 shows their time-activity curves

(TACs) in the four brain regions. In the baseline scan (n = 4),

radioactivity in the four brain regions (the thalamus, frontal cortex,

hippocampus, and cerebellum) peaked at 10 min. The highest

accumulation of radioactivity was found in the thalamus, but the

regional differences were small. Under the SSR180711-blocking

condition, the radioactivity level peaked slightly earlier and

decreased slightly more quickly.

The total and metabolite-corrected plasma radioactivity

levels decreased rapidly (data not shown). Thin-layer chroma-

tography (TLC) analysis revealed that the percentages of the

unchanged form of [11C]A-582941 decreased rapidly at baseline

(n = 4): 93.362.7%, 91.661.9%, 89.961.2%, 81.662.8%,

71.664.1%, 42.867.8%, 34.067.4%, 26.965.3%, 23.063.4%,

and 19.262.6%; and under the SSR180711-blocking condition

(n = 1): 93.2%, 93.9%, 93.0%, 74.2%, 56.7%, 28.3%, 23.2%,

20.4%, 22.2%, and 15.9% at 0.3, 0.7, 1.1, 6.0, 10, 30, 45, 60,

75, and 90 min, respectively.

In Logan graphical analysis, the rank order of VT values

(mean 6 SD; range) was the thalamus (30.464.1; 24.6–34.0). frontal

cortex (29.264.7; 23.2–34.5). hippocampus (28.063.8; 22.8–31.6).

cerebellum (23.063.4; 18.0–25.4). Pretreatment with SSR180711

significantly decreased VT (,30%) (Table 7).

Figures 4 and 5 show the static and VT images of [11C]A-

844606, and their TACs, respectively, in a monkey brain in

baseline and SSR180711-blocking conditions. The blocking effect

by pretreatment with SSR180711 was visualized much more

clearly in the VT images than in the static images. At baseline, the

radioactivity in three of the four brain regions increased gradually

over 90 min, with the exception being the cerebellum, where the

radioactivity reached a plateau at 40 min. Under the SSR180711-

blocking condition, the accumulation of radioactivity occurred

slightly more quickly, reached a plateau at 40–60 min, and then

decreased slightly. Both the total and metabolite-corrected plasma

radioactivity decreased rapidly (data not shown).

The percentages of the unchanged form of [11C]A-844606

rapidly decreased in baseline (n = 3): 83.262.9%, 78.362.5%,

68.764.8%, 53.663.3%, 46.967.3%, 28.2613.9%, 21.065.4%,

22.264.9%, 14.964.7%, and 13.464.2%; and under the

SSR180711-blocking condition (n = 1): 90.7%, 87.1%, 80.4%,

63.3%, 55.2%, 28.7%, 24.0%, 16.8%, 13.2%, and 10.2% at 0.3,

0.7, 1.1, 6.0, 10, 30, 45, 60, 75, and 90 min, respectively.

Figure 1. Radiosynthesis of [11C]A-582941 and [11C]A-844606.
doi:10.1371/journal.pone.0008961.g001

Table 1. Tissue distribution of radioactivity after intravenous
injection of [11C]A-582941 into mice.

% Injected dose/g tissue (mean 6 S.D., n = 4)

1 min 5 min 15 min 30 min 60 min

Blood 1.8460.43 0.8960.04 0.7660.06 0.6460.06 0.5760.05

Heart 4.3360.82 2.1660.13 1.7260.17 1.3960.10 1.0260.08

Lung 18.0964.18 12.5268.59 7.0260.10 6.0660.31 4.1360.15

Liver 3.5960.45 10.5260.69 12.3861.68 9.8760.80 7.2460.74

Pancreas 4.6560.76 7.4760.54 5.8060.80 4.6860.51 3.6960.42

Spleen 2.7060.31 5.5360.38 5.1360.72 3.6460.14 2.8960.90

Kidney 13.8761.58 8.7760.79 6.0260.97 4.8360.77 3.7460.20

S. intestine 3.1360.51 4.4960.60 4.6160.60 5.3361.20 4.5361.21

Muscle 2.0260.34 1.4060.16 1.0660.09 0.8260.07 0.6660.05

Brain 2.6160.33 3.9260.49 3.6360.28 2.6860.29 1.8560.10

doi:10.1371/journal.pone.0008961.t001

Table 2. Tissue distribution of radioactivity in mice after
intravenous injection of [11C]A-844606.

% Injected dose/g tissue (mean 6 S.D., n = 4)

1 min 5 min 15 min 30 min 60 min

Blood 1.0360.26 0.6360.08 0.5360.06 0.5460.06 0.4060.03

Heart 9.3461.26 4.0960.33 2.1160.12 1.6460.17 0.8560.12

Lung 45.8569.29 23.3961.09 13.9263.07 8.9862.04 3.6160.62

Liver 2.4960.77 4.4860.29 6.9060.34 7.5960.94 5.3960.46

Pancreas 3.7661.08 6.6761.25 7.7760.61 6.5260.72 2.6860.85

Spleen 1.7560.65 4.8460.71 7.3460.17 5.8261.29 2.4760.40

Kidney 12.3762.63 12.0160.91 8.6260.97 6.3860.98 2.9960.27

S. intestine 2.9260.88 4.7460.84 7.8660.97 9.6063.11 8.3560.42

Muscle 2.5360.61 1.9360.40 1.3560.20 1.0660.16 0.5560.06

Brain 4.1660.85 6.2660.97 7.3161.16 7.9660.62 4.2760.49

doi:10.1371/journal.pone.0008961.t002
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The rank order of VT values (mean 6 SD; range, n = 3) was the

thalamus (138.6642.3; 95.0–179.4). frontal cortex (130.9640.4;

89.8–170.6). hippocampus (118.5633.6; 82.9–149.6). cerebel-

lum (95.2632.8; 62.1–127.7). The VT was significantly decreased

(,50%) by pretreatment with SSR180711 (Table 7).

Discussion

In the present study, we successfully obtained the carbon-11-

labeled selective a7 nAChR agonists A-582941 and A-844606,

which possessed an octahydropyrrolo[3,4-c]pyrrole core structure.

Methylation of N-, O-, or S-nucleophile with [11C]methyl triflate is

the widely used tool for introducing a short-lived carbon-11

positron emitter into organic molecules. This strategy was

successfully employed in the radiosynthesis of [11C]A-582941

and [11C]A-844606 by reaction of the corresponding desmethyl-

precursors with [11C]methyl triflate. The amount of the base was

optimized at two equivalent moles of the corresponding precursor.

We also investigated its in vivo target specificity in mice and

conscious monkeys.

Previous in vitro membrane-binding and pharmacological studies

showed the high affinity and selectivity of A-582941 and A-844606

for a7 nAChRs [27,28]. The target affinity of A-582941

(Ki = 10.8 nM) and A-844606 (IC50 = 11 nM) was high in

comparison to the CHIBA-1001 (IC50 = 45.8 nM; Ki = 35 nM),

of which a carbon-11-labeled analog has been used for imaging of

a7 nAChRs in a clinical study [21]. The Ki values for CHIBA-

1001 were calculated by the method of Cheng and Prusoff [29].

For calculation of the Ki value for CHIBA-1001, a value of

1.67 nM was used as the KD for a-bungarotoxin. These results

encouraged us to evaluate the possibility of using [11C]A-582941

and A-844606 for the in vivo imaging of a7 nAChRs in the brain.

In the in vivo distribution study in mice, both tracers showed

high brain uptake. [11C]A-844606 showed higher brain uptake

Table 3. Effects of co-injection of the subtype-selective
nAChRs agonists on the brain tissue uptake of radioactivity
15 min after injection of [11C]A-582941 into mice.

% Injected dose/g tissue (mean 6 S.D., n = 5)

Control A-85380 A-844606 SSR180711

Blood 0.8860.10 0.8560.06 0.9160.10 1.0660.09 **

Cerebellum 3.7160.19 3.7660.50 3.6260.10 3.3260.25

Medulla oblongata 4.2360.08 3.9960.49 4.0460.19 3.1560.14*

Hypothalamus 3.5160.60 3.9760.65 3.5060.87 3.4960.36

Hippocampus 4.0560.52 3.9260.54 4.2060.55 4.6360.51

Striatum 4.0360.45 4.3360.75 3.9460.89 4.1961.04

Midbrain 4.0960.52 4.5260.68 4.2960.11 3.9160.45

Cerebral cortex 4.5960.25 4.5360.61 4.7860.19 5.0260.46

Whole brain 4.2360.23 4.2660.57 4.2760.18 4.2160.39

Significant differences (p,0.05): *decrease and **increase compared to the
control (ANOVA with Bonferroni’s post-hoc tests).
The co-injected dose of each nAChRs agonist was 1 mg/kg.
doi:10.1371/journal.pone.0008961.t003

Table 4. Effects of carrier-loading on the brain tissue uptake
of radioactivity 15 min after injection of [11C]A-582941 into
mice.

% Injected dose/g tissue (mean 6 S.D., n = 5)

Control 0.01 mg/kg 0.1 mg/kg 1.0 mg/kg

Blood 0.7460.11 0.7460.06 0.8460.10 0.8860.11

Cerebellum 2.7360.21 2.6260.16 2.7660.48 2.3360.38

Medulla oblongata 3.6660.24 3.1860.35 3.3060.41 2.6360.29*

Hypothalamus 3.1060.38 2.8760.56 3.1560.31 2.7960.33

Hippocampus 3.2460.62 3.1860.38 3.6160.41 3.2860.31

Striatum 3.3660.38 3.3060.25 3.6160.27 3.4560.19

Midbrain 3.7060.29 3.0260.41* 3.2560.14 3.0560.27*

Cerebral cortex 4.0860.50 3.6460.40 3.9860.31 3.7560.40

Whole brain 3.6360.35 3.2560.30 3.5360.30 3.2260.32

*Significant decrease (p,0.05) compared to the control (ANOVA with
Bonferroni’s post-hoc tests).

doi:10.1371/journal.pone.0008961.t004

Table 5. Effects of co-injection of the subtype-selective
nAChRs agonists on the brain tissue uptake of radioactivity
30 min after injection of [11C]A-844606 into mice.

% Injected dose/g tissue (mean 6 S.D., n = 5)

Control A-85380 A-582941 SSR180711

Blood 0.5760.11 0.5460.12 0.6160.07 0.5260.06

Cerebellum 4.5460.63 6.2261.26 5.1760.97 5.1060.69

Medulla oblongata 5.2560.95 5.4661.15 5.5861.26 5.3560.33

Hypothalamus 4.2161.55 5.0060.96 4.7661.17 4.7460.70

Hippocampus 4.4660.90 5.5861.26 6.4861.31 6.2660.64

Striatum 5.0162.00 6.4761.38 6.8161.05 7.3261.84

Midbrain 5.4360.75 6.8461.71 5.8061.46 6.6960.79

Cerebral cortex 7.6360.98 7.5761.48 8.3861.22 8.4361.07

Whole brain 5.8360.56 6.6461.33 6.7161.09 6.8260.64

No significant differences (p,0.05) between the control and each drug-treated
group (ANOVA with Bonferroni’s post-hoc tests).
The co-injected dose of each nAChRs agonist was 1 mg/kg.
doi:10.1371/journal.pone.0008961.t005

Table 6. Effects of carrier-loading on the brain tissue uptake
of radioactivity 30 min after injection of [11C]A-844606 into
mice.

% Injected dose/g tissue (mean 6 S.D., n = 5)

Control 0.01 mg/kg 0.1 mg/kg 1.0 mg/kg

Blood 0.3860.06 0.2860.08 0.3360.02 0.2660.04*

Cerebellum 6.1960.58 4.7661.09* 4.8560.67 3.4960.46*

Medulla oblongata 6.4261.08 4.3860.54* 4.5960.48* 3.3760.36*

Hypothalamus 6.3962.01 3.9760.89* 4.0760.60* 3.7560.44*

Hippocampus 7.6662.58 4.5760.40* 4.6660.27* 4.1460.75*

Striatum 7.4362.04 4.5460.79* 5.3361.49 4.5760.99*

Midbrain 7.7161.29 4.9860.57* 5.6160.55* 3.9860.61*

Cerebral cortex 10.0860.57 7.0261.25* 6.8560.54* 5.2260.72*

Whole brain 8.0260.71 5.5460.83* 5.7360.34* 4.3460.61*

*Significant decrease (p,0.05) compared to the control (ANOVA with
Bonferroni’s post-hoc tests).

doi:10.1371/journal.pone.0008961.t006
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than [11C]A-582941. The hippocampal uptake of [11C]A-582941

was not significantly higher than the cerebellar uptake at 15 min

after injection. In contrast, the hippocampal uptake of [11C]A-

844606 was slightly higher than cerebellar uptake but not

significant at 30 min after injection. These findings indicate the

high nonspecific binding of [11C]A-582941 and a few receptor-

specific binding of [11C]A-844606 in the mouse brain, because a7

nAChRs density is high in the hippocampus and low in the

cerebellum in mice [4]. This high level of nonspecific binding of

[11C]A-582941 was also confirmed in the competitive drug

treatment studies. Co-injection with the selective a7 nAChR

agonists SSR180711 and A-844606 did not decrease the regional

brain uptake of [11C]A-582941. In the carrier-loading studies, a

significant decrease of radioactivity was observed only in the

medulla oblongata. These data imply that a limited fraction of the

[11C]A-582941 taken up into the mouse brain was involved in

receptor-specific binding in vivo.

In the competitive drug treatment studies, co-injection with the

selective a7 nAChR agonists SSR180711 and A-582941 also could

not decrease the regional brain uptake of [11C]A-844606. On the

other hand, the carrier-loading studies indicated a significant

decrease in uptake in both the hippocampus (target tissue) and

cerebellum (non-target tissue). These data suggest that saturable

binding sites of [11C]A-844606 are present in the mouse brain but

may be different from a7 nAChRs in vivo.

However, it is well known that in vivo evaluations of specific

binding in mice have some limitations and sometimes lead to false-

negative results. First, the uptake studies employing dissected tissue

are usually performed at a single time-point that is reasonably

selected based on tissue time-activity curve (tTAC) obtained in the

tissue distribution study. The kinetic analysis of the PET study of the

monkey brain indicated that the specific binding was evaluated from

overall data of the PET scan: 93 min scan in the present study.

Indeed, in our current study, the specific binding of the tracers in

mice was evaluated at the time of highest brain uptake under the

baseline condition. Second, in the in vivo evaluations of the specific

binding of tracers, pretreatment with blockers is usually more

effective than co-injection of the same blockers. In the present

studies using mice, the cold-displacement and blocking experiments

were performed using the co-injection method. Indeed, an

additional, unknown effect might have been produced by co-

injection of selective a7 nAChR agonists (A-582941 and

SSR180711) at a dose of 1 mg/kg, which resulted in enhanced

[11C]A-844606 uptake in the brain tissues. When looking at the

tTACs in the monkey brain, an enhanced uptake of [11C]A-844606

Figure 2. Baseline and SSR180711-blocking PET images of the
monkey brain with [11C]A-582941. Upper: Static images acquired
from 70 to 90 min after injection of [11C]A-582941, were expressed as a
standardized uptake value (SUV). Lower: Parametric images for the total
distribution volume of [11C]A-582941 were generated using Logan
graphical analysis. SSR180711 (5 mg/kg) was intravenously injected into
the monkey 30 min before the injection of [11C]A-582941.
doi:10.1371/journal.pone.0008961.g002

Figure 3. Time-activity curves of radioactivity in four brain regions (frontal cortex, thalamus, hippocampus, and cerebellum) and
metabolite corrected plasma after intravenous injection of [11C]A-582941 in baseline and SSR180711-blocking PET scans. The
monkey was given intravenously saline and SSR180711 (5.0 mg/kg, i.v.) in the baseline (filled symbols) and SSR180711-blocking (open symbols) scans,
respectively, 30 min after injection of [11C]A-582941. Radioactivity was expressed as a percentage of injected doses per ml of tissue (%ID/ml).
doi:10.1371/journal.pone.0008961.g003
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was also observed for approximately 60 min after the injection.

Similar phenomena have sometimes been observed during the

development of in vivo radioligands [30–32]. Moreover, we

previously reported that [11C]doxepin was representative of a

radioligand engendering these phenomena [33]. Notwithstanding

the clinical usefulness of [11C]doxepin PET for measurement of the

histamine H1 receptor occupancy rates of antihistamine agents [34],

the specific binding of [11C]doxepin to histamine H1 receptors is

very low in rodents, and is not detected in guinea pigs. However,

kinetic analysis of the results of a PET study of [11C]doxepin showed

30% specific binding in the monkey brain, and a larger specific

binding rate (36%) in the human brain [33]. As observed in the

[11C]doxepin study using rodents, our negative results in mice are

hardly expected from the in vitro studies cause the target affinity of A-

582941 and A-844606 are higher than that of CHIBA-1001.

Theoretically, kinetic analysis of PET study results in the monkey

brain is far preferable to an uptake study using co-injection at a

single time-point in rodents. We therefore consider that more

suitable evaluations were performed by the monkey PET studies.

An in vivo PET study using conscious monkeys demonstrated a

high accumulation [11C]A-582941 and [11C]A-844606 in the

brain. In contrast to the mouse brain, the regional distribution of

both tracers in the monkey brain is consistent with the distribution

of a7 nAChRs. In rhesus monkeys, a7 nAChRs are distributed at

the highest level in the thalamus, at a moderate level in the cortex,

and at a low level in the cerebellum [35–38]. Figures 3 and 5

demonstrate a high uptake of both tracers in the thalamus and

cortical regions and a low uptake in the cerebellum. However, the

regional differences were small and the average VT ratio of the a7

nAChR-rich thalamus to the a7 nAChR-poor cerebellum was

below ,2.0. Distinct from the mice data, the uptake of both

tracers in the monkey brain regions was blocked by pretreatment

with the selective a7 nAChR agonist SSR180711. Because the 1,4-

diazabicyclo-[3.2.2]nonane skeleton of SSR180711 is different

from the 3,7-diazabicyclo[3.3.0]octane skeleton of A-582941 and

A-844606, this data might indicate the selectivity of [11C]A-

582941 and [11C]A-844606 for a7 nAChRs. However, these

positive characteristics, which indicate the specific binding of the

tracer to a7 nAChRs, were diminished by the fact that these

compounds also showed the same levels of blocking in the

cerebellum. On the other hand, the possibility that the uptake of

these tracers was due to the existence of a7 nAChRs in the

cerebellum has not been ruled out. In fact, a human postmortem

brain study has shown that [125I]a-bungarotoxin binding in the

cerebellum is at the same level as that of the cortex [39,40]. In the

monkey brain, the a7 nAChR mRNA expression pattern

resembles that of the postmortem human brain [40,41].

Quantitative analysis lead out the significant VT reduction in the

brain regions of these tracers pretreated with SSR180711.

However, the inter-subject differences of VT in the baseline scan

of these tracers were massive, and this difference was at the same

level as the VT reduction in the blocking study. VT is the ratio at

equilibrium of the total tissue concentration to the metabolite-

corrected plasma concentration. Therefore, not only the changes

of tTAC but also the changes of the plasma time activity curve

(pTAC) will affect the VT. Indeed, the integral of pTAC of these

tracers was obviously increased with SSR180711 pretreatment

(data not shown), and might have caused the significant VT

reduction in the brain regions of these tracers.

Nevertheless, as mentioned above, the 30–50% VT reduction

rate was larger than that of [11C]doxepin (30%) in the monkey

Table 7. Total distribution volume (VT) of [11C]A-582941 and [11C]A-844606 in the baseline and SSR180711 pre-treatment
conditions and receptor blocking rate by SSR180711 (n = 1).

[11C]A-582941 [11C]A-844606

VT (ml/g) VT (ml/g)

Baseline SSR180711 % decrease* Baseline SSR180711 % decrease*

Cerebellum 25.4 17.3 32.0 95.9 52.8 45.0

Frontal cortex 34.5 23.0 33.4 132.2 65.3 50.6

Thalamus 34.0 23.6 30.5 141.5 69.3 51.0

Hippocampus 31.6 20.4 35.5 123.1 57.5 53.3

*VT decrease was calculated as follow: [(VT of baseline) – (VT of SSR180711)]/(VT of baseline)6100.
doi:10.1371/journal.pone.0008961.t007

Figure 4. Baseline and SSR180711-blocking PET images of
monkey brain with [11C]A-844606. Upper: Static images acquired
from 70 to 90 min after injection of [11C]A-844606, were expressed as a
standarized uptake value (SUV). Lower: Parametric image for the total
distribution volume of [11C]A-844606 were generated using Logan
graphical analysis. SSR180711 (5 mg/kg) was intravenously injected into
the monkey 30 min before the injection of [11C]A-844606.
doi:10.1371/journal.pone.0008961.g004
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PET study. Thus, even though a high nonspecific binding of these

tracers in the experimental animals are still exists, these

compounds have chance to proceed to the preliminarily clinical

evaluation when the clinical safety of these tracers are confirmed.

A species difference in the peripheral metabolism of [11C]A-

582941 was found between mice and monkeys. The finding that

[11C]A-582941 was more stable peripherally in monkeys than in

mice is a good property for a PET ligand in monkeys: the

percentages of the intact form in the plasma of mice and monkeys

were 26.8% and 42.8%, respectively, at 30 min post-injection. In

contrast, a species difference between mice and monkeys was not

found in the peripheral metabolism of [11C]A-844606. The

percentages of the intact form in the plasma of mice and monkeys

were 28.9% and 28.2%, respectively, at 30 min post-injection.

A-582941 exhibits favorable physical properties for a CNS-

active drug, with a low molecular weight (280 Da for the free base)

and moderate lipophilicity (clog P = 2.3) [28]. The molecule

possesses two basic sites, the N-methylated tertiary amine and

aminopyridazine, with pKa values of 8.75 and 4.44, respectively.

At physiological pH, the molecule exists substantially in the

monoprotonated state, and the log D at pH 7.4 is estimated to be

1.0. A-844606 also possesses one basic site, the N-methylated

tertiary amine. Perhaps ion-pair interactions between the basic

nitrogen and the charged acidic head groups of phospholipids

membranes induce nonspecific binding. Although we cannot

identify the cause of the species difference between mice and

monkeys, some structural characteristics might be responsible for

the high nonspecific binding in the mouse brain.

In general, a radioligand for in vivo imaging of neuronal

receptors should possess the following properties: 1) a high signal-

to-noise ratio that is linked to high binding affinity and low

nonspecific binding, 2) good blood-brain barrier penetration and

rapid clearance from the blood, 3) appropriate kinetics, 4) high

receptor selectivity, 5) good radiation dosimetry/toxicology

properties, and 6) appropriate radiochemistry. From previous in

vitro and pharmacological studies of A-582941 and A-844606, we

confirmed the 4) high receptor selectivity. In this study, we also

confirmed that these compounds showed 2) good blood-brain

barrier penetration and rapid clearance from the blood, and 6)

appropriate radiochemistry. Also, the regional brain uptake of

these compounds reached equilibrium with an 11C imaging time

window. However, our results also showed that improvements and

further considerations of categories 1) and 5) criteria are still

needed. Although most studies of the distribution of a7 nAChRs in

the brain are qualitative, one study using [125I]MLA showed a

maximum number of binding sites of 6863 fmol/mg proteins in

the rat cerebral cortex and another, using [3H]MLA, demonstrat-

ed 5964 fmol/mg in the mouse hippocampus [4,41]. These a7

nAChR concentrations suggest that ligands with low nanomolar

affinities should be successful for imaging a7 nAChRs in vivo.

Indeed, with a Kd of 10 nM, comparable to A-582941 and A-

844606, and a Bmax of 70 fmol/mg (,7 nM), the Bmax/Kd value is

calculated at ,1. This also indicates that further structural

modification of octahydropyrrolo[3,4-c]pyrrole analogs toward

high binding affinity may provide suitable imaging agents for a7

nAChRs. Very recently, Bunnelle et al. [42] reported that the

replacement of the terminal phenyl of A-582941 by an indolyl

group resulted in a potent and selective a7 ligand (Ki = 0.24 nM;

.400,000-fold selective vs. a4b2-subtype). However, as stated by

Ding et al. [43], we have to keep in mind that the high in vitro

affinity of a ligand does not guarantee its suitability as an in vivo

ligand. The poor ability to predict the behavior of chemical

compounds in vivo based on log P values and affinities emphasizes

the need for more knowledge in this area.

The specific activities of a7 nAChRs radioligands is an

important factor to be considered. First, a radioligand of low

mass is required so as not to saturate the binding sites. Second, use

of radiotracers with more highly specific activity is more likely to

ensure that the radiolabeled compound does not elicit any

pharmacological effects when administered. Therefore, an ideal

in vivo radiotracer for the a7 nAChRs should be an antagonist.

However, a radiolabeled antagonist for a7 nAChRs with

sufficiently high affinity for in vivo imaging has yet to be identified.

In conclusion, although an inter-species difference in the

distribution of [11C]A-582941 and [11C]A-844606 was observed

between rodents and non-human primates, our non-human

primate study of [11C]A-582941 and [11C]A-844606 will present

a helpful leads to finding the novel useful PET ligands for imaging

Figure 5. Time-activity curves of radioactivity in four brain regions (frontal cortex, thalamus, hippocampus, and cerebellum) and
metabolite corrected plasma after intravenous injection of [11C]A-844606 in baseline and SSR180711-blocking PET scans. The
monkey was given intravenously saline and SSR180711 (5.0 mg/kg, i.v.) in the baseline (filled symbols) and SSR180711-blocking (open symbols) scans,
respectively, 30 min after injection of [11C]A-844606. Radioactivity was expressed as a percentage of injected doses per ml of tissue (%ID/ml).
doi:10.1371/journal.pone.0008961.g005
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a7 nAChRs in the human brain. Our results also showed that

octahydropyrrolo[3,4-c]pyrrole may be a lead structure with high

affinity and with functional groups that can be labeled with PET

isotopes.

Materials and Methods

General
The reference compounds (A-582941 and A-844606) and their

desmethyl precursors (desmethyl-A-582941 and desmethyl-A-

84606) were synthesized according to the method described

previously [23,24,28]. SSR180711 was also synthesized by a

previously described method [21]. All other chemical reagents were

obtained from commercial sources. Male ddY mice were obtained

from Tokyo Laboratory Animals Co., Ltd (Tokyo, Japan). The

animal studies were approved by the institutional ethics committees

for animal experiments at the Tokyo Metropolitan Institute of

Gerontology and Chiba University. The PET study with monkeys

was approved by the institutional ethics committees for animal

experiments at the Hamamatsu Photonics K.K. and Chiba

University. The PET study with monkeys was performed at the

Central Research Laboratory of Hamamatsu Photonics K.K.,

Hamamatsu, Japan, in accordance with recommendations of the

U.S. National Institutes of Health and the guidelines of the Central

Research Laboratory, Hamamatsu Photonics K.K. Monkeys were

monitored closely and animal welfare is assessed on a daily basis,

and if necessary several times a day. This includes veterinary

examinations to make sure animals are not suffering. If animals

experience pain they receive pain medications. If pain can not be

relieved, or if veterinary examination reveals signs of suffering that

cannot be relieved by analgesics, antiemetics, or antibiotic therapy,

animals are euthanized.

2-[11C]Methyl-5-[6-phenylpyridazine-3-yl]octahydropyrrolo

[3,4-c]pyrrole ([11C]-A-582941). [11C]A-582941 was synthesized

by [11C]methylation of desmethyl-A-582941 with [11C]methyl triflate

prepared using an automated synthesis system as previously described

(Figure 1) [44]. [11C]Methyl triflate was trapped in acetone (0.25 ml)

containing 0.25 mg (1 mmol) of desmethyl-A-582941 and 10 ml

(2 mmol) of 0.2 M aqueous NaOH as a base. The reaction was

carried out at room temperature for 1 min. After 1.3 ml of CH3CN/

50 mM CH3COONH4 (20/80, v/v) had been added, the reaction

mixture was applied to HPLC using a reverse phase column (YMC-

Pack ODS-A: 10 mm inner diameter 6250 mm length; YMC Co.,

Ltd., Kyoto, Japan) together with a UV absorbance detector (260 nm)

and a semiconductor radiation detector. The mobile phase was a

mixture of CH3CN and 50 mM CH3COONH4 (20/80, v/v) at a

flow rate of 6 ml/min. The [11C]A-582941 fraction (retention time:

15.7 min for [11C]A-582941 and 7.7 min for desmethyl-A-582941)

was corrected and evaporated to dryness. The residue was dissolved in

physiological saline and filtered through a 0.22 mm membrane. The

labeled compound was analyzed by HPLC using a TSKgel Super-

ODS column (4.6 mm inner diameter6100 mm length; Tosoh Co.,

Ltd., Tokyo, Japan); the mobile phase was CH3CN/50 mM

CH3COONH4 (35/65, v/v), the flow rate was 1.0 ml/min, and the

retention time was 5.1 min for [11C]A-582941.

2-(5-[11C]Methyl-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl)-

xanthene-9-one ([11C]A-844606). [11C]A-844606 was pre-

pared by a method similar to that for [11C]A-582941 with a slight

modification in HPLC separation—namely, desmethyl-A-844606

(0.25 mg, 1 mmol) was used as the labeling precursor (Figure 1).

After 1.3 ml of CH3CN/50 mM CH3COONH4 (35/65, v/v) had

been added, the reaction mixture was applied to HPLC using the

same reversed phase column. The mobile phase was a mixture of

CH3CN and 50 mM CH3COONH4 (35/65, v/v) at a flow rate of

6 ml/min and the retention times were 11.8 min for [11C]A-

844606 and 6.3 min for desmethyl-A-844606. Then the [11C]A-

844606 fraction prepared for injection was analyzed by the same

HPLC with a different mobile phase consisting of CH3CN/H2O/

triethylamine (65/35/0.1, v/v) and a retention time of 7.0 min for

[11C]A-844606.

Tissue Distribution of the Tracers in Mice
Each tracer was intravenously injected into mice, and then the

animals were killed by cervical dislocation at 1, 5, 15, 30 and

60 min after injection (n = 4). The body weight of the mice was

34.761.2 g. The injected doses of tracers were 2 MBq/0.049–

0.051 nmol. Blood was collected by heart puncture and tissues

were harvested. The carbon-11 in the samples was counted with

an auto-gamma-counter (LKB Wallac Compu-gamma 1282CS,

Turku, Finland) and the tissues were weighed. The tissue uptake of

carbon-11 was expressed as the %ID/g.

In the other group of mice, a blocking experiment to determine

the a7 nAChRs-specific regional brain uptake of the tracers was

carried out. Each tracer (2 MBq/0.055–0.096 nmol) was co-

injected with each of the following blockers into mice, and 15

([11C]A-582941) or 30 ([11C]A-844606) min later the mice were

killed (n = 5) and the tissue uptake of 11C was expressed as the

%ID/g. The co-injected blockers were unlabeled A-582941 and

A-844606, SSR180711 (a7n AChRs selective agonist, a7

nAChRs, IC50 = 30 and 18 nM for rat and human receptors of

brain homogenates, respectively; a4b2, IC50.50,000 nM for

human receptor) [45] or A-85380 (a4b2 nAChRs selective agonist,

a7 nAChRs, Ki = 100 and 148 nM for rat and human receptors of

brain homogenates, respectively; a4b2, Ki = 0.05 and 0.04 nM for

rat and human receptors of brain homogenates, respectively) [46].

Each blocker was dissolved in 1N HCl to 40 mg/ml and diluted

up to 0.4 mg/ml with saline. The co-injected dose was 1 mg/kg.

In the control mice the same amount of 0.01 N HCl in saline was

co-injected.

To investigate the carrier-loading effect of the tracer uptake in

the mouse brain, each tracer (2 MBq/0.053–0.179 nmol) was co-

injected with unlabeled A-582941 or A-844606. The co-injected

doses were 0.01, 0.1 and 1 mg/kg. In the control mice, the same

amount of 0.01 N HCl in saline was co-injected. Fifteen ([11C]A-

582941) or 30 ([11C]A-844606) min later the mice were killed

(n = 5) and the tissue uptake of 11C was expressed as the %ID/g.

Metabolite Analysis
Each tracer (180 MBq/3.0–13.4 nmol) was intravenously

injected into mice, and 15 and 30 min later the animals were

killed by cervical dislocation (n = 3). Blood was removed by heart

puncture using a heparinized syringe, and the brain was removed.

The blood was centrifuged at 7,0006g for 1 min at 4uC to obtain

plasma, which was denatured with 5 volume of CH3CN. The

mixture was centrifuged under the same conditions, and the

precipitate was re-suspended in 0.5 ml of CH3CN, followed by

centrifugation. This procedure was repeated three times. The

cerebral cortex (approximately 200 mg) was homogenized in

1.0 ml of 50% CH3CN. The homogenate was then treated as

described above. The combined supernatant was diluted with 2

volumes of water and then analyzed by HPLC with a radioactivity

detector (FLO-ONE 150TR; Packard Instrument, Meriden, CT).

A Radial-Pak C18 column equipped with an RCM 8610 module

(8 mm 6100 mm; Waters, Milford, MA) was used with a mixture

of CH3CN/H2O/triethyl amine (40/60/0.1 for [11C]A-582941

and 70/30/0.1 for [11C]A-844606, v/v/v) as the mobile phase at a

flow rate of 2 ml/min. The elution profile was monitored with a

radioactivity detector. The retention times of [11C]A-582941 and
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[11C]A-844606 were 6.4 and 8.8 min, respectively. The recovery

in the eluate of the injected radioactivity was essentially

quantitative.

PET Study in Conscious Monkeys
Four young-adult male rhesus monkeys (Macaca mulatta)

weighing from 4 to 6 kg were used for PET measurements. The

monkeys were trained for the protocol as described previously

[21]. The magnetic resonance images (MRI) of all monkeys were

obtained with a Toshiba MRT-50A/II (0.5T) under anesthesia

with pentobarbital. The stereotactic coordinates of PET and MRI

were adjusted based on the orbitomeatal (OM) line with monkeys

secured in a specially designed head holder [47]. At least 1 month

before the PET study, an acrylic plate, with which the monkey was

fixed to the monkey chair, was attached to the head under

pentobarbital anesthesia as described previously [48].

PET data were collected on a high-resolution PET scanner

(SHR-7700; Hamamatsu Photonics K.K., Hamamatsu, Japan).

The camera consists of 16 detector rings and acquires 20 slices at a

center-to-center interval of 3.6 mm with a transaxial resolution of

2.6 mm full width at half maximum [49]. After an overnight fast,

the monkey was fixed to the monkey chair with stereotactic

coordinates aligned parallel to the OM line. A cannula was

implanted in the posterior tibial vein, and [11C]A-582941 or

[11C]A-844606 (1152–1336 MBq/26.8–63.1 nmol) was injected

into the monkey through the venous cannula. PET images were

acquired over 91 min (10 sec 66 frames, 30 sec 66 frames, 1 min

612 frames, and 3 min 625 frames). PET scans were recon-

structed using a filtered backprojection method in a 1006100

matrix, with a voxel size of 1.2 mm61.2 mm63.6 mm. Summed

image of late phase (from 70 to 91 min post-injection) was

calculated as a static SUV (activity/ml tissue)/(injected activity/g

body weight) image. Each MRI was coregistered to an early (from

0 to 20 min) summed image using normalized mutual information,

and ROIs were placed on the summed image with reference to the

coregistered MRI. Three monkeys underwent [11C]A-582941

scan morning, and then two of the three monkeys underwent

[11C]A-844606 afternoon (baseline). Within 6 months the last one

of the three monkeys underwent two [11C]A-844606 scans in the

baseline (morning) and blocking (afternoon) conditions 30 min

after injection of SSR180711 (5.0 mg/kg, i.v.), and the fourth

monkey underwent two [11C]A-582941 scans in the baseline and

blocking conditions in the same way. Due to the very short half-life

of 11C (20.4 min), a time lag of at least 3 hours between the two

PET scans in an individual monkey in the same day provided a

sufficient decay time of radioactivity (approximately 1/400 of the

injected dose). Therefore, the level of radioactivity associated with

the previous injection of labeled compound did not interfere with

the next scan, as previously reported [50,51].

For the semi-quantitative analysis of PET data, arterial samples

were obtained every 8 sec from injection to 64 sec, and then again

at 1.5, 2.5, 4, 6, 10, 20, 30, 45, 60, and 90 min after each tracer

injection. Blood samples were centrifuged to separate the plasma,

weighed, and subjected to radioactivity measurement. For

metabolite analysis, methanol was added to some plasma samples,

the resulting solutions were centrifuged, and the supernatants were

developed with TLC plates (AL SIL G/UV; Whatman, Kent,

UK) using a mobile phase of dichloromethane/diethyl ether/

ethanol/triethylamine (20/20/2/2, v/v/v/v). At each sampling

time point, the ratio of radioactivity in the unmetabolized fraction

to that in the total plasma (metabolite plus unmetabolite) was

determined using a phosphoimaging plate (BAS-1500 MAC; Fuji

Film Co., Tokyo, Japan). The pTACs corrected for metabolite

were obtained. The tTACs in each region of interest (ROI) in the

brain were calculated as the %ID/ml or as a standardized uptake

value (SUV), (activity/ml tissue)/(injected activity/g body weight).

Using the tTACs and the metabolite-corrected pTAC, the VT for

each tracer was evaluated by Logan graphical analysis [52].

Statistical Analysis
A one-way analysis of variance (ANOVA) with Bonferroni’s

post-hoc tests was used in comparing treated groups to controls.

Differences with a p value,0.05 were considered to be statistically

significant.
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