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Abstract
Background: Even though immunotherapy has been an effective treatment for solid 
tumors, its efficacy in osteosarcoma remains sub- optimal. It is therefore imperative to 
understand the complex tumor microenvironment (TME) of osteosarcoma to facili-
tate the development of immunotherapies against this cancer.
Methods: The mRNA expression profiles of osteosarcoma tissues were downloaded 
from The Cancer Genome Atlas (TCGA) database. Next, the ssGSEA, MCP- counter, 
CIBERSORT, and Xcell algorithm analyses were performed to characterize the 
tumor microenvironment of osteosarcoma tissues. The tumor tissues were divided 
into inflammatory and non- inflammatory. A comprehensive assessment of immune 
cell infiltration in osteosarcoma tissues was then performed. Sub- group analysis of 
immune cell infiltration between men and women patients with osteosarcoma was 
also carried out.
Results: The results revealed that the infiltration of immune cells including activated 
B cell, activated CD8 T cell, CD56dim natural killer cell, and cytotoxic lymphocytes 
cells, in osteosarcoma tissues was higher in male than in female patients. Based on the 
infiltration profile of different immune cells, the osteosarcoma tissues were grouped 
into four clusters. The four clusters were further divided into hot and cold tumors. The 
differently expressed genes (DEGs) between cold and hot tumors were mainly associ-
ated with the activation and regulation of immune response. Additionally, a neuronal 
pentraxin (NPTX2) expression which was upregulated in cold tumors was found to 
be negatively correlated with the expression of CD8a Molecule (CD8A), Granzyme 
B (GZMB), and Interferon Gamma (IFNG). NPTX2 decreased CCL4 secretion. 
Knockdown of NPTX2 in osteosarcoma cells inhibited tumor growth and increased 
tumor cell apoptosis. Moreover, a prognosis prediction model of osteosarcoma was 
constructed and validated in patients receiving immunotherapy using external data.
Conclusions: To the best of our knowledge, this is the first study to characterize the 
infiltration of immune cells in osteosarcoma tissues from patients receiving immune 
infiltration therapy.
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1 |  INTRODUCTION

Primary malignant tumors of the bone account for less than 
0.2% of all cancers.1 Meanwhile, osteosarcoma is the most 
common primary bone cancer accounting for 19% of all 
bone malignancies. It is also the third most common malig-
nancy in children and adolescents.2,3 The search for efficient 
treatments for osteosarcoma has been ongoing for several 
decades now. For instance, from 1982 to 1984, in the Multi- 
Institutional Osteosarcoma Study (MIOS), 113 patients were 
randomly divided into two groups. One group underwent 
surgery alone, whereas the other underwent surgery plus 
adjuvant chemotherapy. It was found that the 6- year sur-
vival rate of patients who underwent surgery only was 11%, 
against 61% for patients who received both surgery plus adju-
vant chemotherapy.4 Elsewhere, the survival rate of patients 
with metastatic cancers (most common in lung parenchyma 
and distant bones) was only about 19%– 30%.5,6 Despite the 
advances in cancer treatment over the past few decades, the 
survival rate of patients with osteosarcoma remains unsatis-
factory. Immunotherapy is a recent cancer treatment option 
that has achieved excellent results against numerous solid 
tumors. However, immunotherapy against osteosarcoma has 
not been developed. Therefore, we explored the infiltration 
pattern of immune cells in osteosarcoma tissues using data in 
the TCGA database. The findings of this study may guide the 
development of osteosarcoma immunotherapy.

Infiltration of lymphocytes into tumor tissues is a phenom-
enon that was discovered more than 100 years ago. However, 
research on the relationship between immunity and prognosis 
began later in the 1960s.7 Studies have shown that the tumor 
microenvironment (TME) interferes with anti- tumoral immune 
responses.8,9 As such, understanding and targeting the TME can 
reveal avenues for developing efficient immunotherapies against 
numerous tumors. Several methods such as gene set enrichment 
analysis (ssGSEA), Microenvironment Cell Populations (MCP)- 
counter, CIBERSORT, and Xcell have been developed to ana-
lyze the infiltration of immune cells in cancer tissues.10– 13 Most 
of the T cell infiltrations (80%) occur in metastatic cancers.14 
Meanwhile, the nature and extent of immune cell infiltration 
into solid tumors have been reported to influence therapeutic re-
sponses. Based on the infiltration of cytotoxic immune cells in 
the TME, cancers can be classified into immunologically active 
“inflamed” (hot) tumors and inactive “non- inflamed” tumors 
(cold) tumors. Cold tumors are insensitive to either chemother-
apy or immunotherapy, thus are associated with poor prognosis. 
Hot tumors are characterized by the infiltration of leukocytes 
including CD8+ T cells.15 Other important tumor- related fac-
tors include CCL5, CXCL9, and CXCL10, which regulate the 
recruitment of T cells into tumors.16 In contrast, even though 
cold tumors display are infiltrated by macrophages, the infiltra-
tion level of CD8+ T cells and antigen- presenting factors such 
as HLA class I molecules is reduced in these tumors.17 Cancer 

resists immune response by upregulating the expression of im-
mune checkpoint components on their cell surfaces, which in-
hibits T cell response in the TME.

In this study, osteosarcomas were divided into cold and 
hot tumors based on the immune infiltration score. The infil-
tration level of immune cells across tumor types was analyzed 
using ssGSEA, MCP- counter, CIBERSORT, and Xcell. A 
prognosis predictive model for osteosarcoma was constructed 
and validated in patients receiving immunotherapy. The re-
sults showed that the infiltration of B and T cells in men 
with osteosarcoma was higher relative to that in women. In 
addition, differently expressed genes (DEGs) between cold 
and hot tumors were identified. Notably, NPTX2 was over- 
expressed in cold tumors, which negatively correlated with 
the expression of CD8A, GZMB, and IFNG. Knockdown of 
NPTX2 increased CCL4 secretion. In vitro functional analysis 
revealed that the inhibition of NPTX2 in HOS and SW1353 
cells reduced cell proliferation and promoted cell apoptosis. 
Overall, the constructed model accurately predicted the prog-
nosis of osteosarcoma patients undergoing immunotherapy.

2 |  MATERIALS AND METHODS

2.1 | Source of data

The mRNA sequencing and clinical data of 119 osteosarcoma 
patients were downloaded from the TCGA portal (http://
tcga.cancer.gov/datap ortal).18 The study design and features 
of samples used at each stage of the analysis are shown in 
Figure 1.

2.2 | Infiltration of immune cells

Infiltration of immune cells to tumor sites was assessed using 
the ssGSEA using R software.19 Infiltration rate of 22 im-
mune cells was analyzed using CIBERSORT (http://ciber 
sort.stanf ord.edu/). The population and proportion of tumor 
microenvironment cells were analyzed using the “MCP- 
Counter” package in R software.12 The Immune scores (ISs), 
Stromal Scores (SSs), and Tumor Purity (TP) were calcu-
lated using the “ESTIMATE” package in R software. The 
inclusion criteria were: p < 0.05. The “ggplot2” package was 
used to draw violin diagrams to visualize differences in the 
infiltration of immune cells.

2.3 | Cell consensus clustering

Consensus clustering provides quantitative and visual esti-
mates of unsupervised classes in a dataset.20 Classification 
of osteosarcoma patients into various clinically significant 

http://tcga.cancer.gov/dataportal
http://tcga.cancer.gov/dataportal
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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subtypes was performed using the “ConsensusClusterPlus” 
package (http://www.bioco nduct or.org/). The clusters were 
visualized using a heat map and delta diagram.

2.4 | Expression of immune- 
related molecules across different 
osteosarcoma clusters

The TP, ISs, and SSs of each osteosarcoma cluster were 
calculated using the ESTIMATE algorithm in the packager 
software. The expression and function of immune- related 
molecules such as antigen- presenting proteins, chemokine, 
cytokines, and immune checkpoints were analyzed and plot-
ted using the “ggplot2” package.

2.5 | Pathological subtypes and survival 
analysis of different osteosarcoma subgroups

Overall survival (OS) and physiological vulnerability index 
(PFI) between different subgroups were also determined. PFI 
reflects the accumulation of age- related defects.21 Survival 
analyses were performed using the “survival” package in R 
software, whereas corresponding box plots were constructed 
using the “ggplot2” package. Immune scores for each cluster 

were calculated and compared. Tumors in each cluster were 
further classified into hot and cold tumors. Survival analyses of 
patients with hot or cold tumors were also performed. Data were 
normalized using the “Sva” package.22 The TME of cold and 
hot tumors was analyzed using the limma package. Genes were 
considered up- regulated based on |Log2FC| >1, and downregu-
lated based on |Log2FC| >1, adjusted p- value <0.05.23

2.6 | Identification of differently expressed 
genes between cold and hot tumors

Fresh osteosarcoma tissues collected after surgery were 
washed three times using PBS before treatment with TRIzol 
(Invitrogen) for RNA extraction. The RNA was reverse tran-
scribed to cDNA and subjected to quantitative PCR using 
the Rever Tra Ace qPCR RT Kit and SYBR Premix Ex Taq 
following the manufacturer's instructions. The GAPDH 
mRNA served as the internal control. The primers used 
were as follows: Human Neuronal pentraxin Ⅱ (NPTX2); F: 
ACGGGCAAGGACACTATGG; R: ATTGGACACGTTTG  
CTCTGAG, Human CD8A; F: TCCTCCTATACCTCTCC  
CAAAAC, R: GGAAGACCGGCACGAAGTG, Human 
IFNG; F: TCGGTAACTGACTTGAATGTCCA, R: TCGC  
TTCCCTGTTTTAGCTGC, Human GZMB; F: TACCAT  
TGAGTTGTGCGTGGG, R: GCCATTGTTTCGTCCATA  

F I G U R E  1  The general research 
design and flow of the study

http://www.bioconductor.org/
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GGAGA, Human GAPDH: F: GAGTCAACGGATTTG  
GTCGT, R: TTGATTTTGGAGGGATCTCG. The associa-
tion of NPTX2 with CD8A, GZMB, and IFNG expression 
was analyzed using Spearman correlation. The correlation 
analyses were performed using GraphPad Prism (version 
7.00).

2.7 | Cell culture

Human osteosarcoma cancer cell lines (HOS, SW1353) were 
purchased from the China Center for Type Culture Collection 
(CCTCC). The HOS cell lines were cultured in MEM supple-
mented with 10% heat- inactivated fetal bovine serum (FBS), 
100 U/ml of penicillin, and 100 mg/ml of streptomycin. The 
SW1353 cell lines were maintained in L- 15 enriched with 
10% FBS, 100 U/ml of penicillin, and 100 mg/ml of strep-
tomycin. All cultures were incubated in a humidified atmos-
phere of 5% CO2 at 37℃.

2.8 | siRNA-mediated gene knockdown

siRNA targeting NPTX2 (5′- GCGCACAAGAAAUUGUC  
AATT- 3′ (sense) and 5′- UUGACAAUUUCUUGUGCGC  
TT- 3′ (antisense) for NPTX2- siRNA1, 5′- GGUGGACAAU  
AACGUCGAUTT- 3′ (sense), and 5′- AUCGACGUUAUUG  
UCCACCTT- 3′ (antisense) for NPTX2- siRNA2. 5′- CUCCG  
CACAAACUACCUAUTT- 3′ (sense) and 5′- AUAGGUAG  
UUUGUGCGGAGTT- 3′ (antisense) for NPTX2- siRNA3) 
and scrambled negative control siRNA were provided by 
Shanghai GenePharma. Transfection siRNAs into HOS and 
SW1353 cells were performed using Lipofectamine 2000 
(Invitrogen) at a final concentration of 80 nM. The efficiency 
of siRNA knockdown was subsequently confirmed using 
qPCR (as aforementioned).

2.9 | Cell proliferation assay

Cell Counting Kit- 8 (DOJINDO) was used according to 
the manufacturer's instructions. Briefly, transfected osteo-
sarcoma cells were seeded in 96- well plates at a density of 
5000 cells per well and incubated for 24, 48, and 72 h. Next, 
10 μl of CCK- 8 reagent was added into each well every 24 h 
and incubated at 37℃ for 2 h, after which the absorbance was 
measured at 450 nm (ELx800, Bio- Tek).

2.10 | Apoptosis assay

Seventy- two hours after transfection, cells were harvested, 
washed, and suspended in Annexin V binding buffer 

(BioLegend). Next, they were treated with Annexin V Alexa 
Fluor 647 (BioLegend, Inc.) for 15 min at 4℃ in the dark. 
The propidium iodide (PI; Sigma- Aldrich; Merck Millipore) 
was added to the cells and analyzed by flow cytometry 
immediately.

2.11 | ELISA

Levels of CCL4 and CXCL13 in supernatants of transfected 
osteosarcoma cells were measured using the ELISA kit 
(Elabscience) according to the manufacturer's instructions. 
Absorbance was measured at 450  nm with a microplate 
reader (ELx800, Bio- Tek).

2.12 | Signaling and metabolic pathways 
associated with the DEGs

Gene ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis were per-
formed using the “Clusterprofiler” package in R software.24 
The protein– protein interaction (PPI) network related to the 
DEGs was constructed using STRING (https://strin g- db.
org/). The significance of interaction scores was set at 0.9.25 
Hub genes were selected based on p < 0.05 and q < 0.05. The 
analysis was performed using in Cytoscape software.

2.13 | Construction of prediction model

A prognostic prediction model (adj p < 0.05) was constructed 
using the DEGs between cold and hot tumors. Multivariate 
models of immune- related genes were constructed using the 
glmnet” package based on the most minor absolute shrinkage 
and selection operator (LASSO) Cox regression method.26,27 
The top most DEGs were selected based on lasso penalty Cox 
regression analysis. The prediction performance of the DEGs 
was assessed using the LASSO regression model. The inde-
pendence of the prognostic model was analyzed using mul-
tivariate cox regression analysis. The accuracy of the gene 
model was assessed based on the area under the ROC curve 
(AUC).

2.14 | Validation of the predictive model

The performance of the prediction model composed of 11 
hub genes was validated in an external gene expression data-
set of 429 osteosarcoma patients.28 Patients were divided into 
high and low- risk groups based on the expression score of 
the 11 hub genes. Differences in the OS of patients in the two 
groups of patients were analyzed using the R package.

https://string-db.org/
https://string-db.org/
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2.15 | Statistical analysis

All analyses were performed using R version 3.6.3. Differences 
in the infiltration of immune cells between hot and cold tu-
mors were analyzed using Wilcox Test, whereas differences 
in immune scores, transformation scores, and tumor purity 
among the four osteosarcoma clusters were analyzed using 
ANOVA. Statistical significance was set at p < 0.05.

3 |  RESULTS

3.1 | Infiltration of immune cells in 
osteosarcoma

Analysis using CIBERSORT, MCP- counter, ssGSEA, and 
Xcell showed higher infiltration of Memory- B cells, activated 
B cells, and activated CD8+ T cells in TME in male osteo-
sarcoma patients compared with female patients. Monocytes 
and CD56+ dim natural killer (NK) cells were more abundant 
in osteosarcoma tissues of male patients showing the impor-
tance of innate immunity in osteosarcoma. This finding par-
tially explains the difference in efficacy of immunotherapy 
between male and female osteosarcoma patients (Figure 2A– 
D). The synergy of multiple cells results in immune infiltra-
tion in the tumor microenvironment. Further analyses showed 
significant correlations between infiltration levels of several 
immune cells. These associations are presented in Figure 
S1A– D. Notably, a significant positive correlation was ob-
served between infiltration of activated CD8+ T cells and 
activated B cells as well as effector memory CD8+ T cells, 
implying that these cells exhibit a synergistic anti- tumor ef-
fect. In addition, myeloid- derived suppressor cells (MDSC) 
expression was positively correlated with regulatory T cells 
(Tregs), activated CD8+ T cells, effector memory CD8+ T 
cells, type 1 T helper cell, and activated dendritic cells. This 
is probably because the immunosuppressive tumor activities 
are only induced upon the activation of the immune system.

3.2 | Clustering of osteosarcoma patients 
based on the immune infiltration profile

Osteosarcoma patients were grouped into further immune in-
filtration clusters based on ssGSEA results. Cumulative dis-
tribution function (CDF) plots for the infiltration of immune 
cells were generated (Figure 3A and B). Four subgroups were 
identified. A heat map was generated to show the distribu-
tion of various immune cells in osteosarcoma tissues of pa-
tients in the four groups (Figure 3C). Further analyses were 
performed to explore differences between innate and adap-
tive immunity, TP, and SSs. The findings showed a gradual 
increase in infiltration of tumor cells in tumor tissues from 

clusters 1 to 4. Tumor purity was lowest in tissues in cluster 
4 compared with the other clusters. Notably, cluster 4 tissues 
exhibited the highest ISs and SSs.

3.3 | Immune score and expression of 
immune- related genes between clusters

TP, ISs, and SSs of the four osteosarcoma sub- groups were 
determined based on immune cell infiltration (Figure  4A 
and B). Cluster 4  showed the highest ISs and SSs. These 
findings indicate that ISs and SSs can be used to reflect 
the cancer subtype. Box plots showing the relationship be-
tween expression of immune checkpoints (CD226, CD274, 
CD276, CD40, CTLA4, HAVCR2, LAG3, PDCD1), com-
mon antigen- presenting molecules (B2 M, HLA- A, HLA- B, 
HLA- C, HLA- DPA1, HLA- DQA1, TAP1, TAP2), cytokines 
(GZMB, GZMH, IFNG, IL2, PRF1, TNF), and chemokines 
(CCL4, CCL5, CXCL10, CXCL13, CXCL9) were generated 
(Figure 4C– F). All these molecules were over- expressed in 
cluster 4 tissues compared with the other clusters. Therefore, 
specific immune infiltrates in cluster 4 tissues were further 
analyzed and compared with those of the other clusters. 
Cluster 4 tissues showed low expression levels of CD276 
compared with the expression levels in tissues of clusters 2 
and 3. This finding implies that CD276 is a potential thera-
peutic target for osteosarcoma immunotherapy (Figure 4C).

3.4 | Survival analysis among 
pathological subgroups

Osteosarcoma exhibits several pathological subtypes in-
cluding leiomyosarcoma (LMS), myxofibrosarcoma (MF), 
undifferentiated pleomorphic sarcoma (MFH), and undif-
ferentiated pleomorphic sarcoma (UPS). The distribution of 
each pathological subtype in the four subgroups was explored 
(Figure  5A– D). Cluster 1 mainly comprises the non- major 
pathological subtypes. Cluster 4 mainly comprised UPS and 
MFHs compared with the other clusters. Furthermore, pa-
tients in cluster 4 exhibited longer OS (p = 0.17, p = 0.23) 
compared with those in clusters 1– 3 (Figure 5E and F).

3.5 | Survival analysis of patients with 
cold and hot tumors

Cluster 4 tissues showed higher immune score and immune 
gene expression compared with the other clusters. In addi-
tion, patients in cluster 4 displayed better prognosis. For fur-
ther analysis, cluster 4 was defined as hot tumors, whereas 
the others (cluster1- 3) were defined as cold tumors. Analyses 
showed that hot tumors were associated with favorable 
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clinical outcome (Figure 6A and B); however, the difference 
was insignificant. This can be attributed to the few samples 
used for the hot tumors. The difference in gene expression be-
tween cold and hot tumors was presented as volcano and heat 
maps (Figure 6C and D). Analysis showed a total of 818 dif-
ferentially upregulated and 1054 differentially downregulated 
genes between hot and cold tumors. The top 6 most upregu-
lated genes in the cold tumor tissues are shown in Table 1.

3.6 | NPTX2- augmented 
immunosuppression in the osteosarcoma tumor 
microenvironment

NPTX2 was the most dysregulated gene, therefore, subse-
quent experiments focused on several aspects of this gene. 

Analysis showed that the expression of NPTX2 genes was 
negatively correlated with the expression of CD8A and cel-
lular immune killer molecules (GZMB, IFNG) (Figure 7A– 
C). To further explore the role of NPTX2 in osteosarcoma, 
siRNA was used to knockdown NPTX2 in osteosarcoma 
cell lines, HOS, and SW1353. Knockdown efficiency was 
confirmed by qPCR analysis (Figure  7D). Analysis was 
performed to explore if NPTX2 affects the proliferation 
and apoptosis of osteosarcoma cells. CCK8 assay showed 
that the knockdown of NPTX2 inhibited the growth of HOS 
and SW1353 cells (Figure 7E and F). In addition, NPTX2 
knockdown significantly increased the apoptosis rate in os-
teosarcoma cells (Figure 7G and H). To explore the mecha-
nisms of NPTX2 underlying the inhibition of CD8+ T cells 
recruitment, the expression levels of chemokines that could 
potentially recruit T cells, including CCL4, CCL5, CXCL9, 

F I G U R E  2  The infiltration profile of different immune cells in TME for men and women with osteosarcoma. The analysis was performed 
using (A) CIBERSORT, (B) MCP- counter, (C) ssGSEA, and (D) Xcell computational method
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CXCL10, and CXCL13 in NPTX2- siRNA and control cells 
were determined. The results showed an increase in expres-
sion levels of CCL4 and CXCL13 in NPTX2- siRNA cells 
compared with the levels in the control group (Figure 7I and 
J). Further, the level of CCL4 and CXCL13 was explored 
using ELISA. The results showed that the level of CCL4 
was higher in NPTX2- siRNA cells, indicating that NPTX2 
inhibits CCL4 production (Figure 7K and L). Notably, the 
local expression of CCL4 in tumor lesions was negatively 
correlated with the expression of NPTX2 in the TCGA data-
sets and in osteosarcoma patient samples (Figure  7M and 
N). In addition, a positive correlation was observed between 
the expression level of CCL4 and expression level of CD8A 
(Figure 7O and P). These findings indicate that NPTX2 in-
hibits CCL4 secretion in osteosarcoma cells, which can fur-
ther affect the recruitment of CD8+ T cells into the tumor 
microenvironment. This finding implies that NPTX2 pro-
motes osteosarcoma development by suppressing anti- tumor 
responses.

3.7 | Protein interaction and pathways 
associated with DEGs

GO analyses showed that downregulated DEGs between 
cold and hot tumors were mainly involved in the regula-
tion of biological process (BP) and expression of cellular 
components (CC) such as morphogenesis, neural differen-
tiation, and development of adherens junction. Moreover, 
upregulated DEGs were mainly implicated in the regula-
tion of immune responses such as T cell activation and 
regulation of leukocytes (Figure S2A– D). These find-
ings indicate that over- expressed genes are involved in 
the regulation of inflammatory responses against tumors, 
mainly T cell responses. KEGG analysis showed that up- 
regulated DEGs are implicated in cytokine−cytokine re-
ceptor interaction, viral protein– cytokine interaction, and 
cytokine receptor and hematopoietic signaling pathways 
(Figure S2E– H). This finding shows that upregulated 
genes play important roles in immune response in hot 

F I G U R E  3  Consistent clustering 
diagram of immune cells in different 
clusters. A heatmap showing the distribution 
of immune genes (A), and four subgroups 
of CDF (B). (C) A heatmap showing the 
infiltration level of immune cells in the four 
osteosarcoma subgroups. The clusters were 
generated based on TP, ISs, and SSs
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tumors. A PPI network of proteins regulated by DEGs in 
cold and hot tumors was constructed (Figure 8A and B). 
The network shows protein interactions regulated by 34 
upregulated and 83 downregulated DEGs, respectively. 

The PPI network showed extensive interactions between 
stromal signature and immune signature of DEGs, which 
may be related to the high immune infiltration of hot 
tumors.

F I G U R E  4  Box plot displaying the expression pattern of immune- related genes between osteosarcoma subgroups. (A and B) ISs and SSs 
for the four osteosarcoma clusters. Compared with the other three clusters, cluster 4 had a higher immune score. (C– F) The expression levels of 
multiple immune genes among the four clusters. *, p < 0.05. **, p < 0.01. ***, p < 0.001. ****, p < 0.0001
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3.8 | Prognosis predictive value of the 
hub genes

LASSO analysis of 34  most upregulated and 83 downreg-
ulated DEGs was performed before deriving the predic-
tive model (Figure S3A). LASSO analysis showed 11 hub 
genes highly correlated with OS of osteosarcoma patients. 
The risk score for osteosarcoma patients and its relationship 
with OS is shown in Figure S2B and C. Prognostic value of 
the hub genes was then evaluated. Osteosarcoma patients 
were grouped into high and low- risk groups based on the 
risk scores generated using the model. The survival curve 
of the two groups of patients based on risk scores is shown 
in Figure  9B. A low score was correlated with better OS 
(p < 0.001). The accuracy of the model for the prognosis of 
osteosarcoma is presented in Figure 9A. The area under ROC 
curve (AUC) for the 1, 3, and 5- year OS of osteosarcoma 
patients was 0.95 (Figure 9C), implying that the model was 
accurate in predicting OS.

3.9 | Validation of the predictive 
value of the model

Risk scores for osteosarcomas were calculated using the 
11 selected hub genes. Multivariate COX regression analysis 
was performed for the effect of patient and disease factors 

on the overall survival (OS) of individuals with osteosar-
coma (Figure 10A). The factors in multivariate COX regres-
sion analysis included gender, age, tumor metastasis, depth, 
length, width, and risk Score. The findings showed that me-
tastasis (p = 0.007) and risk score (p = 0.007) were signifi-
cantly correlated with OS.AUC for sensitivity and specificity 
of the model are shown in Figure 10B. AUCs for gender, age, 
metastatic, depth, length, width, and risk score were 0.528, 
0.575, 0.744, 0.584, 0.792, and 0.978, respectively. The ef-
ficacy of the 11- gene model was validated using external 
clinical and RNA- seq data of 298 patients with metastatic 
urothelial cancer who received anti- PD- L1 therapy (ate-
zolizumab).28 Patients were divided into high and low- risk 
groups based on the risk scores of the 11 hub genes before 
survival analyses (Figure 10C). Analysis showed that low- 
risk group patients exhibited better OS compared with the 
high- risk group patients (p < 0.0001). These findings show 
that the 11- gene risk Score model is accurate in predicting the 
prognosis of osteosarcoma patients.

4 |  DISCUSSION

Osteosarcoma is the most prevalent primary bone can-
cer with a detrimental impact on the life of several peo-
ple. Although surgery and adjuvant chemotherapy are the 
mainstream treatment methods for cancer, immunotherapy 

F I G U R E  5  Distribution of the main pathological osteosarcoma subtypes in the four osteosarcoma clusters. (A– D) The major pathological 
subtypes including Leiomyosarcoma (LMS), Myxofibrosarcoma (MF), undifferentiated pleomorphic sarcoma (MFH), and Undifferentiated 
Pleomorphic Sarcoma (UPS) in the four clusters. (E and F) The survival rate of patients in different subtypes
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has become a new treatment modality for numerous solid 
tumors. However, immunotherapy against osteosarcoma is 
yet to be developed. Herein, we analyzed RNA- sequences 
of osteosarcoma tissues in the TCGA database and revealed 
the hub genes associated with infiltration of immune cells 
in different types of osteosarcoma. The findings provide a 

theoretical foundation for the development of immunother-
apy for osteosarcoma.

Although immunotherapy has revolutionized cancer treat-
ment, this approach is only infective in patients with high in-
filtration of immune cells and molecules in TME. Compelling 
evidence indicates that tumor- infiltrating lymphocytes (TILs) 

F I G U R E  6  Survival rate of patients 
with cold and hot tumors. (A and B) 
Survival rate of hot and cold tumors. (C) A 
heat map and (D) volcano map of the DEGs 
between hot and cold tumors. The grey line 
represents normal gene expression, green 
line represents down- regulated expression 
whereas red line represents up- regulated 
genes, both for heat and volcano plots

Gene symbol
|Log 
FC| p value Function

NPTX2 2.42 0.00049 Involved in excitatory synapse formation

CA9 2.28 0.00157 Involved in various biological processes

RASL11B 2.26 0.00045 Includes GTP binding and ferrous iron 
transmembrane transporter activity

ACAN 2.13 0.00069 Includes calcium ion 
binding and extracellular matrix 
structural constituent

SEZ6L2 2.12 0.00024 Contributes to specialized endoplasmic 
reticulum functions in neurons

PTN 2.07 0.00200 Involved in cell growth, cell migration, 
angiogenesis, and tumorigenesis

T A B L E  1  The top 6 up- regulated genes 
in cold tumors

F I G U R E  7  Validation of NPTX2 function in osteosarcoma. (A– C) Association of NPTX2 mRNA with CD8A, IFNG, and GZMB expression 
in osteosarcoma tissues (n = 35). (D) The knockdown efficacy of NPTX2 in HOS and SW1353 cells as determined by qPCR. (E and F) Cell 
proliferation was measured with the CCK8 assays in HOS and SW1353 cells transfected with siRNAs or NC. (G and H) Apoptosis of HOS cells 
and SW1353 cells after transfection with siRNAs or NC was detected by flow cytometric assay. (I and J) The expression of CCL4, CCL5, CXCL9, 
CXCL10, and CXCL13 as measured with qPCR in HOS- NPTX2- NC and HOS- NPTX2- siRNAs cells, or SW1353- NPTX2- NC and SW1353- 
NPTX2- siRNAs cells. (K and L) The expression of CCL4, and CXCL13 as quantified with ELISA assay. (M and N) Association of NPTX2 mRNA 
with CCL4 expression in the TCGA datasets and in osteosarcoma tissues from our patients (n = 35). (O and P) Association of CCL4 mRNA with 
CD8A expression in the TCGA datasets and osteosarcoma tissues from our patients (n = 35)
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in TME impact the efficacy of immunotherapy 29 for glio-
blastoma multiforme,30 breast cancer,31 and lung cancer.32 
Cancers can be classified as cold and hot tumors according 

to immune TME. Particularly, hot or inflammatory tumors 
are characterized by high infiltration of leukocytes, including 
CD8+ T cells.15

F I G U R E  8  A PPI network of the DEGs between cold and hot tumors. (A) Down- regulated and (B) up- regulated DEGs between cold and hot 
tumors. (PPI, Protein– Protein Interaction; DEGs, Differentially expressed genes)
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Moreover, a previous study found that the efficacy of can-
cer immunotherapies differs between men and women,33,34 
which concur with our findings. Male osteosarcoma patients 
display higher infiltration of memory and activated B cells, 
and activated CD8+ T cells relative to female counterparts. 
Besides, men have more monocytes and CD56+ bright nat-
ural killer (NK) cells than women, which mediates innate 
response against osteosarcoma. This potentially justifies the 
difference in osteosarcoma immune response between men 
and women. Herein, we revealed that the expression of acti-
vated CD8+ T cells in osteosarcoma patients was positively 
correlated with that of activated B cells and memory CD8+ 
T cells. The anti- tumor effect of B cells in osteosarcoma is 
elusive; however, B cells influence ICB treatment in mela-
noma through the alteration of the activation and functioning 
of CD8+ T cells.35

In this study, osteosarcoma patients were classified 
into several clusters based on immune infiltration. Patients 
with greater immune response exhibited better OS. Cluster 
4 tumors demonstrated similar properties as hot tumors, 
whereas the characteristics of clusters 1– 3 tumors were 
comparable to those of cold tumors. NPTX2 expression 

correlated with that of CD8A. NPTX2 is a member of the 
neuronal pentraxin family 36 and is strongly expressed in 
tissues of numerous cancer types, including malignant gli-
omas, lung cancer, and pancreatic cancer.37– 39 However, 
NPTX2 expression in osteosarcoma has not been reported. 
We found that NPTX2 was the most dysregulated protein 
in cold tumors. Also, NPTX2 expression was negatively 
correlated with CD8A, GZMB, and IFNG. Emerging evi-
dence suggests that CCL4 potentially drives the recruitment 
of CD8+ T cells.40– 42 Additionally, we found that the level 
of CCL4 was elevated via siRNA- induced NPTX2 silenc-
ing. In tumor lesions, CCL4 expression was negatively cor-
related with the expression of the NPTX2, which implied 
that NPTX2 potentially participates in immunoregulation in 
the tumor microenvironment. The knockdown of NPTX2 in 
HOS and SW1353 cells reduced cell proliferation, enhanced 
cell apoptosis, which demonstrates that NPTX2 may pro-
mote osteosarcoma progression. These findings suggest that 
NPTX2 can promote tumorigenesis and reduce the secretion 
of CCL4 in osteosarcoma tumor cells. Therefore, targeting 
NPTX2 may offer a novel approach for the immunothera-
peutic management of osteosarcoma.

F I G U R E  9  Hub genes for the 
osteosarcoma prognostic model. (A) 
Multivariate cox regression analysis of hub 
genes. (B) Kaplan– Meier curves showing 
the OS of patients with high and low 
prognostic scores. (C) The time- dependent 
ROC curves displaying the prognostic 
prediction of the hub genes model
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An accurate prognosis prediction model based on 11 
DEGs (MYCL, NDRG1, IFNLR1, C1GALT1C1L, ATP6V1G3, 
B3GALT4, MGAT1, PFN2, IL23A, ABCA7, and MAN2B1) 
between hot and cold osteosarcomas was constructed and 
validated. MYCL is a promising treatment target for lung 
cancers.43 NDRG1, a downstream regulatory gene of N- myc, 
inhibits metastasis, and recurrence of tumors such as gastric 
cancer.44 Over- expression of B7- H3 in colon cancer upregu-
lates the B3GALT4 expression level. Therefore, B3GALT4 is 
a potential prognostic and treatment target for colon cancer.45 
An in vitro study revealed that the overexpression of MGAT1 

enhanced the proliferation and invasiveness of hepatocarci-
noma cell lines.46 Profilin 2 (PFN2) binds and regulates the 
polymerization of actin.47 Immunotherapy has been shown 
to be an effective treatment for melanomas,48 non- small cell 
lung cancer,49 bladder cancer,50 and several other cancers. 
PD- L1 is an effective immunotherapy against numerous tu-
mors that display immune infiltration.51 Using patients un-
dergoing PD- L1 therapy, we validated the accuracy of our 
model in predicting the prognosis of osteosarcoma patients. 
Despite these findings, this study is limited by the fact that 
the constructed model was only validated using one external 

F I G U R E  1 0  Relationship between clinical features and prognosis of osteosarcoma. (A) Multivariate cox regression analysis results indicating 
the relationship between metastasis, risk score, and OS. (B) The ROC showing the prognostic accuracy of the 11- gene model across several cancer 
and disease factors (gender, across age, in metastatic, and non- metastatic tumors as well as depth, length, and width). (C) The predictive accuracy 
of the 11- gene risk score model in predicting immunotherapy response. The low- risk group had better OS than the high- risk group (p < 0.0001)
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dataset with limited data. Second, we did not assess the util-
ity of the model in osteosarcoma patients receiving different 
therapies.

5 |  CONCLUSION

In summary, this study performed a comprehensive analysis 
of immune infiltrating cells in osteosarcoma. Upregulation 
of NPTX2 in cold tumor negatively correlated with the ex-
pression of CD8A, GZMB, and IFNG, and knockdown of 
NPTX2 increased the production of CCL4. In addition, in 
vitro experiments showed that NPTX2 expression influenced 
the biological behaviors of osteosarcoma cells. This suggests 
that NPTX2 disrupts immune response against osteosarcoma. 
Accordingly, NPTX2 is a potential immunotherapeutic target 
for osteosarcoma. Moreover, the 11 hub gene model can ac-
curately predict the prognosis of osteosarcoma in patients 
undergoing immunotherapy.

ETHICS STATEMENT
The protocol for this study was approved by the Ethics 
Committee of the First Affiliated Hospital of Zhengzhou 
University (2021- KY- 0035). All participants consented to 
participate in this study. The research was conducted in line 
with the institutional guidelines.

ACKNOWLEDGMENTS
We thank the TCGA program for the RNA- sequence and 
clinical data of patients with osteosarcoma.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The data used in this study are available in the TCGA (http://
tcga.cancer.gov/datap ortal) and UCSCXena (https://xenab 
rowser.net/) portals.

ORCID
Fang- Fang Li   https://orcid.org/0000-0002-1018-4638 

REFERENCES
 1. Group EESNW. Bone sarcomas. ESMO Clinical Practice 

Guidelines for diagnosis, treatment and follow- up. Ann Oncol. 
2012;23(Suppl 7):vii100- vii109.

 2. Kong C, Hansen MF. Biomarkers in osteosarcoma. Expert Opin 
Med Diagn. 2009;3(1):13- 23.

 3. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence 
and survival rates from 1973 to 2004: data from the sur-
veillance, epidemiology, and end results program. Cancer. 
2009;115(7):1531- 1543.

 4. Link MP, Goorin AM, Horowitz M, et al. Adjuvant chemother-
apy of high- grade osteosarcoma of the extremity. Updated results 

of the Multi- Institutional Osteosarcoma Study. Clin Orthop Relat 
Res. 1991;(270):8- 14.

 5. Meyers PA, Heller G, Healey JH, et al. Osteogenic sarcoma with 
clinically detectable metastasis at initial presentation. J Clin 
Oncol. 1993;11(3):449- 453.

 6. Kager L, Zoubek A, Pötschger U, et al. Primary metastatic osteo-
sarcoma: presentation and outcome of patients treated on neoad-
juvant Cooperative Osteosarcoma Study Group protocols. J Clin 
Oncol. 2003;21(10):2011- 2018.

 7. Maccarty WC. Longevity in cancer: a study of 293 cases. Ann 
Surg. 1922;76(1):9- 12.

 8. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel 
L. Targeting the tumor microenvironment: removing obstruction 
to anticancer immune responses and immunotherapy. Ann Oncol. 
2016;27(8):1482- 1492.

 9. Roma- Rodrigues C, Mendes R, Baptista PV, Fernandes AR. 
Targeting tumor microenvironment for cancer therapy. Int J Mol 
Sci. 2019;20(4).

 10. Newman AM, Liu CL, Green MR, et al. Robust enumeration 
of cell subsets from tissue expression profiles. Nat Methods. 
2015;12(5):453- 457.

 11. Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interfer-
ence reveals that oncogenic KRAS- driven cancers require TBK1. 
Nature. 2009;462(7269):108- 112.

 12. Becht E, Giraldo NA, Lacroix L, et al. Estimating the population 
abundance of tissue- infiltrating immune and stromal cell popula-
tions using gene expression. Genome Biol. 2016;17(1):218.

 13. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cel-
lular heterogeneity landscape. Genome Biol. 2017;18(1):220.

 14. Husby G, Hoagland PM, Strickland RG, Williams RC Jr. Tissue 
T and B cell infiltration of primary and metastatic cancer. J Clin 
Invest. 1976;57(6):1471- 1482.

 15. Sharma P, Allison JP. The future of immune checkpoint therapy. 
Science. 2015;348(6230):56- 61.

 16. Harlin H, Meng Y, Peterson AC, et al. Chemokine expression in 
melanoma metastases associated with CD8+ T- cell recruitment. 
Cancer Res. 2009;69(7):3077- 3085.

 17. Kraman M, Bambrough PJ, Arnold JN, et al. Suppression of anti-
tumor immunity by stromal cells expressing fibroblast activation 
protein- alpha. Science. 2010;330(6005):827- 830.

 18. Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome 
Atlas (TCGA): an immeasurable source of knowledge. Contemp 
Oncol (Pozn). 2015;19(1A):A68- A77.

 19. Subramanian A, Tamayo P, Mootha VK, et al. Gene set en-
richment analysis: a knowledge- based approach for interpret-
ing genome- wide expression profiles. Proc Natl Acad Sci. 
2005;102(43):15545- 15550.

 20. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class dis-
covery tool with confidence assessments and item tracking. 
Bioinformatics. 2010;26(12):1572- 15733.

 21. Antoch MP, Wrobel M, Kuropatwinski KK, et al. Physiological 
frailty index (PFI): quantitative in- life estimate of individual bio-
logical age in mice. Aging (Albany NY). 2017;9(3):615- 626.

 22. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The 
sva package for removing batch effects and other unwanted 
variation in high- throughput experiments. Bioinformatics. 
2012;28(6):882- 883.

 23. Ritchie ME, Phipson B, Wu DI, et al. limma powers differential 
expression analyses for RNA- sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47.

http://tcga.cancer.gov/dataportal
http://tcga.cancer.gov/dataportal
https://xenabrowser.net/
https://xenabrowser.net/
https://orcid.org/0000-0002-1018-4638
https://orcid.org/0000-0002-1018-4638


   | 5711YANG et Al.

 24. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package 
for comparing biological themes among gene clusters. OMICS. 
2012;16(5):284- 287.

 25. Bader GD, Hogue CWV. An automated method for finding mo-
lecular complexes in large protein interaction networks. BMC 
Bioinformatics. 2003;4(1):2.

 26. Friedman J, Hastie T, Tibshirani R. Regularization paths for 
generalized linear models via coordinate descent. J Stat Softw. 
2010;33(1):1- 22.

 27. Sauerbrei W, Royston P, Binder H. Selection of important vari-
ables and determination of functional form for continuous pre-
dictors in multivariable model building. Stat Med. 2007;26(30): 
5512- 5528.

 28. Mariathasan S, Turley SJ, Nickles D, et al. TGFbeta attenuates tu-
mour response to PD- L1 blockade by contributing to exclusion of 
T cells. Nature. 2018;554(7693):544- 548.

 29. Chen DS, Mellman I. Oncology meets immunology: the cancer- 
immunity cycle. Immunity. 2013;39(1):1- 10.

 30. Sokratous G, Polyzoidis S, Ashkan K. Immune infiltration of tumor 
microenvironment following immunotherapy for glioblastoma 
multiforme. Hum Vaccin Immunother. 2017;13(11):2575- 2582.

 31. Burugu S, Asleh- Aburaya K, Nielsen TO. Immune infiltrates in 
the breast cancer microenvironment: detection, characterization 
and clinical implication. Breast Cancer. 2017;24(1):3- 15.

 32. Liu X, Wu S, Yang Y, Zhao M, Zhu G, Hou Z. The prognostic 
landscape of tumor- infiltrating immune cell and immunomodula-
tors in lung cancer. Biomed Pharmacother. 2017;95:55- 61.

 33. Wang S, Cowley LA, Liu XS. Sex differences in cancer immuno-
therapy efficacy, biomarkers, and therapeutic strategy. Molecules. 
2019;24(18).

 34. Ye Y, Jing Y, Li L, et al. Sex- associated molecular differences for 
cancer immunotherapy. Nat Commun. 2020;11(1):1779.

 35. Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lym-
phoid structures promote immunotherapy response. Nature. 
2020;577(7791):549- 555.

 36. Hsu YC, Perin MS. Human neuronal pentraxin II (NPTX2): 
conservation, genomic structure, and chromosomal localization. 
Genomics. 1995;28(2):220- 227.

 37. Carlson MRJ, Pope WB, Horvath S, et al. Relationship between 
survival and edema in malignant gliomas: role of vascular endo-
thelial growth factor and neuronal pentraxin 2. Clin Cancer Res. 
2007;13(9):2592- 2598.

 38. Poulsen TT, Pedersen N, Perin MS, Hansen CK, Poulsen HS. 
Specific sensitivity of small cell lung cancer cell lines to the snake 
venom toxin taipoxin. Lung Cancer. 2005;50(3):329- 337.

 39. Sato N, Fukushima N, Chang R, Matsubayashi H, Goggins M. 
Differential and epigenetic gene expression profiling identifies 
frequent disruption of the RELN pathway in pancreatic cancers. 
Gastroenterology. 2006;130(2):548- 565.

 40. Castellino F, Germain RN. Chemokine- guided CD4+ T cell help 
enhances generation of IL- 6RalphahighIL- 7Ralpha high premem-
ory CD8+ T cells. J Immunol. 2007;178(2):778- 787.

 41. Liu JY, Li F, Wang LP, et al. CTL-  vs Treg lymphocyte- attracting 
chemokines, CCL4 and CCL20, are strong reciprocal predictive 
markers for survival of patients with oesophageal squamous cell 
carcinoma. Br J Cancer. 2015;113(5):747- 755.

 42. Karapetsas A, Tokamani M, Evangelou C, Sandaltzopoulos R. 
The homeodomain transcription factor MEIS1 triggers chemokine 
expression and is involved in CD8+ T- lymphocyte infiltration in 
early stage ovarian cancer. Mol Carcinog. 2018;57(9):1251- 1263.

 43. Chalishazar MD, Wait SJ, Huang F, et al. MYC- driven Small- Cell 
lung cancer is metabolically distinct and vulnerable to arginine de-
pletion. Clin Cancer Res. 2019;25(16):5107- 5121.

 44. Dong X, Hong Y, Sun H, Chen C, Zhao X, Sun B. NDRG1 sup-
presses vasculogenic mimicry and tumor aggressiveness in gastric 
carcinoma. Oncol Lett. 2019;18(3):3003- 3016.

 45. Zhang T, Wang F, Wu J- Y, et al. Clinical correlation of B7– H3 
and B3GALT4 with the prognosis of colorectal cancer. World J 
Gastroenterol. 2018;24(31):3538- 3546.

 46. Akiva I, Birgul IN. MGAT1 is a novel transcriptional target of 
Wnt/beta- catenin signaling pathway. BMC Cancer. 2018;18(1):60.

 47. Cui XB, Zhang SM, Xu YX, et al. PFN2, a novel marker of unfavor-
able prognosis, is a potential therapeutic target involved in esopha-
geal squamous cell carcinoma. J Transl Med. 2016;14(1):137.

 48. Cuevas LM, Daud AI. Immunotherapy for melanoma. Semin 
Cutan Med Surg. 2018;37(2):127- 131.

 49. Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy 
in non- small cell lung cancer: facts and hopes. Clin Cancer Res. 
2019;25(15):4592- 4602.

 50. Vasekar M, Degraff D, Joshi M. Immunotherapy in bladder cancer. 
Curr Mol Pharmacol. 2016;9(3):242- 251.

 51. Oyer JL, Gitto SB, Altomare DA, Copik AJ. PD- L1 blockade 
enhances anti- tumor efficacy of NK cells. Oncoimmunology. 
2018;7(11):e1509819.

SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

How to cite this article: Yang H, Zhao L, Zhang Y, Li 
F- F. A comprehensive analysis of immune infiltration in 
the tumor microenvironment of osteosarcoma. Cancer 
Med. 2021;10:5696– 5711. https://doi.org/10.1002/
cam4.4117

https://doi.org/10.1002/cam4.4117
https://doi.org/10.1002/cam4.4117

