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Abstract
The genome-scale models of metabolic networks have been broadly applied in phenotype

prediction, evolutionary reconstruction, community functional analysis, and metabolic engi-

neering. Despite the development of tools that support individual steps along the modeling

procedure, it is still difficult to associate mathematical simulation results with the annotation

and biological interpretation of metabolic models. In order to solve this problem, here we

developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-

source software package that supports the integration of heterogeneous metadata in model

annotations and provides a user-friendly interface for the analysis of metabolic models.

PSAMM is independent of paid software environments like MATLAB, and all its dependen-

cies are freely available for academic users. Compared to existing tools, PSAMM signifi-

cantly reduced the running time of constraint-based analysis and enabled flexible settings

of simulation parameters using simple one-line commands. The integration of heteroge-

neous, model-specific annotation information in PSAMM is achieved with a novel format of

YAML-based model representation, which has several advantages, such as providing a

modular organization of model components and simulation settings, enabling model version

tracking, and permitting the integration of multiple simulation problems. PSAMM also

includes a number of quality checking procedures to examine stoichiometric balance and to

identify blocked reactions. Applying PSAMM to 57 models collected from current literature,

we demonstrated how the software can be used for managing and simulating metabolic

models. We identified a number of common inconsistencies in existing models and con-

structed an updated model repository to document the resolution of these inconsistencies.

Author Summary

The broad application of genome-scale metabolic modeling has made it a useful technique
for tackling fundamental questions in biological research and engineering. Today over 100
models have been constructed for organisms that carry out a diverse array of metabolic
activities spanning all three kingdoms of life. These models, however, have been curated
independently following different conventions. The maintenance of model consistency
has been challenging due to the lack of consensus in model representation and the absence
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of integrated modeling software for associating mathematical simulations with the annota-
tion and biological interpretation of metabolic models. To solve this problem, we devel-
oped a new software package, PSAMM, and a new model format that incorporates
heterogeneous, model-specific annotation information into modular representations of
model definitions and simulation settings. PSAMM provides significant advances in stan-
dardizing the workflow of model annotation and consistency checking. Compared to
existing tools, PSAMM supports more flexible configurations and is more efficient in run-
ning constraint-based simulations. All functions of PSAMM are freely available for aca-
demic users and can be downloaded from a public Git repository (https://zhanglab.github.
io/psamm/) under the GNU General Public License.

Introduction
The GEnome-scale Models (GEMs) of metabolic networks have broad applications in biologi-
cal research and engineering [1]. Models have been developed for organisms of all three king-
doms of life [2–5] and have been used to simulate a wide variety of metabolic processes, such
as photo- and chemo-autotrophic carbon fixation [6,7], fermentation [8], and the production
of specific organic compounds [9]. GEMs can be applied in theoretical research to predict gene
essentiality [10,11], simulate the thermo-tolerance of bacterial strains [12], and study the struc-
tural and functional evolution of metabolic networks [13]. They can also be used in practical
studies to identify drug targets [14,15], illustrate the mechanism of human diseases [16], and to
optimize the production of compounds of industrial significance [17–19]. By connecting
genome annotations with the mathematical simulation of reaction networks, GEMs are partic-
ularly applicable for integrating heterogeneous datasets from high-throughput studies [20],
such as the profiles of transcriptional regulation [21,22] and measurement of carbon isotope
labeling [23].

Specialized MATLAB toolboxes have been released over the past two decades to support the
mathematical simulations of metabolic networks. The COBRA Toolbox is a collection of
widely used, open source tools. It includes diverse implementations of constraint-based model-
ing algorithms and has attracted a large number of user contributions from the modeling com-
munity [24]. This toolbox, however, is restricted to the MATLAB environment and requires
users to maintain paid licenses fromMathWorks Inc. The COBRApy software is a more recent
implementation of the COBRA Toolbox functions using the Python programming language
and Jython, a Java implementation of Python [25]. Like the COBRA Toolbox, COBRApy is
released as a toolbox rather than a software package. Therefore, knowledge about the Python
programming language is required for users to efficiently set up operations in COBRApy.

Other tools have been developed to support the annotation and visualization of metabolic
networks. ModelSEED is a web-based platform that supports automated reconstruction of
metabolic models from genome annotations [26,27]. It links protein functions with an internal
reaction database and is associated with the SEED functional annotation database and the
RAST genome annotation pipeline [28]. In contrast to the COBRA Toolbox, this platform is
focused on the reconstruction instead of the mathematical simulation of GEMs. The automated
pipeline of ModelSEED permits direct construction of a draft model from genome annotation.
However, the draft model still requires extensive manual curations, and manually editing the
draft models is not currently supported [27]. The RAVEN Toolbox supports semi-automatic
reconstruction and visualization of genome-scale models [29]. It uses information from the
KEGG database [30] and, similar to the COBRA Toolbox, can only be applied under the
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MATLAB environment. Finally, Pathway Tools is another software package that supports
pathway annotation and visualization [31]. It uses pathway information from the MetaCyc
database [32] and has recently been extended to include functions for flux balance analysis.
Unlike the open source software mentioned above, Pathway Tools is released under a restricted
license agreement, but it is free to use for academic users.

Despite the technological advances in supporting individual steps of network reconstruction
and mathematical simulation, challenges remain in maintaining the quality of metabolic recon-
structions and in associating the representation of mathematical problems with the annotation
and biological interpretation of metabolic models. Human intervention and iterative manual
examinations are required in various steps, such as defining biomass functions, assigning reac-
tion directionality, establishing boundary conditions, and filling novel reaction gaps [26,33].
Frequently, these processes are carried out either manually or using customized tools that were
developed by individual model curators. However, due to the absence of standardized proce-
dures for quality checking and version tracking of iterative model annotations, the curation
and manual editing of metabolic models are prone to introducing inconsistencies [34]. These
inconsistencies may lead to false predictions of model viability, and as demonstrated in a recent
study, may hinder the evaluation of new modeling approaches [35–37].

Another problem that prevents the effective curation and consistency checking of GEMs is
the disassociations between mathematical and biological representations of model metadata.
Despite a broad adoption of the SBML format, it is not designed to incorporate detailed anno-
tations of the genes, reactions, compounds, and pathways. Two strategies have been imple-
mented to help address this limitation. The first is to use user-defined, model-specific or
toolbox-specific tags in SBML files (e.g. the<notes> tag in COBRA-compliant SBML format).
These tags are not part of the standard SBML specifications and are not recognized by the stan-
dardized SBML parsers (e.g. libSBML [38]). The second strategy employs tables of annotation
data. These tables are customized to represent specific models, but they are disconnected from
the simulation problems defined in SBML files, and an automated parsing of these tables is
impossible due to the lack of convention in table organizations. In either case, the mathematical
representation of simulation problems is separated from the biological annotation of model
components. As a result, the consistency between genome annotation and the definition of
simulation settings have to be maintained by individual model curators. This again is prone to
introducing misrepresentations in GEMs.

An additional disadvantage of the SBML format is the lack of modularity in network repre-
sentations. The SBML definition of GEMs is composed of two major lists: listOfSpecies, which
defines all of the metabolites in a GEM; and listOfReactions, which defines all of the reactions
and their simulation settings in a single modeling state, including flux bounds, flux values, and
objective coefficients. Since the definition of simulation settings interleaves with the definition
of static reaction features, SBML does not support reusing the static model definitions. Any-
time a new simulation is released on the same base model, information about the static features
of metabolites and reactions will need to be duplicated in a new SBML file. Hence, the SBML
format is not compatible with a modular organization of modeling components because it
mixes the static model properties with the dynamic simulation settings.

Here, we present a Portable System for the Analysis of Metabolic Models (PSAMM), an
open source software package that was implemented to support the iterative curation of GEMs
by connecting model annotations with mathematical simulations. A novel model format was
developed in PSAMM using the YAML language to integrate detailed annotations of model
components and to provide flexibilities in both the data format (i.e. support direct referencing
of annotation tables or the YAML-based list format) and the data content (i.e. support parsing
of both standardized and model-specific data fields). The new YAML format assembles model
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definition and simulation settings into independent and reusable modules (S1 Text). By reduc-
ing the amount of characters used for data structure definition, it streamlines the content of the
real data and enables tracking and management of GEMs with conventional line-based version
control systems like Git [39]. Applying PSAMM, we constructed an updated repository of 57
published models using the modular representation of the YAML format, and we further dem-
onstrated the importance of model formatting and consistency checking through identifying
and correcting potential inconsistencies in existing GEMs.

Results

Comparison of PSAMM to Existing Tools
PSAMM was developed as an integrated software package that supports calling simulation
functions using simple one-line commands. This distinguishes PSAMM from existing meta-
bolic modeling toolboxes, which require the users to go through individual steps of model load-
ing, linear programming solver selection, model optimization, and simulation results mapping.
An example of PSAMM commands is given (S1 Fig), in which a thermodynamically con-
strained flux balance analysis (tFBA) was performed through a simple one-line command. The
result of the analysis contains metadata about the model name, model version, objective func-
tion, reaction fluxes, and reaction equations. In contrast, it takes three steps to set up a tFBA
problem in COBRA, and the output is presented in a complex data structure that is dissociated
from the biological interpretations of the model. The PSAMM implementations were also
much more efficient than the COBRA toolbox functions. While it took only 7.15 seconds to
solve a tFBA problem in PSAMM, the same process on the same model took 194.73 seconds in
COBRA.

A comparison of the functions in the PSAMM software package with the functions in the
COBRA and RAVEN toolboxes is provided in the S1 Table. Besides the availability of diverse
functions and implementations of model import/export, model checking, and constraint-based
analysis, a unique feature of PSAMM is the availability of easily accessible help information
that assists the users in selecting program functions and parameter values. This feature is
enabled because PSAMM integrates the various functions under a common framework of two
universal programs, psamm-model and psamm-import. The help information can be accessed
in PSAMM by adding the -h or --help option following any program functions listed in the S1
Table. In contrast, RAVEN and COBRA do not provide an integrated interface to the available
functions but instead require the users to know the names of individual functions in order to
retrieve help information. Moreover, to systematically evaluate the efficiency of PSAMM
implementations, we recorded the running time of common operations in PSAMM and
COBRA on the Escherichia colimodel iJO1366 [40] (Materials and Methods). The results sug-
gested that PSAMM is overall much more efficient than COBRA (Fig 1). For the computation-
ally intensive functions like flux variable analysis (FVA), robustness analysis (Robustness), and
thermodynamically constrained flux balance analysis (tFBA), PSAMM ranges from 9 to 25
times faster than implementations in the COBRA toolbox. For the FBA function, PSAMM
appears to have an overhead of about 3 seconds on top of the time required for the problem-
solving step (Fig 1 inset). This overhead is for the reading of YAML model files, which is also
included in calculating the running times of FVA, Robustness, and tFBA, but solving FBA
problem in PSAMM (0.03 seconds) is slightly more efficient than the same step in COBRA
(0.08 seconds). The running time for RAVEN was not plotted in Fig 1 because many of the
functions are unavailable in the RAVEN toolbox (S1 Table). A detailed record of the running
times for available functions in COBRA, RAVEN, and PSAMM is provided in the S2 Table.
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Overall, PSAMM is more efficient than the COBRA and RAVEN toolboxes in carrying out
constraint-based analysis of GEMs.

PSAMM Implementation
The PSAMM software package includes five main components: user interface, model input/
output, internal model representations, model checking/simulation, and linear programming
utilities (Fig 2). These components are interconnected with one another to form the internal
workflow of model importing and model optimizations in PSAMM. Below, we provided a
detailed description of these functions.

User interface. The user interface was implemented as two command-line programs that
provide entry points to PSAMM functions. The first program, named psamm-model, is the
main interface for model consistency checking, constraint-based simulation and automatic gap
analysis. The commands that can be specified with psamm-model encapsulate both commonly
used metabolic modeling procedures (e.g. fba, fva, and gapfill) and PSAMM-specific proce-
dures, such asmasscheck, fluxcheck, randomsparse, search, and console (Table 1 and S1 Table).
The second program, named psamm-import, facilitates the recognition and conversion of mul-
tiple GEM formats, including the SBML format that is most widely used as a convention for
model distributions in current literature, the Microsoft Excel format that is frequently used
to store the annotation of compound and reaction features, and the JSON format that is

Fig 1. Comparing the running time of different functions in PSAMM and COBRA. The running time for both the PSAMM overall function (blue) and the
PSAMM problem-solving steps (red) were calculated, and the running time for COBRA only included the problem-solving step (green). Each value
represents a median of seven simulation runs using the same specifications, and the error bars indicate the 25th and the 75th percentiles.

doi:10.1371/journal.pcbi.1004732.g001
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developed within the openCOBRA project. The psamm-import program converts the SBML,
Excel, and JSON files into a YAML-based format that was designed as a new convention in
PSAMM for integrating user-defined annotations with mathematical simulations of metabolic
models (S1 Text). The psamm-model and psamm-import programs interface directly with the
model input/output module, which permits the import of model files into internal model rep-
resentations and the export of model information into standard SBML, YAML, and Excel files.

Model input/output. The model input/output module includes functions for importing
model files in the SBML, Excel, JSON and YAML formats, and exporting models in the YAML,
Excel, and SBML formats. PSAMM supports importing both the standard SBML specifications
and the COBRA-compliant SBML format [24], and the parsing of model files was based on a
built-in SBML parser instead of relying on external dependencies like the libSBML [38]. This
reduction of external dependencies can simplify the installation process and hence increase the
portability of PSAMM. Moreover, the development of a built-in parser enables PSAMM to rec-
ognize model-specific data entries that are not part of the standard SBML specification. Using
the built-in parser, users can check if a model is strictly compliant with the SBML specifications
and import it by setting the sbml-strict option in the psamm-import program. The sbml-strict
option will only check for parameters defined in the standardized SBML specifications [41].

Fig 2. Overview of the internal workflow in PSAMM. The five main components include: (1) user interface, (2) model input/output, (3) model
representation, (4) linear programming utilities, and (5) model checking/simulation. Connections among these components form the internal workflow of
PSAMM.

doi:10.1371/journal.pcbi.1004732.g002
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However, to load constraint-based modeling parameters, such as the reaction bound parame-
ters defined in the COBRA-compliant format, the users can use the more flexible sbml option.
This later option is also extended to automatically resolve some common inconsistencies in
existing models, such as permitting decimal numbers in a SBML level that supports only inte-
gers in stoichiometry or recognizing a special suffix “_b” that indicates exchange compounds
(Table 2). When a potential inconsistency is resolved automatically, psamm-import will print a
warning message so that users can examine if the SBML parsing was performed correctly.

Besides SBML files, many GEMs were published in the format of Microsoft Excel tables that
contain the definition of compound and reaction features. However, so far no standard has
been specified for the Excel format. To incorporate these models, PSAMM provides a custom-
ized interface that enables importing of model-specific Excel tables and the Excel tables gener-
ated from automated model reconstruction pipeline in ModelSEED [26]. Additionally,
PSAMM supports the import of JSON models either from local files or from the BiGG database
[42]. The import functions for both JSON and Excel formats were implemented in the psamm-
import program, which converts models into the PSAMM-specific YAML format (S1 Text).

Internal model representations. The PSAMM internal model representations provide
three distinct data structures for the organization of model information. At the hub is a sparse
matrix, which stores a global mapping between compounds and reactions. The sparse matrix
can include information regarding stoichiometry, compound compartments, reaction revers-
ibility, and flux limits. It provides a central framework for the management and analysis of
metabolic models and can be queried into two data structures that support the implementation
of PSAMM functions. In the first data structure, a feature view can be created to incorporate
additional information about the model metadata, including compound features (e.g. formulas,
charges, etc.) and reaction features (e.g. names, subsystem classifications, equations, etc.). In
the second data structure, a matrix view can be initiated to represent a full-scale stoichiometric
matrix. The diverse data structures in PSAMM enables the integration of heterogeneous data
regarding the user-defined model annotations as well as the mathematical simulations of

Table 1. List of commands supported in the psamm-model program. Additional parameters can be specified for the commands, for example to select a
specific implementation among multiple algorithms, enable/disable thermodynamic constraints, or select linear programming solvers, etc. Details about
these parameters are available through the -h or --help options for each command.

Command Function

Model Consistency
Checking

masscheck Stoichiometric (mass) consistency check

fluxcheck Check for blocked reactions

formulacheck Chemical formula balance check

chargecheck Charge balance check

Constraint-based
Simulations

fba Flux balance analysis

fva Flux variability analysis

robustness Robustness analysis

randomsparse Find random minimal network

Gap Analysis gapfill Gap analysis using the GapFind and GapFill algorithms

fastgapfill Fast gap analysis using the fastGapFill algorithm

Model Interfacing search Looking up the detailed features of specific compounds or reactions.

console Opening an interactive Python or iPython session with the model loaded in memory. Providing a
programming interface for the customized inspection and analysis of GEMs.

sbmlexport Export the model to SBML format.

excelexport Export the model to Excel format.

doi:10.1371/journal.pcbi.1004732.t001
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GEMs. These internal model representations allow for the formulation of modeling problems
by interfacing with the linear programming (LP) utility and the model checking/simulation
modules.

Linear programming (LP) utilities. The LP utilities were implemented as an internal
component that supports the definition of LP problems and the parsing of LP solutions. Three
LP solvers are supported in the PSAMM utilities: the IBM ILOG Cplex Optimizer, the Gurobi
Optimizer, and the QSopt_ex Rational Solver (Materials and Methods). While Cplex and Gur-
obi provide approximated solutions for both LP and mixed integer LP (MILP) problems,
QSopt_ex computes exact solutions only for LP problems. The QSopt_ex Rational Solver is
supported because it has recently been suggested to provide a more accurate solution for con-
straint-based modeling problems [35]. Applying both the approximated solvers and the exact
solvers under the same framework of PSAMMmodel representations will enable a standard-
ized comparison of these two approaches. The LP utilities form a backend module in PSAMM
that communicates with the Application Programming Interface (API) of external solvers and
provides LP solutions to the model checking/simulation functions.

Model checking/simulation. The model checking/simulation module includes diverse
user functions for model consistency checking, constraint-based simulation, and gap analysis
(Fig 2). It was developed based on the internal feature representation of GEMs to support the
listing of simulation results along with the biological annotations. Thus, mathematical simula-
tion results can be analyzed under a user-friendly interface that permits the direct association
of the numeric values with the biologically meaningful representations of biochemical equa-
tions (S1 Fig).

The constraint-based simulation functions include flux balance analysis (FBA) [43,44], flux
variability analysis (FVA) [45], robustness analysis [46], and randomminimal network analysis
[47] (Table 1 and S1 Table). Each function was implemented to support two universal options:

Table 2. List of models that had inconsistencies in SBML syntax.

Model Organism Inconsistencies

AbyMBEL891 Acinetobacter baumannii Decimals in stoichiometric values is not supported in Level 1 SBML specification

SpoMBEL1693 Schizosaccharomyces
pombe

Decimals in stoichiometric values is not supported in Level 1 SBML specification

iJN746 Pseudomonas putida Undefined compound references in the biomass reaction

iNJ661m Mycobacterium tuberculosis COBRA-compliant, using a special suffix “_b” instead of defining “boundaryCondition” based on SBML
standard

iNJ661v Mycobacterium tuberculosis COBRA-compliant, using a special suffix “_b” instead of defining “boundaryCondition” based on SBML
standard

iSR432 Clostridium thermocellum COBRA-compliant, using a special suffix “_b” instead of defining “boundaryCondition” based on SBML
standard

iTZ479 Thermotoga maritima COBRA-compliant, using a special suffix “_b” instead of defining “boundaryCondition” based on SBML
standard

iTH366 Plasmodium falciparum COBRA-compliant, using a special suffix “_b” instead of defining “boundaryCondition” based on SBML
standard

iRC1080 Chlamydomonas reinhardtii Inconsistencies between reversibility and “LOWER_BOUND” settings

iRS1563 Zea mays Inconsistencies between reversibility and “LOWER_BOUND” settings

iRS1597 Arabidopsis thaliana Inconsistencies between reversibility and “LOWER_BOUND” settings

iRsp1095 Rhodobacter sphaeroides Nutrient not provided in the simulation environment

iMA871 Aspergillus Niger Accumulation of an artificial M_BIOMASS compound

iMA945 Salmonella enterica Mislabeling of compound compartments

iSyn731 Synechocystis sp. PCC 6803 Potential inconsistencies in model conversions

doi:10.1371/journal.pcbi.1004732.t002
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--loop-removal, which determines whether thermodynamic constraints should be applied to
the LP problem, and --solver, which allows the users to select an LP solver while running the
simulation problem. The random minimal network analysis (randomsparse) is a unique func-
tion in PSAMM that is not available in any existing toolboxes. Each round of the randomsparse
performs a series of random gene deletions, which result in a minimal metabolic network
where all genes are essential for biomass production. The median running time for 100 rounds
of randomsparse analysis on iJO1366 [40] is 1,664 seconds (S2 Table). In case gene association
information is not available, the command can also be applied directly to reactions, which
results in a minimal network where all reactions are essential. The median running time for
100 rounds of the reaction-based randomsparse analysis on iJO1366 is 3,524 seconds (S2
Table). Hence, each round of the successive random deletions takes less than or close to 30
seconds.

The consistency checking and gap analysis functions were set up to assist with the model
curation and to examine stoichiometric, flux, charge, and formula consistencies of individual
reactions (S1 Table). While the stoichiometric check can provide a global estimation of whether
all reactions in a model are mass balanced (Materials and Methods), the charge and formula
checks can examine the compound element and charge balances in individual reactions and
can only be applied when the compound charge and formula is defined in the GEM. The flux
check function was implemented to identify reactions that are unable to carry a non-zero flux
under any modeling constraints. It can be used to reveal disconnected areas of the model and
to ensure unbiased interpretation of the model simulations (Materials and Methods). The gap
analysis functions were implemented based on two existing algorithms, GapFind/GapFill [48]
and fastGapFill [49]. Both functions can recommend a list of new reactions that should be
added into a given model. Depending on the scope of information included in the YAML reac-
tion database (S1 Text), the prediction of gap reactions may be based on a list of enzymatic
reactions in the broader reaction database, or artificial exchange reactions that point out the
missing links between gap compounds and the modeling environment.

The PSAMM YAML Format of Model Representation
A new model format was implemented in PSAMM based on YAML, a serialization language
that is designed to support both computational parsing and human readability of complex data
structures [50]. The YAML format has several new features that distinguish it from the SBML
format of constraint-based metabolic models. First, while SBML strictly couples the model defi-
nition with a single simulation condition, YAML allows the users to freely combine model defi-
nitions with simulation setups in a modular form. Hence, a model component can be reused in
multiple simulation setups simply by using the include function (Fig 3 and S1 Text). In con-
trast, to publish the simulation results of multiple modeling conditions in the SBML format,
one has to build duplicated instances of the entire model definition to introduce variability in
simulation setups. Second, while SBML is suboptimal in working with the widely-used version
control systems like Git [51], the YAML format is fully compatible and supports tracking of
model edits with these systems. This is because YAML, by applying line breaks and whitespaces
as meaningful structural information, can be tracked in a way similar to programming scripts
using the longest common sequence (LCS) algorithm that is commonly used by Git [52]. In
contrast, SBML does not have a convention of breaking lines, and therefore the LCS line-based
version tracking will have difficulties in pinpointing the exact location of changes in the SBML
files. Despite the development of new algorithms to support the comparison of SBML model
files, the efficient and reliable tracking of changes in the SBML format is still challenging
[34,51]. Third, while SBML relies on the verbose representation of markup tags, the YAML
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Fig 3. An illustration of the PSAMMYAML format. (a) This diagram shows an example of the YAMLmodel format, which includes a central model
definition (model.yaml) and multiple annotation files. Each box indicates a file with a possible filename indicated above the box, and the text within is a
snapshot of the file content. (b) An example showing how changes can be tracked in a PSAMMYAML file (biomass.yaml) using the Git version control
system in command line. The text highlighted in red indicates the stoichiometry of the compound arg-L in an old version of the biomass function, while the text
highlighted in green indicates the updated value in a new version of the model. Additional examples of applying Git version control on the YAML format are
provided in the supplemental materials (S2–S5 Texts).

doi:10.1371/journal.pcbi.1004732.g003
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format minimizes the amount of characters used for marking up the structure of the data to
streamline the integration of complex data (Fig 3 and S1 Text). Finally, while the parsing of
SBML files requires knowledge of predefined markup tags to capture specific data fields, the
parsing of YAML files can be achieved by the recognition of line-based data structure rather
than relying on the identification of specific markup tags. For example, some features like the
compound formula and reaction EC numbers are not an integral part of standardized SBML
specifications [41], so they will be invisible to standard SBML parsers (e.g. libSBML [38] or
JSBML [53]) even when they are included in a SBML file with user-defined markup tags. How-
ever, the same information can be easily represented in YAML files. A standard YAML parser
will have no problem recognizing user-defined, non-standard data domains and subsequently
integrate it into the presentation of metabolic models. Overall, the YAML format is an opti-
mized solution for connecting manual curation with the mathematical simulation of GEMs.

The PSAMM YAML-based representation of GEMs includes the model name, biomass
function, compound/reaction database(s), model reaction lists, reaction flux limits, and growth
media. A flexible infrastructure was designed that permits the integration of model definitions
either within a centralized file (e.g. model.yaml) or in additional files using the include function
(Fig 3a). In an example shown in Fig 3a, the reaction database was divided into multiple files
based on pathway classification, and both the YAML format (e.g. glycolysis.yaml and biomass.
yaml) and the tab-delimited table format (e.g. tca-cycle.tsv) were illustrated. Similarly, the com-
pound annotations can also be represented as YAML files (e.g. compound.yaml) or tab-delim-
ited tables. The reaction and compound files can be used to define a broader database of all
possible reactions with additional entries beyond the scope of a given model. For example,
when running the gapfill or fastgapfill functions, users may include a broader reaction database
that contains enzymatic reactions that can be potentially applied to close network gaps. In such
cases, the model file (e.g. model_rxn.tsv) is used to identify a subset of reactions that are
included in the model definition. The other reactions in the broader database will be ignored in
model simulations and will only be probed in gapfill or fastgapfill to predict potential gap filling
reactions. Finally, to define the constraints for metabolic simulations, the media file (e.g.
media.yaml) is used to identify the exchange reactions, and the limits file (e.g. limits.yaml) is
used to set the flux limits for internal reactions. The limits file is defined only when the flux
bounds of an internal reaction deviate from the defaults in PSAMM, which automatically
assigns a conventional boundary of [−x,x] for reversible reactions and [0,x] for irreversible
reactions, where the value x is assigned using an option named default_flux_limit in the model.
yaml file. When default_flux_limit is not assigned, PSAMMwill use a default value of x = 1000
to define reaction bounds (S1 Text). This feature permits further streamlining of the YAML
format to reveal model specific simulation setups. Although PSAMM supports references to
model files with user-defined file names that are saved in distributed locations in the file sys-
tem, it is recommended that users save all files of an individual model within a dedicated direc-
tory to facilitate model organization and maintenance. The users may also choose to combine
all the model information into a single YAML file by replacing the include functions with the
actual content of the data files. However, the include functions are recommended to maintain
modularity of model definition and simulation settings in the YAML representation.

Using the YAML format, annotations of compound and reaction features can be further
divided into multiple files that represent logical divisions of cellular compartments or meta-
bolic pathways. Moreover, The annotations can be represented in either a YAML format or a
tab-delimited table format. These flexibilities can enable the manual curation of model files
and make the model components portable among different simulation conditions. The line-
based text representation of YAML files also makes it compatible with broadly-used version
control systems like Git, and the YAML format is especially efficient at tracking changes in
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large reaction equations, such as the biomass function and the protein, RNA, and lipid synthe-
sis functions (Fig 3b). In contrast, the Excel format is not compatible with version control due
to the binary form, and the lack of a standard model definition in Excel files also detracts from
its suitability as a GEM format. The SBML files, in spite of a well-defined data structure, do not
use line breaks or white spaces as a part of the data structure and hence are suboptimal in
working with Git [34]. For example, each list item in the SBML file is frequently represented as
a single line that contains multiple data entries describing this item. This will render the version
control in Git ineffective because changes on any one entry will cause the version tracking sys-
tem to highlight an entire line of multiple data entries, and it is difficult for a user to pinpoint
the exact location of the change within a long line of data. Moreover, since the markup tags are
included as a part of the data presentation, changes in the markup tag definitions during the
periodical updates of the SBML specifications will show up in the tracking even though there is
no change in the model data.

Examining Model Consistencies Using PSAMM
To test the application of PSAMM in supporting model annotations, we applied the software
to 57 published GEMs collected from current literature or open-source model releases (S3
Table). These included the RECON2.04, which was released in the format of a MATLAB data
file. All models were first converted to the PSAMM-specific YAML format and then analyzed
individually using the stoichiometric and flux checking functions. FBA simulations were also
performed using designated biomass function to verify if the published descriptions of model
viability can be replicated. When inconsistencies occurred, the causes were identified by manu-
ally inspecting the corresponding models. Overall, PSAMM revealed several types of inconsis-
tencies among existing models. These included inconsistencies in the syntax of SBML files, the
annotation contents of Excel tables, the stoichiometric balance of metabolic reactions, and the
connectivity of metabolic reactions. Below, we provide an overview of the existing inconsisten-
cies identified by PSAMM.

Inconsistencies in SBML syntax. The Systems Biology Markup Language (SBML) com-
munity has published three different specifications (levels) of the SBML format. Of the 57
GEMs we analyzed, 56 were released as SBML files, including two level-1 models (AbyM-
BEL891 [54] and SpoMBEL1693 [3]), three level-3 models (iMM1415 [55], iMO1056 [56], and
RECON1 [57]), and 51 level-2 models as defined in their SBML file headings. The SBML mod-
els were converted to YAML format using the psamm-import program. First, the sbml-strict
option was used to check if the model follows strict SBML specifications. Then, the sbml option
was used to incorporate COBRA-compliant variations in SBML syntax. Finally, an FBA simu-
lation was performed using biomass production as the objective function to examine the viabil-
ity of each model.

Using the sbml-strict option of psamm-import, inconsistencies were found in the SBML syn-
tax of 15 GEMs (Table 2). These included inconsistencies both in the model specification and
in the definition of simulation setups. Three models were not strictly compliant with the stan-
dardized SBML specifications, including two models that contain decimal numbers in a SBML
level that supports only integers in stoichiometry (AbyMBEL891, SpoMBEL1693) and one
model that contains undefined compound species (i.e. cardiolipin[c]) in the biomass function
(iJN746 [58]). With the sbml option, the former inconsistencies were resolved by permitting
decimals in stoichiometry for all SBML levels, and the latter was resolved by automatically
removing undefined compound species in reaction equations. In both cases, warning messages
were given by psamm-import so the users can be aware of these modifications. To ensure a
more accurate parsing of iJN746, we also manually examined the model to look for potential
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production pathways of the undefined cytosolic cardiolipin[c] compounds. This manual cura-
tion revealed that the missing compounds were actually mislabeled in their compartment set-
tings: while the synthesis functions occurred in periplasmic space, the biomass function
referred to a non-existing cytosolic copy. Since experimental results suggest that the synthesis
of cardiolipin compounds occurs in periplasm [59,60], we decided to manually modify the bio-
mass function of iJN746 by changing the compartment definition of the cardiolipin[c] com-
pounds into periplasm (i.e. cardiolipin[p]) (S2 Text). After the manual correction, iJN746 was
able to produce a non-zero biomass flux.

Another five models, iNJ661m [61], iNJ661v [61], iSR432 [62], iTZ479 [13], and iTH366
[63], initially failed to generate a non-zero biomass flux under FBA when loaded with the sbml-
strict option. A close examination of these non-viable models revealed additional inconsisten-
cies in SBML syntax, where an attribute named “boundaryCondition” was missing. This was
fixed by using the sbml option of psamm-import, which is compatible with the COBRA con-
vention and can automatically create exchange reactions for compounds with a special suffix
(i.e. the “_b” suffix that indicates boundary compounds).

Additionally, five models had inconsistencies that needed to be manually examined before a
viable simulation could be reproduced. The models iRC1080 [64], iRS1563 and iRS1597 [65]
contained reactions that were marked irreversible (meaning that a reaction should only prog-
ress in the forward direction) but at the same time had the “LOWER_BOUND” parameter set
to a negative value (meaning that the reaction should be able to progress in the reverse direc-
tion). This reflected inconsistencies between the COBRA-compliant format and the SBML
standard specifications. To ensure that users can be aware of such inconsistencies, we set up
the sbml option of psamm-import to produce a warning message and by default allowed reac-
tions that had inconsistent reversibility settings to carry fluxes according to the flux bounds
specified using the COBRA-compliant format. The model iRsp1095 [66] contained no
exchange reaction that would supply nutrients to the simulation environment. This was due to
the model defining all exchange reactions in the SBML file as sinks but not sources of boundary
compounds. To resolve such inconsistency, we manually set the flux limits of all exchange reac-
tions according to the minimal medium reported in the original publication [66] to permit
uptakes of nutrient compounds that lead to the production of non-zero biomass flux (S3 Text).
The model iMA871 [67] was not viable because a symbolic compound of the biomass,
M_BIOMASS, was accumulated as a result of the biomass reaction, which deviated from a
steady-state assumption of the FBA simulation. This was resolved by connecting theM_BIO-
MASS compound with a biomass sink flux, which simulates the biomass production of the
model (S4 Text).

Finally, two SBML models, iSyn731 [65] and iMA945 [68], were not viable and could not be
fixed by simply introducing flexibilities in SBML parsing. The iMA945 model contains a large
number of reaction equations that carry duplicated compounds on the opposite sides, which
were likely introduced to the model due to the mislabeling of compound compartments. This
inconsistency was corrected by importing the model from an Excel file released in the original
publication of iMA945. In the Excel file, compound compartments were assigned correctly and
there were no duplicated compounds in any reactions. The iSyn731 model was corrected using
an updated version of the SBML release downloaded from the original authors’ website (S5
Text). A comparison of the updated version with the original version of iSyn731 revealed a
number of changes in reaction directionality and stoichiometric balance, which might be the
result of unintentional inconsistencies in the original conversion of the author’s internal model
annotations into the SBML format. Hence, this further illustrated the importance of standard-
ized model version tracking and integrated model representations. The YAML files resulting
from importing all the above-mentioned SBML models and all the manual corrections were
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documented in an open-source Git repository at https://github.com/zhanglab/psamm-model-
collection.

Inconsistencies in excel files. As an important part of a standard model release, most of
the published GEMs were supplemented with Excel files. Compared to the SBML format, the
Excel tables usually include more extensive metadata, such as the compound and reaction fea-
tures, into the model definition. However, so far there is no standardized definition of the
Excel format. Hence, the Excel import function was implemented individually for specific
models. In the PSAMM input/output module, customized Excel parsers were created based on
a supervised process, in which the content of Excel tables were examined and model specific
scripts were developed to parse out the complete information that defines the nine Excel mod-
els we analyzed (S3 Table). FBA simulations were also performed on the biomass functions to
examine the viability of each Excel model. In cases where FBA resulted in a zero biomass flux,
we further examined the non-viable models using a combination of manual curations and
comparisons to the corresponding SBML releases. This analysis uncovered a number of incon-
sistencies in the Excel files. For example, in the reaction worksheet for model iMA945 [68], the
columns of reaction equations and gene identities were merged for a subset of entries, causing
a column shift in these entries. By correcting the alignment of table columns, the model was
parsed successfully using the customized Excel parser for iMA945. Another example of incon-
sistencies involved the misspelling of compound identifiers. The reaction worksheet of model
iMR1_799 [69] contained an invalid compound “aaacoa” in the reaction equation of acetyl-
CoA C-acetyltransferase, which as revealed by comparing to the SBML release of the same
model, is a misspelled identifier of the compound Acetoacetyl-CoA (“aacoa”). Similar inconsis-
tencies were found in other models and were specifically corrected in the construction of
model-specific parsers to map the misspelled compounds to corrected names. These inconsis-
tencies have highlighted the difficulty in preventing unintended edits to annotation tables since
the observed column shifts and misspellings are likely a result of the manual insertion of com-
pound or reaction entries in the Excel format. This problem can be resolved with the PSAMM
YAML format, which permits the direct incorporation of annotation tables into the model
using a simple include function (Fig 3 and S1 Text). By submitting YAML models to the Git
version control, all edits to the table will be recorded and changes that render the model non-
viable can then be pinpointed for correction. Moreover, by maintaining the independence of
individual include functions, the YAML format effectively incorporates the diverse model
metadata that is traditionally included in a scattered set of Excel worksheets into an integrated
documentation of GEMs.

Stoichiometric inconsistencies. The stoichiometric consistency of all GEMs was analyzed
using the stoichiometric consistency checking approaches implemented in the PSAMM
masscheck function (Materials and Methods). Surprisingly, only 18 out of the 57 models passed
the criteria of stoichiometric consistency check, suggesting that most models included reac-
tions that are not mass balanced (S3 Table). This is alarming especially in the context of con-
straint-based analysis because unbalanced reactions can potentially generate infinite source of
materials. For example, the model iKF1028 [70] contains two mutually exclusive reactions,
RR00610 and RR08939, which differ only by the presence or absence of two additional H+
compounds on one side of the reaction equations (Table 3, reactions marked with �). Both
reactions cannot occur simultaneously in the same model, otherwise the combination of the
two can result in a physiologically impossible overall function that generates or consumes an
infinite amount ofH+ compounds at no cost. Running a compound-based stoichiometric
check on iKF1028 (S1 Table, command “psamm-model masscheck”), we identified two com-
pounds, H+ andH+[e], as the sources of stoichiometric inconsistency. However, this informa-
tion is not sufficient for model correction because the compounds H+ and H+[e] occurred in
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460 reactions in the model and only a small subset of those were unbalanced. Applying a new
algorithm in the PSAMMmasscheck function (Materials and Methods and S1 Table, command
“psamm-model masscheck --type=reaction”), a list of 14 unbalanced reactions was identified
(Table 3), which greatly reduced the number of reactions that required manual examinations.
By comparing the number of hydrogen elements on both sides of the 14 reaction equations, the
model was revised to fulfill the requirements of stoichiometric consistency. Themasscheck
function can be applied for the identification of unbalanced reactions in other models following
the same procedure as demonstrated in the analysis of iKF1028. Unlike the formulacheck func-
tion, which relies on the definition of compound formulas,masscheck can be applied even
when compound formulas are not available. This feature is especially useful in the annotation
of existing SBML models, as many of the SBML releases do not contain annotation of the com-
pound formulas. When usingmasscheck, users could make expert decisions to exclude reac-
tions (using the --exclude option) that are expected to be unbalanced. These may include the
exchange and biomass reactions, and the reactions for which the biochemistry is undetermined
(i.e. biosynthesis of polymer molecules). Overall, the PSAMMmasscheck function is optimized
to pinpoint the sources of inconsistency among hundreds and thousands of reactions, and it
provides flexibility for identifying stoichiometric inconsistencies in both compounds and reac-
tions even when the mass and formula annotations are missing.

Flux inconsistencies. The PSAMM fluxcheck function was applied to all the GEMs to
search for flux inconsistent reactions–the reactions that are blocked and unable to carry a non-

Table 3. Stoichiometric inconsistencies in iKF1028 [70]. Reaction: the reaction identifiers in the GEM; Equation: the reaction equations; H left/right: the
total number of H atoms at the left/right side of the equations; H residue: the differences between the number of H atoms at the left versus the right side of the
equations. Two reactions, RR08939 and IR01815, are shown at the bottom of the table, which correspond to the balanced version of the inconsistent reac-
tions RR00610 and IR04287, respectively. Both pairs (marked with * and **, respectively) were present in iKF1028, rendering the overall model stoichiomet-
rically inconsistent.

Reaction Equation H
left

H
right

H
residue

Unbalanced
reactions

IR00136 [c]: 2-Oxoglutarate --> Succinate semialdehyde + CO2 4 5 -1

IR00159 [c]: H2O + Acetyl phosphate --> Orthophosphate + Acetate 5 4 1

IR00373 [c]: L-Ornithine --> CO2 + Putrescine 13 14 -1

IR00765 [c]: NADP+ + H2O + L-Valine --> NH3 + NADPH + 3-Methyl-2-oxobutanoate 38 36 2

IR01585 [c]: D-Glucose 6-phosphate + UDPglucose --> alpha,alpha'-Trehalose 6-phosphate + UDP 33 32 1

IR04287** [c]: Uroporphyrinogen III + (2) S-Adenosyl-L-methionine --> Precorrin 2 + (2) S-Adenosyl-
L-homocysteine + H+

82 89 -7

IR04586 [c]: NADH + NH3 + H+ + Pyruvate --> L-Alanine + H2O + NAD+ 34 35 -1

IR09357 [c]: (S)-3-Hydroxy-3-methylglutaryl-CoA --> Acetyl-CoA + Acetoacetate + (5) H+ 39 44 -5

IR10056 [c]: Precorrin 2 + S-Adenosyl-L-methionine --> Precorrin 3A + S-Adenosyl-L-homocysteine
+ H+

71 64 7

IR10481 [c]: Aminoimidazole ribotide + HCO3- + ATP --> 5-Carboxyamino-1-(5-phospho-D-ribosyl)
imidazole + ADP + Orthophosphate

25 27 -2

RR00067 [c]: NAD+ + (2) L-Glutamate <==> L-Glutamine + NADH + 2-Oxoglutarate 42 41 1

RR00610* [c]: D-Glucose 1-phosphate + (2) H+ <==> D-Glucose 6-phosphate 13 11 2

RR00692 [c]: D-Fructose 1,6-bisphosphate <==> Dihydroxyacetone phosphate + (4) H+
+ D-Glyceraldehyde 3-phosphate

10 14 -4

RR10479 [c]: 5-Carboxyamino-1-(5-phospho-D-ribosyl)imidazole <==> 1-(5-Phospho-D-ribosyl)-
5-amino-4-imidazolecarboxylate

14 11 3

Balanced
reactions

IR01815** [c]: Uroporphyrinogen III + (6) H+ + (2) S-Adenosyl-L-methionine --> Precorrin 2 + (2)
S-Adenosyl-L-homocysteine

88 88 0

RR08939* [c]: D-Glucose 1-phosphate <==> D-Glucose 6-phosphate 11 11 0

doi:10.1371/journal.pcbi.1004732.t003
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zero flux under any simulation conditions (Materials and Methods). On average, 30% of all
internal reactions in the GEMs were blocked, suggesting that these reactions were topologically
disconnected from the rest of the model. We looked into the distribution of blocked reactions
among functional subsystems by analyzing a subset of 19 GEMs that contained subsystem
annotations in the SBML format (S3 Table). First, subsystem annotations in the GEMs were
obtained from SBML files using psamm-import, which identified 436 distinct subsystem names
from the 19 GEMs. Then, the subsystem names were manually curated and classified into ten
metabolic pathways (S4 Table). Finally, the fraction of blocked reactions was calculated within
each metabolic pathway, and the median of fractions was identified across all analyzed GEMs
(Fig 4).

As a result, most of the metabolic pathways demonstrated high level of flux consistency, and
the fraction of blocked reactions had a median lower than 0.2 for seven out of the ten pathways,
including four pathways in the central metabolism, two pathways for the metabolism of lipid
and glycan, and one pathway of transport reactions. Not surprisingly, the four central meta-
bolic pathways, carbon, energy, amino acid, and nucleic acid metabolism, had the lowest frac-
tion of blocked reactions and were the least variable among different GEMs. This not only
reflected their essential roles in biomass production, but also indicated the extent of research
that contributed to the complete reconstruction of these pathways. One outlier, however, was
the energy metabolism pathway in iAI549 [71], which had 23 blocked reactions out of the 41
total reactions. This was largely due to the lack of certain nutrient sources that drive the energy
functions. For example, the model contained two nitrite reductase reactions, but no nitrite
source was provided either from boundary conditions or from other pathways.

Fig 4. Distribution of blocked reactions in metabolic pathways. The GEMs were represented in each
metabolic pathway as a solid circle. The color of the circles corresponds to the year in which a GEMwas
published (color legend was shown on the right, and the year of publication ranges from 2003 to 2014). The
area of the circle is proportional to the total number of reactions in the pathway, and its vertical position
indicates the fraction of reactions that are blocked. The median fractions were indicated by a red mark for
each pathway, and models discussed in the main text were highlighted.

doi:10.1371/journal.pcbi.1004732.g004
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In contrast to the central metabolic pathways, the lipid and glycan metabolism had higher
variations among different GEMs despite having low median fractions of reactions that were
blocked. For example, the glycan metabolism varies from almost fully consistent (STM_v1.0
[72]) to completely blocked (iSB619 [73] and iCce806 [74]). The STM_v1.0 model contained
143 reactions in glycan metabolism. Out of these only five were blocked reactions, which was
attributed to a dead-end compound in the “Murein LPP Biosynthesis” subsystem. The iSB619
and iCce806, however, contained two and eleven reactions in glycan metabolism, respectively.
All of these reactions were blocked and appeared as dead ends of the metabolic models. Simi-
larly, some models (e.g. iND750 [75] and iMM904 [76]) had a large fraction of blocked reac-
tions in lipid metabolism, indicating that the lipid metabolic pathways were incomplete in
these models.

The cofactors and vitamins metabolism pathway had slightly higher fractions of blocked
reactions (median close to 0.5), and the level of flux inconsistency varies among different
GEMs. For example, the model iND750 [75] had a largely blocked cofactors and vitamins
metabolism pathway, with 80 of the 104 reactions (77%) unable to produce non-zero fluxes
due to the missing connections between metabolites and the biomass function. In contrast, the
model iJO1366 [40] had 228 reactions in the cofactors and vitamins metabolism pathway, and
only 26 reactions (11%) were blocked.

The secondary and xenobiotics metabolic pathway, while having variable fractions of blocked
reactions, only occurred in five GEMs due to their inessentiality to biomass production. Reac-
tions in this pathway can be used to analyze the relationship between biomass production and
the metabolism of secondary metabolites. For example, the iCA1273 [77] model has three reac-
tions associated with penicillin breakdown. These reactions are not connected to the biomass
production but they are connected appropriately with exchange reactions. Hence, the model can
be used to simulate the effect of penicillin on the growth of the organism. Conversely, the four
other models (iMM1415 [55], iCce806 [74], RECON2 [78], and RECON2.04) appear to contain
a large fraction (0.67 and 0.5, respectively, for iMM1415 and iCce806 and 0.9 for the two
RECONmodels) of blocked reactions in the secondary and xenobiotics metabolism and would
require the addition of transport or exchange reactions to simulate functions in this pathway.

It is also worth noting that the total number of reactions was more consistent in the central
metabolism than in the pathways of lipid metabolism, glycan metabolism, and transport reac-
tions (Fig 4). The variations among the latter pathways can be attributed to the modeling deci-
sions or the large variability of these pathways among different organisms. For example, some
models had experienced an expansion of the glycan and lipid metabolism pathways in later
releases compared to the earlier releases. This expansion is apparent when comparing the 2003
E. colimodel iJR904 [79] and the 2007 model iAF1260 [80], and when comparing the 2004 S.
cerevisiaemodel iND750 [75] with the 2009 model iMM904 [76] (S2 Fig). As the models have
evolved through successive updates, a more extensive annotation of glycan and lipid metabo-
lism has been applied, and the lipid and glycan compounds have been included into the bio-
mass function. In contrast to the other pathways, the total number of transport reactions was
influenced by the number of cellular compartments in the model. While the GEMs of some
eukaryotic organisms contained over 1,000 transport reactions that account for the metabolite
exchange among different cellular compartments, GEMs with only two compartments had on
average less than 100 transport reactions.

Discussion
The reconstruction and analysis of GEMs have broad applications in understanding genotype-
phenotype connections, studying evolutionary processes, and predicting the outcomes of
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metabolic engineering [13,81]. Despite the development of tools that support individual steps
along the modeling procedure [24,26,29], it is still challenging to associate mathematical simu-
lation with the biological interpretation of GEMs. Often times, model files need to be curated
iteratively to set up exchange reactions, assign reaction directionality, define biomass functions,
and fill reaction gaps, and the results of mathematical simulations need to be mapped to the
annotated data of model definitions. However, due to the absence of integrated data represen-
tations and the lack of standardized model checking procedures, the curation of GEMs are
prone to introducing inconsistencies, which in turn may lead to errors in modeling and in
interpreting the biological meaning of modeling outcomes.

The PSAMM software package was developed to solve the above challenges by integrating
the annotation of metabolic pathways with the consistency checking and the constraint-based
analyses of mathematical models (Fig 2). It offers a novel YAML format of model representa-
tion that integrates the heterogeneous annotation of model components with the formulation
of mathematical simulation problems. PSAMM takes advantage of several useful features com-
monly supported in the Python programming language: (1) it is highly portable and can be eas-
ily installed using the pip package management system; (2) it is open source and does not rely
on paid software like MATLAB; (3) it has extensive library support that permits both matrix-
based operations and dictionary-based feature representations; (4) it is an integrated package
that supports calling simulation functions using simple one-line commands (S1 Fig) and per-
mits adjustments to modeling parameters using command options (S1 Table). PSAMM sup-
ports the import and export of diverse model formats and is applicable for the curation of draft
models generated from model reconstruction pipelines like ModelSEED [26], RAVEN [29],
and Pathway Tools [31]. It provides extensive help information (e.g. through the command-
line -h or --help options) and an online tutorial that demonstrates the main functions and
workflow of PSAMM (https://psamm.readthedocs.org/en/latest/tutorial.html). Additionally,
the PSAMM functionality is easily expandable by the user community through an Application
Programming Interface (API).

PSAMM integrates heterogeneous metadata in model annotations with the simulation of
metabolic networks, so that users can perform model curation and mathematical simulations
under the integrated framework of a unified software package. While COBRA and RAVEN are
released as toolboxes and are dependent on the MATLAB software, PSAMM is an independent
software package that is freely available for all academic users. Calling the simulation functions
is largely simplified in PSAMM because the individual steps of model reading, solver selection,
model simulation, and simulation results mapping are integrated into a single one-line com-
mand. In contrast, setting up a simulation problem in COBRA would require calling multiple
functions in the MATLAB interface (S1 Fig). Moreover, PSAMM allows users to document
their modifications to the model definition as well as the simulation conditions during model
curations. In contrast, changes made through the MATLAB interface will be lost when the
computing session is closed. Even if users write out their changed models into an SBML file, it
will be difficult for the users to track the exact location of the changes due to the incompatibil-
ity of SBML files with line-based version control systems [51,82]. Finally, PSAMM is config-
ured to perform with high efficiency a number of computationally intensive simulations, such
as tFBA, FVA, robustness analysis and random minimal networks (Fig 1 and S2 Table). As an
example, we recorded the running time of robustness analysis on iJO1366, which is one of the
larger models in the collection we analyzed. Using a single computing thread, the median run-
time of robustness analysis with 1000 steps on the EX_o2(e) exchange reaction using Cplex
solver was 4.07 seconds in PSAMM (including the reading of model files), whereas COBRA
takes 100.7 seconds under the same settings for just solving the simulation problem. This is
because PSAMMmodifies the simulation problem directly through an optimized LP utility
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interface (Fig 2), while COBRA requires the simulation problem to be redefined for every step
of the robustness analysis.

The PSAMM YAML-based model representation provides additional support to model
curation by offering a human-readable interface for the organization of heterogeneous data
(Fig 3 and S1 Text). The YAML format incorporates information about both model annota-
tions (e.g. in the reactions, compounds, andmodel definitions) and model simulations (e.g. in
the biomass,media, and limits definitions), and it supports a flexible interface for storing anno-
tation information either within a centralized model file or as independent feature files. The
YAML format streamlines model representation by minimizing the use of markup tags. The
use of line breaks and whitespaces as markups of data structure not only enables the parsing
and association of user-defined, model-specific model annotations, but also enhances the com-
patibility of YAML with line-based version control systems. This compatibility with version
tracking is especially useful in collaborative projects that involve multiple curators working on
the same model since modifications made by different curators can be documented in parallel
and later reconciled and merged into a new model release that is more comprehensive than
what could be achieved by a single curator. Additionally, YAML supports the modular repre-
sentation of diverse model components and the free combination of model definitions with
diverse simulation conditions (Fig 5). Hence, instead of being restricted to a single simulation
condition, YAML provides additional flexibilities for the documentation of multiple modeling
conditions in a single model release.

Applying PSAMM to existing GEMs in public literature, a number of inconsistencies were
identified. These included inconsistencies in the formatting of model files (e.g. SBML or Excel
files), the definition of model stoichiometry, and the presence of blocked reactions. In general,
the representation of SBML and Excel files varies among different GEMs both in the formatting
of model annotations and in the completeness of information provided. For example, only a
small fraction of the collected SBML models included complete metadata regarding protein-
coding genes, functional annotations, Enzyme Commission (EC) numbers, and subsystem
classifications. This was largely due to the lack of standardized definition of such information
in SBML specifications and to some extent has prevented the SBML format from integrating
heterogeneous annotation data. The Excel files, although frequently used by model curators for
the annotation of pathway information, also lacks standardization and data integration. These
limitations have caused a number of common inconsistencies in the representation of both
SBML and Excel models. Using the annotation framework of PSAMM and the integrated
YAML representation, we have corrected these inconsistencies and documented the changes
in an online Git repository at https://github.com/zhanglab/psamm-model-collection (S2–S5
Text).

To ensure that the GEMs correctly represented the function and connectivity of metabolic
networks, the PSAMM stoichiometric and flux consistency checking were applied to search for
unbalanced or disconnected reactions. Surprisingly, only 30% of the analyzed models were stoi-
chiometrically balanced, and the unbalanced reactions can be attributed to the inconsistent
representation of compounds in different reaction equations. The analysis of flux consistency
revealed that while the central metabolic pathways contain only a small fraction of blocked
reactions across all GEMs, the pathways of lipid metabolism, glycan metabolism, and cofactors
and vitamins metabolism were largely variable among different GEMs and were frequently dis-
connected from biomass production. Interestingly, the pathway distribution of metabolic reac-
tions varied among different GEMs (S2 Fig). In the successive models of certain organisms (e.g.
in E. coli), it appeared that the initial reconstructions have focused on central metabolic path-
ways, while the later iterations have contributed to the inclusion and completion of peripheral
pathways like the transport reactions and the glycan and lipid metabolism. While it is not
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uncommon to have blocked reactions in GEMs due to the limited knowledge in current litera-
ture about certain metabolic pathways, the analysis of flux inconsistency should be a standard
step especially in interpreting the biological significance of gene or reaction deletion simula-
tions. Since the blocked reactions do not contribute to the production of biomass, they will
always be predicted as non-essential reactions. However, such prediction is not biologically
meaningful because it reflects an artifact caused by the disconnection of metabolic pathways.

Materials and Methods

Comparisons of Program Running Time
A list of functions (marked in S1 Table) was examined in the PSAMM package as well as the
COBRA and RAVEN toolboxes to compare the efficiency of the different tools. The simula-
tions were carried out on the model iJO1366 [40] with the Cplex linear programming solver
for PSAMM (version 0.17) and COBRA (version 12.6, IBM academic release for PSAMM and
TOMLAB release for COBRA), and with the MOSEK solver for RAVEN (version 7.1.0.36).

Fig 5. A diagram illustrating the modular representation of model components in the YAML format. The data structure is divided into the static
components of model annotation (A) and the dynamic components of simulation settings (B). The reaction and compound annotation databases are
associated with a number of required (highlighted in black, e.g. “- id” and “- equation” for reactions) and optional (gray) data entries, and user-defined, model-
specific data entries are permitted in the annotation databases. The simulation settings can be represented with various combinations of the model, limits,
and media files. Alternative conditions may be defined using a number of alternative modules that can be switched with one another.

doi:10.1371/journal.pcbi.1004732.g005
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The specific simulation parameters were set according to the conditions specified for each
function in the S2 Table. Outputs from different tools were manually examined to ensure that
the same results were generated form the same simulation settings. The running time was
recorded in a CentOS operating system with a single processor core allocated to each program
(the solver was not restricted in this way and was able to use up to 20 cores). Each simulation
was carried out at least seven times, from which the median was plotted in Fig 1 with the 75th
and the 25th percentile values as the upper and the lower limits of the error bar.

Dependencies
PSAMM has the following dependencies, some of which are required and some of which are
optional but limit the functionality of PSAMM in their absence. The dependencies PyYAML,
xlrd, xlsxwriter, and NumPy can be automatically installed through the Python package man-
ager pip. The linear programming solvers need to be installed by the user following instructions
from corresponding releases.

• PyYAML (required, for parsing the PSAMM YAML format)

• IBM ILOG Cplex Optimizer (required, for solving linear programming problems)

• GUROBI Optimizer (optional, an alternative to the Cplex linear programming solver)

• QSopt_ex rational solver [83] (optional, for obtaining exact solutions to the LP problem)

• xlrd (optional; for reading models from Excel sheet files)

• xlsxwriter (optional; for exporting YAML models as Excel sheet files)

• NumPy (optional; for converting the sparse matrix representation to the NumPy matrix)

Collection of Metabolic Models
A list of 56 GEMs was collected from current literature and a public model collection [84] as
SBML files. Additionally, the RECON2.04 model was downloaded in the format of a MATLAB
data file from a public release at https://vmh.uni.lu/#downloadview. Compound and reaction
features of nine models were downloaded in the Microsoft Excel format (S3 Table). These
models were used to test the application of PSAMM for model management and model cura-
tion. For constraint-based simulations, a biomass reaction was identified for each model by
examining the objective coefficient defined under the SBML “kineticLaw” section. The reaction
with a non-zero objective coefficient was treated as the biomass reaction. If the objective func-
tion was not specified in SBML file, the reaction identifiers were searched and the ones contain-
ing the string “biomass” were marked as biomass reactions. Information was also obtained
from original publications of the collected models to identify biomass reactions and to select
the main biomass reaction when more than one was present. The biomass reactions of each
model were listed in S3 Table.

Stoichiometric Consistency Checking
The stoichiometric consistency check was implemented in the PSAMMmasscheck function,
which supports both compound-based and reaction-based checking of the stoichiometric con-
sistency. By default, themasscheck function excludes the exchange and biomass reactions from
consideration because by design, stoichiometric balance is not required in these reactions. The
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compound-based stoichiometric consistency checking was implemented based on Thiele et al.
[49] and was formulated as:

Maximize Si zi
Subject to

• STm = 0

• For allmi inm:mi�zi

• For all zi in z: z 2[0;1]
This problem looks for compounds that failed to obtain a positive mass under optimizing

conditions. By maximizing the values in z up to 1 for as many compounds as possible, it forced
the mass values (m) to be at least 1 for the same compounds. The sum of the values in z can be
used to approximate the number of compounds that were properly balanced.

Although the compound-based checking was useful for identifying compounds that may
cause stoichiometric inconsistency, it provides no insights into the stoichiometric balance of
individual reactions. Therefore, PSAMM implements a new algorithm to directly search for
unbalanced reactions. This approach is performed using an LP problem that was modified
from the above stoichiometric consistency check. A mass residual variable (r) is introduced
into every reaction and bounded by the residual bound variable (z) such that rj 2[−zj;zj]. The
residual bound variables are then minimized, and the reactions that carry a non-zero residual
value rj (i.e. bounded by a positive zj) are reported as a candidate of inconsistency. The mathe-
matical formulation of this approach is described in the following LP problem:

Maximize Sj zj
Subject to

• STm = r

• For allmi inm:mi�1

• For all zj in z: zj�0

• For all ri in r: rj 2[−zj;zj]
This approach can be applied iteratively to assist with the correction of stoichiometric

inconsistencies in metabolic models. The residual variables indicate a mass that is missing
from identified reactions, and the sign of the residual can be used to determine whether the left
or right side of an equation has a missing mass. Additionally, PSAMM provides a “--checked”
option in themasscheck function, which allows fixing certain residual values at zero when the
corresponding reactions have been confirmed to be balanced, making the program able to con-
verge on the remaining set of unbalanced reactions. When the stoichiometric consistency
check was performed on the collection of models, the biomass and exchange reactions were
excluded from consideration and the requirement of a positive mass was removed from com-
pounds that were used to model photons or electrons.

Flux Consistency Checking
The flux consistency check was implemented in the PSAMM fluxcheck function. A flux incon-
sistent reaction is a reaction that cannot take a non-zero flux under any simulation conditions.
In other words, given the stoichiometric matrix S, the vector of fluxes v, and the reaction j, if
no solution to Sv = 0 exists, where vj 6¼ 0 the reaction is considered to be flux inconsistent. Con-
versely, if a solution exists the reaction is considered to be flux consistent. A consistent model
is a model that only contains consistent reactions [85]. The flux consistency check in PSAMM
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was implemented based on two independent approaches. The first approach was based on the
definitions in [86]. This was achieved by applying a modified version of the flux variability
analysis (FVA) on each reaction while using default constraints on other reactions. For revers-
ible reactions, the flux is first maximized and then minimized, and for irreversible reactions,
only the maximization is necessary. A significant speedup was possible in PSAMM (S2 Table)
by avoiding regenerating new problem definitions throughout the procedure. In previous
implementations (e.g. COBRA) the LP problem was regenerated for optimizing each reaction.
However, in PSAMM the LP problem definition was instead reused. This was feasible since the
LP problems in this approach are all equivalent except for using a different objective function
for each reaction. Reactions that carried non-zero fluxes were considered to be flux consistent,
and vice versa. Alternatively, PSAMM provides another way of checking reaction flux consis-
tency based on the fast consistency check (FASTCC) algorithm, which was designed to provide
a more efficient solution in evaluating reaction flux consistency [87]. When analyzing the mod-
els in the collection for flux inconsistencies, the constraints on the flux limits of the exchange
reactions were removed prior to the analysis to eliminate the influences of external settings and
to provide a lower estimate for the fraction of inconsistent reactions (Fig 4).

Supporting Information
S1 Fig. Comparison of the user interfaces in PSAMM versus COBRA.While PSAMM oper-
ates as a command-line tool, COBRA is a toolbox dependent on the MATLAB environment.
The red font indicates commands typed in by users, and the black font indicates outputs from
running a given command.
(TIF)

S2 Fig. Distribution of model reactions by metabolic pathways in 19 models. The RECON2
and RECON2.04 were plotted in a different panel, with iMM1415 in both panels as a reference
to show the differences in scaling y-axis.
(TIF)

S1 Table. Comparison of the common constraint-based modeling functions in PSAMM,
RAVEN, and COBRA. The marked rows in the column "Time" indicate commands for which
the running time was recorded.
(PDF)

S2 Table. Comparisons of the time needed to use various functions in PSAMM, COBRA,
and RAVEN. The function is listed in the first column along with information on the parame-
ters used in the simulation. The specific commands, running times for seven independent
experiments, along with the 25 and 75 percentile times and the median time taken to run the
commands are listed in the remaining columns.
(PDF)

S3 Table. List of metabolic models analyzed. The table shows the model identifiers (column
1); the scientific names of the modeled organisms (column 2); the domain of life that each
organism belongs to (column 3); the journal, authors and year of the model publications (col-
umns 4–6); whether the Excel format of a model was analyzed (column 7); the SBML level used
to format each model’s SBML release (column 8); whether the subsystem information was
available for model comparison (column 9); the main biomass reaction used to simulate model
growth (column 10); additional biomass reactions included in the model (column 11); whether
the model is stoichiometrically consistent (column 12); and the percentage of internal reactions
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in the model that were blocked (column 13).
(PDF)

S4 Table. Mapping of model subsystems to metabolic pathways. The model-specific subsys-
tem names in the first column are mapped to the metabolic pathways in the second column.
(PDF)

S1 Text. Description of the PSAMM YAMLmodel format.
(PDF)

S2 Text. Comparison of the original version and the fixed version of iJN746 [58] using
the git diff function in the Git version control system. The original version cannot provide
a non-zero flux in FBA simulations because the periplasmic cardiolipin compounds
(M_clpn120_p, M_clpn160_p, M_clpn161_p, M_clpn180_p, M_clpn181_p) were mislabeled
as cytosolic compounds in the SBML model. The updated model correctly incorporates the
mislabeled compounds and is able to produce a non-zero flux on biomass. The lines are color
coded to highlight manual corrections made to the model. Highlighted in red are the lines
removed, and highlighted in green are the lines added from the original version to the new ver-
sion.
(PDF)

S3 Text. Comparison of the original version and the fixed version of the model iRsp1095
[66] model using the git diff function in the Git version control system. The original version
cannot provide a non-zero flux in FBA simulations, while the fixed version can. This was deter-
mined to be due to all of the exchange reactions being set to have a lower bound of zero thus
preventing uptake of any nutrients. The exchange reactions were altered to reflect the boundary
conditions stated in the supplemental materials of the original paper [66]. The lines are color
coded to highlight the changes between the two versions. Highlighted in red are the lines
removed, and highlighted in green are the lines added from the original version to the new
version.
(PDF)

S4 Text. Comparison of the original version and the fixed version of the model iMA871
[67] model using the git diff function in the Git version control system. The original version
cannot provide a non-zero flux in FBA simulations, while the fixed version can. The problem
was determined to be that there was no sink for the artificial biomass compound,M_BIO-
MASS, meaning it could accumulate but could not be counted towards biomass production. A
sink was added for the compound allowing the model to generate a non-zero biomass flux. The
lines are color coded to highlight the changes between the two versions. Highlighted in red are
the lines removed, and highlighted in green are the lines added from the original version to the
new version.
(PDF)

S5 Text. Comparison of the original version and the updated version (downloaded on Sep-
tember 09, 2015 from http://www.maranasgroup.com/models.htm) of the model iSyn731
[65] using the git diff function in the Git version control system. The original version cannot
provide a non-zero flux in FBA simulations. The new version of the model contained several
changes including reaction directionality changes, stoichiometric changes, and the addition
and deletion of reactions. The lines are color coded to highlight the changes between the two
versions. Highlighted in red are the lines removed, and highlighted in green are the lines added
from the original version to the new version.
(PDF)
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