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Abstract

Various genomic islands, PAPI-1, PAPI-2, PAGI-1, PAGI-2, PAGI-3, and PAGI-4, and the element pKLC102 have been
characterized in different P. aeruginosa strains from diverse habitats and geographical locations. Chromosomal DNA
macroarray of 100 P. aeruginosa strains isolated from 85 unrelated patients hospitalized in an intensive care unit was created
to assess the occurrence of these genomic islands (GEIs). The macroarray was then hybridized with labeled probes derived
from each genomic island. In addition, PFGE patterns with SpeI, frequency of virulence genes, and antimicrobial resistance
patterns of the strains were studied. Our results showed that almost all P. aeruginosa strains presented up to eight virulence
genes. By SpeI macrorestriction fragment analysis we were able to identify 49 restriction patterns; 35 patterns correspond to
single strains and the remaining 14 to strains subgroup (a–n). Most of the strains showed variation in number or
composition of GEIs and a specific antimicrobial pattern indicating that each strain was an unrelated isolate. In terms of the
number of genomic islands per strain, 7 GEIs were found in 34% of the strains, 6 in 18%, 5 in 12%, 4 in 14%, 3 in 10%, 2 in
7%, and 1 in 4%; only one isolate did not present any GEI. The genomic islands PAPI-1 and PAPI-2 and the element pKLC102
were the most frequently detected. The analysis of the location of each GEI in the chromosome of two strains show that the
islands PAGI-3, PAPI-1, PAPI-2 and pKLC102 are present in the insertion site previously reported, but that PAGI-2 and PAGI-4
are inserted in another chromosome place in a site not characterized yet. In conclusion our data show that P. aeruginosa
strains exhibited an epidemic population structure with horizontal transfer of DNA resulting in a high frequency of GEIs.
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Introduction

Pseudomonas aeruginosa is a gram-negative rod bacterium, which is

reported to be ubiquitous in the natural environment, humans,

and animals, and is an important opportunistic human pathogen

that causes severe infections in immunocompromised patients [1–

4]. It has been commonly associated with repeated or persistent

bronchial infections in patients suffering from cystic fibrosis (CF),

and it is a major cause of nosocomial infections, mainly in

intensive-care units [5–7]. Many nosocomial infections are difficult

to eradicate due to a number of factors, the most important of

which is the relatively poor efficacy of antibiotics against P.

aeruginosa due to multiple resistance mechanisms expressed by the

bacterium [1,2]. Several cell-associated and secreted virulence

factors related to the bacterium have been described, which are

encoded on plasmids or chromosomal genes, such as lasB

(encoding for elastase), toxA (exotoxin-A), pilA (type fimbrial

precursor type IV pilin), plcH (hemolytic phospholipase C

precursor), phzA1 (phenazine biosynthesis protein), toxR (transcrip-

tional regulator), and lecA (lectin) [8–14]. Its ability to thrive in

a broad range of environments is partially due to a large and

diverse genome [12,15–21]. The bacterium presents a picture of

a mosaic genome consisting of a conserved core component

interrupted in each strain by combinations of specific blocks of

genes. These strain-specific segments of the genome are found in

limited chromosomal locations, referred to as genomic islands

(GEIs), which are acquired by horizontal gene transfer (HGT).

Depending on the functions they encode and the advantage they

confer relative to the specific lifestyle of a bacterium, GEIs can be

called pathogenicity, symbiosis, fitness, metabolic, or resistance

islands [22–25]. Furthermore, the presence of identical genes in

the pathogenic and non-pathogenic variants of one species – for

example, in extraintestinal pathogenic and commensal Escherichia

coli – implies that some of these encoded functions contribute to

general adaptability, fitness and competitiveness, rather than to

particular virulence traits [26]. A large number of GEIs in the P.

aeruginosa chromosome have been described; however, these GEIs

are found in variable numbers in some strains and not in others
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[27]. Studies performed to date have identified and characterized

several islands. The genomic island PAGI-1 was first identified in

a urinary tract infection isolate, the sequence analysis of which

revealed a length of 48,893-bp with 51 predicted open reading

frames (ORFs), and present in 85% of the studied clinical strains

[28]. The islands PAGI-2 and PAGI-3 were discovered in the

strains C and SG17M respectively; PAGI-2 has a length of

104,955-bp with 111ORFs, while PAGI-3 contains a portion of

strain-specific DNA sequence of 103,304-bp with 106 ORFs. In

both strains, C and SG17M, the genomic islands are partitioned

into two blocks. The cluster adjacent to the attL site consists of

genes that are specific to each strain, while the other cluster

predominantly contains hypothetical ORFs of which 47 are

mutual homologs in both genomic islands [29]. Pseudomonas

aeruginosa genomic islands PAPI-1 and PAPI-2 have been identified

in the genome of PA14, a highly virulent clinical isolate [15]. The

PAPI-1 island has a size of 107,899-bp with 115 predicted ORFs

and has a highly mosaic structure. Remarkably, more than 80% of

its DNA sequence is unique and shows no similarity to any

GenBank sequences. Conversely, the other ORFs-translated

sequence show homology to proteins from several bacterial

species. Significantly, many PAPI-1 ORFs also occur in several

P. aeruginosa cystic fibrosis isolates, and approximately 11 genes

are required for virulence in plants and animals [15,30,31]. PAPI-

2 occupies a DNA region of 10,722-bp and an organization of 15

predicted ORFs, half of which encode to hypothetical proteins of

unknown function [15]. pKLC102 is a 103,532-bp integrative and

conjugative element initially found in the P. aeruginosa clone C

strain SG17M that can exist as a plasmid or integrate into the

chromosome, and can excise from the chromosome at a rate of up

to 10%. This element revealed 105 coding sequences (CDS), 60 of

which were classified as hypothetical or of unknown origin. Many

of these hypothetical genes have DNA replication, recombination,

and modification genes as neighbors. Syntenic sets of homologous

genes were identified in other plasmids and genomic islands

among gram-negative bacteria, including PAGI-2 and PAGI-3 of

P. aeruginosa clone C strains [32,33]. The island PAGI-4 has

a length of 23.4-kb and is integrated at the 39 end of the tRNALys

gene of the strain C. The 9.5-kb segment adjacent to the tRNALys

gene is homologous not only with sequences of the chromosomal

and episomal versions of pKLC102 in strain C but also with the

tRNAGly-associated genomic island PAGI-2 [32]. Seven novel

genomic islands have been identified, PAGI-5 -6, -7, -8, -9, -10

and -11, with sizes varying from 99 to 2-kb and containing a total

of 201 ORFs among them. Several are related to known

pathogenicity islands, phages, or Rhs elements while others are

quite novel [34,35].

The aim of this study is the phenotypic and genetic

characterization of a large collection of Pseudomonas aeruginosa

strains, isolated mostly from patients with pneumonia at an

intensive-care unit (ICU) of a specialty hospital from Mexico City,

analyzing the frequency of several GEIs (PAPI-1, PAPI-2, PAGI-1,

PAGI-2, PAGI-3 and PAGI-4), an integrative element pKLC102

and of different virulence factors. To our knowledge, this is the first

report of the high prevalence in a single ICU of P. aeruginosa strains

with multiple GEIs.

Materials and Methods

Bacterial Strains
A collection of 100 clinical strains of P. aeruginosa were used in

this study. The clinical strains were isolated between January 2005

and November 2006 from 85 patients admitted to the intensive

care unit (ICU) of Hospital de Especialidades at Centro Medico

Nacional, Siglo XXI in Mexico City. 7 of 85 patients presented 2

different strain isolates on different dates, while other 4 patients

were infected with 3 different strains. Most of the patients were

diagnosed with ventilator-associated pneumonia, with the remain-

ing cases being diagnosed with septicemia and meningitis. The

clinical strains were obtained from different sources: 60 were

isolated from bronchial washings, 18 from sputum, 10 from blood,

2 from throat swabs, 2 from cerebrospinal fluid, 1 from pleural

fluid, and 7 from unknown origin. The reference strains used as

positive controls were P. aeruginosa PAO14 and P. aeruginosa

clone C strains: C and SG17M, which were provided by Dr. B.

Tümmler from Hannover, Germany. P. aeruginosa PAO1 was used

as a negative control. All the strains were maintained in 15%

glycerol at 270uC. Each strain was biochemically typed using

conventional biochemical tests and the API20 NE system. All

strains showed biochemical patterns of P. aeruginosa. The project

was approved by the Ethics Committee of the Hospital de

Especialidades of the Centro Medico Nacional, Instituto Mex-

icano del Seguro Social, and CIE (32-2007, Comisiones de

Investigación y Ética) Medicine School Universidad Nacional

Autónoma de México. Mexico City, Mexico. In all cases patients

or relatives were informed about the nature of the study and were

asked to sign a consent form.

Virulence Genes Detection
Seven structural and virulence P. aeruginosa genes (toxA, lasB, lecA,

algR, plcH, phzA1 and toxR) were selected and amplified by PCR

with specific primers designed in the laboratory, the annealing

temperature of each primer pair is shown in Table 1. For pilA gene

detection, we designed a probe derived from the conserved region

corresponding to 59 end of pilA gene, it is located from nucleotides

5234035 to 5233992 with respect to strain UCBPP-PA14 and

from nucleotides 5069556 to 5069473 with respect to the strain

PAO1 (Table 1). Additionally, knowing the variability of pilA gene,

we completed its detection using a primer set proposed by Kus

et al. [36], which was designed to amplify from the conserved pilB

gene to the tRNAThr gene.

Probes Used for GEIs Detection
We amplified by PCR the specific genes ORF3, ORF18 and

ORF42 of PAGI-1; C22 and C105 of PAGI-2; and SG8 and

SG100 of PAGI-3; using the primer pairs described by Finnan

[37]. We amplified genes CP10, CP44 and CP97 of pLKC102

using the primer pairs described by Klockgether [33]. The selected

genes represent the left portion, right portion, and middle region

of each island. We used the primer sets proposed by Qiu [31] to

amplify different DNA segments of PAPI-1: the primer pair 976F

and PAPI-1R detected the integration of PAPI-1 at the attB site in

the locus PA0976; the primer pairs 4542F + intF and sojR +
4541F were used to amplify and detect the left and right junction

sequences between the chromosome and island respectively when

it is integrated into the chromosome at the attB site in the tRNALys

gene locus PA4541.1 corresponding to the strain PA14, and finally

the primer pair intF + sojR was used to detect the presence of

a circular PAPI-1 (Table 1). We designed in the laboratory three

pairs of primers to amplify three specific regions of PAPI-2: the

primers PAPI-2-1F and PAPI-2-1R were used to amplify the xerC

gene localized at locus RS02 at the left region of PAPI-2; the

primers PAPI-2-2F and PAPI-2-2R were used to amplify the

middle region (locus RS07 and RS08) of the island, and the

primers PAPI-2-3F and PAPI-2-3R were used to amplify the exoU

gene (locus RS14) localized at the right region of the PAPI-2. We

designed a primer set to amplify the gene CL22, this gene was

chosen because it is a specific gene of PAGI-4 without significant

Genomic Islands Frequency in P. aeruginosa
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similarity with other gene reported in the databases (Table 1).

PCR protocols to amplify each gene belonging to PAGI-1, PAGI-

2, PAGI-3, pKLC102 and PAPI-1 were done according to

authors’ instructions [31,33,37]. Thermal cycling condition for the

genes of PAPI-2 and PAGI-4 were: an initial denaturation cycle at

94uC for 2 min, followed by 35 cycles at 94uC for 1 min,

annealing temperature (according to each specific primer set

[Table 1]) for 1 min and 72uC for 1 min with a final cycle of 72uC

Table 1. Primer sequence used in the genetic characterization of P. aeruginosa clinical strains.

Gene/GEIs* Forward primer sequence (59–39) Reverse primer sequence (59–39) Tm

Size of
PCR
product Reference

Virulence gene

toxA TCAGGGCGCACGAGAGCAACGAGA GACAGCCGCGCCGCCAGGTAGAGG 66.1uC 454pb This study

lasB ACTGTCGCGGCCGCATTTCGTCAT CATCGCCGTGCCGTCCCAGTAGG 65uC 433pb This study

lecA CGATGTCATTACCATCGTCG TGATTGCACCCTGGACATTA 65uC 215pb This study

algR AGGGCAACTGGACGGCTATC TGTGGTCGGCAATGAAGAAGA 63uC 437pb This study

plcH CGACGAGGGCGACGGCTTCTATGA CCGGGCAGGCTCTTGGGCTCGTA 66uC 447pb This study

phzA1 AACCACTTCTGGGTCGAGTG GTGGGAATACCGTCACGTTT 65uC 203pb This study

toxR ATGGCATCTATGCGAGGAAC GCAGGGGAATGAAGTTCTTG 65uC 207pb This study

pilA

pilB/tRNAThrW TCCAGCAGCATCTTGTTGACGAA CGAATGAGCTGCTCTACCGACAGAGCT 55uC 1–4-kb Kus, 2004

pilA probe TGATCGAACTGATGATCGTGGTTGCGATCATCGG 58uC - This study

oprLW AGGGCGGCGATGCTTCC CGACGCGACGGTTCTGAG 61.1uC 420pb This study

lipAW CAAGCCGGGCAAGGTGGAAGTCG CGGATCTCGCGCAGGCAGTCG 65.1uC 456pb This study

PAGI-1

orf3 TGGTGCTGACCAGCGACAAG TCCATCGACTCGGTGCGTAG 60uC 958pb Finnan, 2004

orf18 ATTCCTCCACTGCCGTTCACAACG CCTTGCTCATCTGGAACAGGTAGC 60uC 1039pb Finnan, 2004

orf42 CGGAGAACCATCTCTCGCACAC GGCTAAGACGTTCGACTGATTCC 60uC 675pb Finnan, 2004

PAGI-2

c22 CCTTCGTCCATTACCTGTGGAAC AACTTGCGAGCCAACTCACG 62.4uC 943pb Finnan, 2004

c105 GATTGATGCTCAACGACGATGG GCTGTTCCGCCTTCAGTTCC 59uC 681pb Finnan, 2004

PAGI-3

sg8 TACAGAGTGCCCGAGCTGATG GTGCTTCCCTGAGAGACAGACG 62uC 732pb Finnan, 2004

sg100 GCAATCTGTACGTCCTGCACG AGCACGGCTTGTCGCTGTTC 62uC 553pb Finnan, 2004

PAGI-4

CL22 CATGATCCGGCACACTGAGGTC ATGATGGCGAGCGCTACAAGGTTC 60.6uC 464pb This study

PAPI-1

976F/PAPI-1R GCCTGACGGTGTCCTGTTAT GCTGCCTCTCCTACGAACA 58uC 2600pb Qiu 2006

4542F/intF GTGGTGATGACCTCCAACCT AGCTACATCGAGGCCGACTA 58uC 1600pb Qiu 2006

SojR/4541F CGAGCACAGAAATGTCCTGA GACAAGACCAGCCACAACCT 58uC 1600pb Qiu 2006

IntF/sojR AGCTACATCGAGGCCGACTA CGAGCACAGAAATGTCCTGA 58uC 1600pb Qiu 2006

pKLC102

cp10 CGGACCACTAGATAGCCAGG GGACGCCATTGAGTATGCGC 61uC 255pb Klockgether
2007

cp44 GGGTCCGCAAAACTTTCCGC GCTTGAGGTTGGGCCAATCG 61uC 272pb Klockgether
2007

cp97 GGATATCTACGTACCCCGGC CTTTTTACCCGCAGTGGCGG 61uC 337pb Klockgether
2007

PAPI-2

xerC
PAPI-2 1F/1R

TGTTCCGCTCGGGTGCCTTCATC CACGCATCACTCCCGCCTGGTTC 66uC 417pb This study

RS07-RS08
PAPI-2 2F/2R

GGCGAGGTCCAGAATGTGTCAGG TCCCCGCCCGCAGAGTCA 66uC 402pb This study

exoU
PAPI-2 3F/3R

GCGGCGCAACGACAACCTGAT GAAAAGCCACCGCCCCGTCTGT 66uC 434pb This study

*Genomic islands, W Marker gene for hypervariable region location.
doi:10.1371/journal.pone.0037459.t001
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for 2 min. All PCR products of each gene were used as probes,

which were labeled with DIG High Prime DNA labeling

according to the manufacturer’s instructions (Roche Applied

Science, Germany).

Chromosomal DNA Isolation and Macroarray printing
Chromosomal DNA was isolated from overnight cultures of

each of the 100 clinical P. aeruginosa strains analyzed in this work,

as well as the 4 P. aeruginosa reference strains, (PA14, PAO1, C and

SG17M). DNA was purified from bacteria by miniprep (DNeasy

Blood & Tissue Kit QIAGEN) as previously described, and

adjusted to 100 ng/ml. An aliquot of 40 ml of each DNA was

dispensed individually into a 384-well plate, denatured for 30 mins

at 65uC, and chilled on ice. Each DNA was spotted by duplication

onto nylon membranes by Virtek’s ChipWriter System robot.

Macroarray copies were produced in parallel from the same stock

of DNA to ensure that the corresponding spot was represented by

identical amounts of sample on each membrane.

Hybridization of Macroarray
Membranes were incubated for 3 hrs at 60uC with hybridiza-

tion buffer (Roche Diagnostics), and hybridized overnight at 60uC
using the same buffer with Dig-labeled PCR product (correspond-

ing to each selected gene). The membranes were washed twice for

30 min at 65uC in washing buffer (0.1 M maleic acid, 0.15 M

NaCl, pH 7.5, 0.3% (v/v) Tween 20). Detection of DIG-labeled

fragments and exposure to X-ray film were performed according

to manufacturer’s instructions. A presence/absence determination

was made by comparison with hybridization signals obtained with

reference strains.

Macrorestriction Analysis
Genomic DNA in agarose blocks was prepared using the

method previously described by Liu [38] with some modifications.

Briefly, bacteria were grown overnight (for no more than 15 hrs.)

in 5 ml of Luria-Bertani (LB) broth and harvested by centrifuga-

tion. The bacterial pellet was washed in 500 ml of cool PIV

(10 mM Tris [pH 8], 1 M NaCl). This procedure was repeated up

to 5 times, depending on the amount of alginates present in the

culture and adjusted to 5 OD at 600 nm. Then, 200 ml of the cell
suspension was mixed with an equal volume of 1.5% low melting

temperature agarose. The mixture was drawn into disposable plug

molds (BioRad) and cooled at 4uC. The agarose plugs were

incubated overnight at 37uC in 2 ml of lysis solution (1 M Tris

[pH 8], 1 M NaCl, 0.5 M EDTA [pH 8], 0.5% sodium deox-

icolate, 12.5% N-lauroyl-sarcosine, 5mg/ml RNAse, 10 mg/ml

lysozyme), then the blocks were incubated again overnight at 50uC
in ESP (10 mM Tris HCl [pH 7.4], 1 mM EDTA, 0.25% N-

lauroyl-sarcosine, 0.1 mg/ml proteinase K [Sigma]). A second

incubation in ESP solution was performed in order to increase the

purity of the DNA. Finally, blocks were washed 7 times (for 1 hr.

each) with cool TE solution (Tris-HCl 10 mM [pH 8], 1mM

EDTA [pH 8]) and stocked in TE buffer at 4uC. Agarose blocks

were pre-incubated in 1X buffer used for SpeI enzyme for 30 mins

at 37uC and then incubated with 100 ml of fresh 1X buffer

containing 30 U of SpeI at 37uC overnight to digest DNA in the

blocks. SpeI fragments were separated by a CHEF-DR II device

(Bio-Rad) and electrophoresis was performed on 1.2% agarose gels

and 0.5X TBE buffer at 10uC with pulse time ramped from 5 to

25 s over 19 hrs and 5.3 V/cm and a second block with pulse time

ramped from 5 to 60 s over 17 hrs and 5.3 V/cm. Sizes of SpeI

fragments were estimated using XbaI fragments of Salmonella

braenderup global standard H9812. Gels were stained with ethidium

bromide, photographed and then analyzed using whole band

analyzer software (Bioimage). To determine similarity of SpeI

fingerprints, a presence/absence band matrix was constructed and

then a dendrogram was generated by the Neighbor-joining

method using Nei’s minimum distance (1972). The algorithms

were implemented in Tools for Population Genetic Analyses

software [39]. Clustering of profiles was determined under the

criterion of .80% of band match (Biolmage-Whole Band

Analyzer).

Location of the GEIs within the Hypervariable Regions in
the Strains Chromosome
Six strains with different chromosomal restriction profiles and

with 7 GEIs in their chromosome were selected: strains 12, 58 and

99 from subgroup ‘‘a’’, and strains 124, 127 and 128 from

subgroup ‘‘n’’. The location of the 7 GEIs and of the hypervariable

regions on the chromosome of each strain was carried out by

Southern blot hybridization on the SpeI macrorestriction profile,

using as specific probes the 32P labelled PCR products of the

marker genes of each GEI and from the genes lipA, oprl and pilA for

the detection of each hypervariable region (Megaprime DNA

labeling system, [Amersham Biosciences]). The membranes were

incubated in 10 ml of hybridization solution (Rapid-hyb buffer) to

which 1X Denhardt’s solution and 0.2mg/ml of denatured

sheared salmon sperm were added and incubated at 60uC with

constant and gentle shaking for 3 h. The labeled probe was then

added to fresh hybridization solution and hybridization was

carried out overnight at 60uC with constant and gentle shaking.

After being washed at high astringency (64uC) the membrane was

exposed to a X-ray film. The location of each GEI was deduced

from the comparison of its positive hybridization with the positive

hybridization of each hypervariable region.

Antimicrobial Susceptibility
To assess the susceptibility profiles to 20 antimicrobial agents of

the 100 strains of Pseudomonas aeruginosa isolated from Mexican

adults with pneumonia, the agar dilution method was used

according to the guidelines established by the National Committee

for Clinical Laboratory Standards (NCCLS) [40]. ATCC 27853

Pseudomonas aeruginosa, ATCC 25922 Escherichia coli, ATCC 35218

Escherichia coli, ATCC 29213 Staphylococcus aureus, and ATCC 29212

Enterococcus faecalis were used as controls in the susceptibility tests.

All the strains were grown in Muller Hinton agar and harvested in

sterile saline solution to achieve a turbidity equivalent to that of

a No. 0.5 McFarland opacity standard. The antimicrobial agents

tested against P. aeruginosa were: carbenicillin (16–64 mg/mL),

ticarcillin (8–32 mg/mL), piperacillin (1–8 mg/mL) ticarcillin/

clavulanic acid (8/2–32/2 mg/mL), piperacillin/tazobactam (1/

4–8/4 mg/mL) ceftazidime (1–4 mg/mL) ceftriaxone (8–64 mg/
mL) cefotaxime (8–32 mg/mL) cefepime (1–8 mg/mLl) imipenem

(1–4 mg/mL) meropenem (0.25–1 mg/mlL) aztreonam (2–8 mg/
mL) amikacin (1–4 mg/mL) gentamicin (0.5–2 mg/mL) tobramy-

cin (0.25–1 mg/mL) polymyxin b (0.25–2 mg/mL) ciprofloxacin

(0.25–1 mg/mL) norfloxacin (1–4 mg/mL) and levofloxacin (0.5–

4 mg/mL). Agar dilution was performed using two-fold increments

(across a range of 0.125 to 512 mg/mL) of each antimicrobial

agent incorporated into Muller-Hinton agar. The concentration

range for susceptibility and resistance are indicated in parenthesis

with a MIC value lower than the cut-off to indicate susceptibility

and two-fold dilutions above the cut-off to determine resistance.

The criterion for intermediate susceptibility was based on isolates

growing within one-fold dilution higher than the MIC value.

Genomic Islands Frequency in P. aeruginosa
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Statistical Analysis
Linkage disequilibrium to measure the amount of recombina-

tion within the population sampled was determined using the

standardized index of association IA [41]. The mean genetic

diversity H was calculated using the same software.

Results

Frequency of Virulence Genes
PCR was used to assess the prevalence of eight virulence genes

of which toxA, toxR, algR, lasB, lecA, plcH, and phzA1 were detected

in 100% of the strains, while pilA gene was detected by

hybridization only in 55% of isolates, but its detection increased

to 98% when PCR primers were used to amplify complete pilA

locus. Only two strains were pilA negative.

Frequency of GEIs
The results show that in 99% of the strains at least one genomic

island was present. Of the 100 strains tested, 34% presented all the

GEIs: PAGI-I, PAGI-2, PAGI-3, PAGI-4, PAPI-1 and PAPI-2

and the studied insertion element pKLC102; 18% presented 6

GEIs of which the majority were PAGI-2, PAGI-3, PAGI-4,

PAPI-1, PAPI-2 and pKLC102; 12% strains presented 5 GEIs of

which PAPI-2, PAGI-2, PAPI-1, pKLC102 were always present,

in combination with PAGI-4 or PAGI-3; 14% presented 4 GEIs of

which PAGI-2 and pKLC102 were always detected; 10% of the

isolates presented 3 GEIs, PAPI-2 and pKLC102 in combination

with PAGI-4 or PAGI-2; 7% presented the genomic island PAGI-

2 and pKLC102 element; and 4% of the strains presented only

one GEI. There was only one strain that did not present any GEI.

Finally, the island PAPI-2 and the element pKLC102 were the

most frequently detected among the strains (87%) followed by

PAPI-1 (81%), PAGI-2 (78%), PAGI-4 (70%), PAGI-3 (53%) and

PAGI-1 (51%).

Additionally, the detection of each marker gene of the genomic

islands was variable among strains, showing diversity in their

genetic content. For example, in the detection of PAGI-1,

hybridization was positive for ORF3 in 49 strains, for ORF18 in

43 strains, while ORF42 was positive in 50 strains; 31 strains

showed positive hybridization with two of the three ORFs and less

than half of the strains (20) showed positive hybridization with the

three ORFs (Figure 1). In the detection of PAGI-2, hybridization

of gene C22 was positive in 80 strains and of C105 was positive in

79 strains, with 78 strains being positive for both genes. With

regard to PAGI-3 detection, hybridization was positive with the

probe derived from gene SG8 in 59 strains, while 61 strains were

positive for SG100 and 53 strains for both genes. In the detection

of pKLC102, there was also variability, gene CP10 was positive in

87 strains, CP44 was positive in 88 and CP97 in 70 strains, more

than half of the strains (63) presented all three genes. PAPI-1 was

found to be integrated into the chromosome at locus PA0976.1 in

65% of the isolates, and at locus PA4541.1 in 16% of the isolates.

The circular form of the genomic island was not detected in any of

the strains included in this study.

Macrorrestriction Analysis
According to SpeI fragment patterns, the strains were distributed

in four major clades (A–D), seven clusters (I–VII), and several

individual patterns (Figure 1). Reference strains PAO1, C, and

SG17M were grouped in clade C showing each individual

restriction pattern, while strain PA14 was grouped in clade A. In

terms of genotyping by SpeI fingerprint, we were able to identify 49

genotypes, represented for 49 different restriction pattern of which

35 corresponded to 35 single strains (unique patterns), and the 14

remaining to 14 subgroups (a–n). With respect to the prevalence of

each strain, we found no relationship between the presence of

a strain with a particular chromosomal profile type and its date of

isolation. Each strain appeared in different months, but neither of

them remained present for more than 5 consecutive months nor

through all the period of the study (Figure 2). For example, the

strains of subgroup ‘‘k’’ appeared for the first time in April of 2005

and for last time in March of 2006, although these strains were

only isolated in three different and non-continuous months. The

strains of subgroup ‘‘J’’ appeared in August and were isolated

again in November, 2006. The strains of subgroups ‘‘a’’ and ‘‘g’’

were present during five and four continuous months, respectively

(Figure 2); and only one strain of subgroup ‘‘a’’ was isolated

12 months later. The strains of subgroups ‘‘e’’, ‘‘m’’ and ‘‘n’’ were

detected for a single month without further detection. Although,

each subgroup grouped a determined number of strains with the

same chromosomal profile, the majority of the strains were isolated

from unrelated patients and most of them showed a variable

number of GEIs and/or a different antimicrobial resistance

profiles. Additionally, among the strains with the same number of

GEIs and from the same subgroup differences among the types of

GEIs and/or its marker genes were detected. Finally, the

subgroups ‘‘e’’, ‘‘g’’, ‘‘h’’, ‘‘i’’, ‘‘k’’, ‘‘l’’ and ‘‘m’’ grouped up to

three strains isolated from the same patient at different times, and

although the strains isolated from a same patient presented the

same SpeI fingerprint each of them also had a variable number of

GEIs with different antimicrobial resistance profiles, indicating

that they were unrelated isolates (Figure 1). In this study, the

distribution of P. aeruginosa variants revealed that there was not

a prevalent strain colonizing our patient population.

Location of the GEIs within the Hypervariable Regions in
the Strains Chromosome
The hypervariable regions adjacent to lipH, oprL-phnAB and pilA

loci in the chromosome of the strains of subgroup ‘‘a’’ were located

by southern hybridization in a SpeI restriction map. These regions

hybridized in bands of 131-kb, 287-kb and 335-kb respectively,

and in the strains of subgroup ‘‘n’’ in the bands of 706-kb, 200-kb

and 448-kb respectively (Figure 3). The genomic islands PAGI-3

and PAPI-2, and the element pKLC102 hybridized in the bands

corresponding to the marker genes (lipA, oprL and pilA respectively)

of the hypervariable regions indicating that they are inserted

within the regions reported by the authors. The islands PAGI-2

and PAGI-4 hybridized in bands of different size (Figure 3)

indicating that these islands are in other chromosomal position

different to lipH and oprL-phnAB, for example: the strains 12, 58

and 99 of subgroup ‘‘a’’ were positive in the band of 65-kb for

PAGI-2 and in the bands of 340-kb, 256-kb and 287-kb for PAGI-

4; the strains of subgroup ‘‘n’’ were positive in the band of 275-kb

for PAGI-2 and in the band of 700-kb for PAGI-4. With respect to

the location of PAPI-1, the insertion of this island has been already

detected at the tRNALys gene (PA0976.1) of the hypervariable

region close to oprL-phnAB when we obtained the PCR product

amplified with primers set PAPI -1 and 976F. Finally, the island

PAGI-1 hybridized in the strains of subgroup ‘‘a’’ in two bands of

different size of 284-kb and 205-kb; and in the strains of the

subgroup ‘‘n’’ the island was located in the band of 706-kb size.

Association Index and Genetic Diversity
Statistical analysis of the PFGE data for the 49 genotypes

revealed an association index (IA) value close to 0 (0.0024,

p,0.05), indicating linkage equilibrium and that recombination is

frequent enough to break up clonal formation [41]. However,

when calculated on the basis of all isolates, IA increased to 0.022,
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which suggested an epidemic population structure with frequent

recombination among members of the population and occasional

emergence of clones that successfully spread and persist for a while

within a limited geographic and temporal span [42]. The mean

genetic diversity H was 0.2749 +/20.0143, which is in accordance

with that found in many human pathogens with narrow ecological

specificity. Others authors have reported a mean genetic diversity

of 0.229 [43] and 0.357 [44] for P. aeruginosa.

Antimicrobial Susceptibility Profile
The determination of susceptibility profiles of 100 isolates to 20

antimicrobial agents showed 34 different resistance profiles, with

100% of strains showing susceptibility to polymyxin B, while the

73% of strains were resistant to 18 antimicrobials in different

combinations. Only 15 strains were susceptible to a wide range of

the antimicrobial tested (from 14 to 18). In general, the multi-

resistance rate among our strains was very high (Figure 4).

Discussion

Bacterial pathogenicity is evoked by the presence of multiple

virulence factors encoded by groups of genes present in the

chromosome and pathogenicity islands that interact in various

combinations [11,12,45,46]. Pseudomonas aeruginosa harbors several

virulence genes used to colonize, destroy, and spread through

tissue. Our results show that all the virulence genes are present in

all strains of the present study and form part of the core genome of

P. aeruginosa. These findings are in agreement with those studies

that suggest that the different virulence genes are harbored by all

P. aeruginosa strains independently from the sites of isolation,

clinical, or environmental sample [14,47].

The genome of a bacterial pathogen is composed of a conserved

‘‘core’’ genome, which contains the genetic information that is

required for essential cellular functions, and a ‘‘flexible’’ gene pool,

or accessory genome, that includes large insertions acquired by

HGT that encode adaptive traits, which may be beneficial for

bacteria under certain growth or environmental conditions. In P.

aeruginosa, extensive genomic rearrangements have been reported,

as well as acquisition or loss of large blocks of DNA contributing to

genome size variations between 5.2 and 7Mb [17,20]. In the P.

aeruginosa chromosome there are three hypervariable regions

[16,17] that reside in the vicinity of the lipH, phnAB and pilA loci,

where tRNA genes has been identified as the hot spots for the

integration and excision of large DNA blocks [15,28,29,31–33]. As

it has been pointed out in previous studies, the insertions of the

majority of the genomic islands take place within a specific region

Figure 1. Unrooted dendrogram for 100 Pseudomonas aeruginosa clinical isolates. The Neighbor-Joining dendrogram was constructed
using PFGE restriction patterns (Spe I) based on a distance generated matrix (Nei’s [1972] Minimum Distance). Upper case letters (A–D) represent the
four generated clades. Clustering of profiles shown in roman numerals was determined under the criterion of.80% of band match (BioImage-Whole
Band Analyzer). Low case letters (a–n) represent strain subgroups. Presence (+) of virulence genes were determined by PCR and presence (+) of GEIs
by hybridization with specific labeled probes. Antibiotic resistance profiles were performed by agar dilution method according to NCCLS. Symbols
beside the strain number indicate isolates from the same patient.
doi:10.1371/journal.pone.0037459.g001

Figure 2. Histogram showing the prevalence of strains genotype (a–n) over time (Apr 05–Nov 06). The genotype of the Pseudomonas
aeruginosa strains was obtained by SpeI macrorestriction fingerprint.
doi:10.1371/journal.pone.0037459.g002
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of the chromosome, and the strains that present one or two GEIs

inserted in any of their hipervariable regions are few, suggesting

that these GEIs are strain-specific and site-specific. However,

contrary to those reports, our results show that one strain can

harbor up to 7 GEIs in its chromosome and the frequency of each

one of them is high in our P. aeruginosa population, suggesting that

the functional competition and site-specific insertion among these

genetic elements is negligible, probably because there are other

sites of insertion in the chromosome that have not been

characterized so far. Although, some authors have reported the

frequency of some GEIs in their P. aeruginosa populations

[33,37,48], there are few studies reporting the presence of several

genomic islands in the chromosome of a single isolate of P.

aeruginosa and unfortunately there are no other epidemiological

data that shows the frequency from up to 7 islands in other P.

aeruginosa populations with which the results from the current study

can be compared.

Analysis of the insertion sites of each genomic island into the

chromosome of the strains of the current study showed that PAGI-

3, PAPI-1 and PAPI-2 and the element pKLC102 were located

each in the hypervariable regions adjacent to lipH, phnAB and pilA

respectively, as have been reported by the authors [15,28,29,31–

33]. We suppose PAPI-1 and PAPI-2 presented a tandem array

located at tRNALys gene PA0976.1 (region pilA) at the same

chromosomal location as in strain PA14. In two strains of

subgroup ‘‘a’’ the genomic island PAGI-1 was located in the same

band of PAPI-2 suggesting that in these strains there could be up

to three genomic islands in the same DNA fragment. However,

this event would not represent any problem, since it is reported

that the island PAGI-1 is not inserted into any tRNA gene, so that

the three islands could coexist without any competition for their

sites of insertion. With respect to the islands PAGI-2 and PAGI-4,

we found that their location in the chromosome is different from

the reported, out of the hypervariable regions adjacent to lipH and

oprL-phnAB respectively, indicating that there are other insertion

sites in chromosome which have not been characterized yet.

Sequencing of these DNA segments will need to be carried out to

determine the specific site of insertion of PAGI-2 and PAGI-4.

In this study, the detection of each genomic island by

hybridization with specific probes on a chromosomal DNA

macroarray were successfully performed, allowing us to work with

a large number of Pseudomonas aeruginosa strains. Additionally, the

marker genes selected were adequate, showing high specificity and

sensitivity for their detection. In a previous work Klockgether and

Figure 3. Location of hypervariable regions and genomic islands on SpeI chromosomal map of two Pseudomonas aeruginosa strains.
(A) Lane 1 shows the chromosomal restriction pattern with SpeI of the strain 12 from subgroup ‘‘a’’. Lane 2 shows the location of the hypervariable
region close to lipH locus obtained for positive hybridization on a band of 130-kb with the marker gene lipA. Lane 3 shows the position of PAGI-3 on
the band of 130-kb of chromosomal restriction pattern. Lane 4 shows the position of PAGI-2 on a band of 65-kb contrary to the expected size of 130-
kb. Lane 5 shows the location of the hypervariable region close to oprL-phnAB loci obtained for positive hybridization on a band of 287-kb with the
marker gene oprL. Lane 6 shows the position of PAPI-2 on the band of 287-kb of chromosomal restriction pattern. Lane 7 shows the position of PAGI-
4 on a band of 340-kb of chromosomal restriction pattern contrary to the expected size of 287-kb. Lane 8 shows the location of the hypervariable
region close to pilA locus obtained for positive hybridization on a band of 335-kb with the marker gene pilA. Lane 9 shows the position of pKLC102
on the band of 335-kb of chromosomal restriction pattern. Lane 10 shows the position of PAGI-1 with a positive hybridization on a band of 284-kb of
chromosomal restriction pattern. (B) Lane 1 shows the chromosomal restriction pattern with SpeI of the strain 127 from subgroup ‘‘n’’. Lane 2 shows
the location of the hypervariable region close to lipH locus obtained for positive hybridization on a band of 317-kb with the marker gene lipA. Lane 3
shows the position of PAGI-3 on the band of 317-kb of chromosomal restriction pattern. Lane 4 shows the position of PAGI-2 on a band of 275-kb of
chromosomal restriction pattern, contrary to the expected size of 317-kb. Lane 5 shows the location of the hypervariable region close to oprL-phnAB
loci obtained for positive hybridization on a band of 200-kb with the marker gene oprL. Lane 6 shows the position of PAPI-2 on a band of
approximately 130-kb of chromosomal restriction pattern. Lane 7 shows the position of PAGI-4 on a band of 700-kb of chromosomal restriction
pattern, contrary to expected size of 200-kb. Lane 8 shows the location of the hypervariable region close to pilA locus obtained on a band of 448-kb
with the marker gene pilA. Lane 9 shows the position of pKLC102 on the band of 448-kb of chromosomal restriction pattern. Lane 10 shows the
position of PAGI-1 on a band of 706-kb of chromosomal restriction pattern.
doi:10.1371/journal.pone.0037459.g003

Genomic Islands Frequency in P. aeruginosa

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e37459



coworkers [33] documented that PAGI-2 and pKLC102 were

characterized in different subtypes according to their hybridization

patterns, showing that these islands were variable in genes content

when compared with the island hybridization patterns from one

strain to another. In the present study, this difference could be seen

in the hybridization patterns with the different marker genes used

for the detection of PAGI-2 and pKLC102. Furthermore, these

differences between the hybridization patterns of the marker genes

were also seen among the islands PAGI-1, PAGI-3 and PAPI-2

suggesting that these islands also present different subtypes.

Little is known about the role of each genomic island in the

virulence and adaptive traits of the bacteria. The majority of the

proteins encoded within these islands have unknown functions

and, in addition, they possess genes that encode functions related

to DNA mobilization, integration, conjugation and partition

activities [15,31]. There are reports that try to associate the

presence of some GEI with a particular pathology. It is known that

PAGI-2 presents gene clusters encoding all nine essential proteins

for the cytochrome c biogenesis system I and related thio-disulfide

exchange protein. The expression of the genes for cytocrhrome c

biogenesis could facilitate iron uptake and inactivation of

peroxides [49], and thus, may confer an advantage for the

bacteria to persist in the CF lung, where they are exposed to iron

limitation and oxidative stress [50,51]. The islands PAPI-1 and

PAPI-2 have been associated in murine acute pneumonia and

bacteremia infection models [52]. PAPI-1 carries several regula-

tory genes, including pvrR, which controls the biofilm formation of

antibiotic resistant variants of P. aeruginosa that are associated with

chronic infections in individuals with cystic fibrosis [15,53–55].

However, to date the involvement of each island in the

development of any particular disease is not clear. The high

frequency of islands PAGI-2, PAPI-1 and PAPI-2 found in the

majority of our strains isolated from lung secretions of patients

with pneumonia, could be explained for their participation in the

development of pneumonia as was pointed in previous studies.

However, what would be the participation of the remaining

islands in this pathology? It is unknown, whether the presence of

several GEIs interact synergistically. Probably the presence of all

GEIs in the P. aeruginosa chromosome is to increase the

pathogenicity of the strain, to favor multidrug resistance and/or

to promote a better adaptation to the hospital and pulmonary

environment. We do not know which is the frequency of these

islands in strains isolated from other pathologies (urinary tract

infection or septicemia), or in strains isolated from the natural

environment in Mexico, but we know that the strains isolated from

patients with pneumonia present a high frequency of GEIs.

The complete genetic and phenotypic characterization of 100

strains of P. aeruginosa associated with pneumonia infection in

patients admitted to the intensive care unit of a highly specialized

hospital in Mexico, showed that the infections were caused by

unrelated strains with a great genomic diversity and that there was

no cross-infection between patients associated with a single clone.

The results support the idea that P. aeruginosa exhibits an epidemic

population structure, which is predominantly sexual with the

occasional emergence of clones that are only distributed and

Figure 4. Histogram showing antimicrobial susceptibility profile of 100 Pseudomonas aeruginosa clinical strains to 20 common
antimicrobials.
doi:10.1371/journal.pone.0037459.g004
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persist for a short time without causing outbreaks within the

hospital environment.

We speculated that the high incidence of GEIs present in the

collection of studied strains could be associated with multidrug-

resistance present in these strains and the type of patients

(hospitalized in ICU) from which the strains were isolated.

However, this hypothesis cannot be proven yet since strains of P.

aeruginosa isolated from other sources with low antimicrobial

resistance profiles need to be studied.

Final Conclusions
We can say that the high frequency of GEIs detection in P.

aeruginosa strains in our population suggested: first, GEIs are not

specific of strains and some are inserted elsewhere within

chromosome in uncharacterized sites yet; second, the horizontal

transfer of genes among our strains is common, leading to high

contents of GEIs; and third, our strains are different to the strains

and clones circulating in other parts of the world.
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