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Abstract
Hypoxia and acidity act as environmental stressors promoting selection for cancer cells
with a more aggressive phenotype. As a result, a deeper theoretical understanding of
the spatio-temporal processes that drive the adaptation of tumour cells to hypoxic
and acidic microenvironments may open up new avenues of research in oncology and
cancer treatment. We present a mathematical model to study the influence of hypoxia
and acidity on the evolutionary dynamics of cancer cells in vascularised tumours. The
model is formulated as a system of partial integro-differential equations that describe
the phenotypic evolution of cancer cells in response to dynamic variations in the spatial
distribution of three abiotic factors that are key players in tumour metabolism: oxy-
gen, glucose and lactate. The results of numerical simulations of a calibrated version
of the model based on real data recapitulate the eco-evolutionary spatial dynamics of
tumour cells and their adaptation to hypoxic and acidicmicroenvironments.Moreover,
such results demonstrate how nonlinear interactions between tumour cells and abiotic
factors can lead to the formation of environmental gradients which select for cells
with phenotypic characteristics that vary with distance from intra-tumour blood ves-
sels, thus promoting the emergence of intra-tumour phenotypic heterogeneity. Finally,
our theoretical findings reconcile the conclusions of earlier studies by showing that
the order in which resistance to hypoxia and resistance to acidity arise in tumours
depend on the ways in which oxygen and lactate act as environmental stressors in the
evolutionary dynamics of cancer cells.
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1 Introduction

Cancer is a dynamic disease, the characteristics of which are constantly evolving. This
is reflected in the fact that the genotypic and phenotypic properties of cancer cells may
change across space and time within the same tumour, and the dynamics of tumours
with the same histological features are still likely to vary across patients. Moreover,
since the same cancer clones may arise through different evolutionary pathways, the
fact that two tumours have a similar clonal composition at a given point in time does
not necessarily indicate that they share similar evolutionary histories, and does not rule
out the possibility that their future evolution will diverge significantly (Maley et al.
2017). These sources of variability within and between tumours provide the substrate
for the emergence and development of intra- and inter-tumour heterogeneity, which
are major obstacles to cancer eradication (Gillies et al. 2012; Marusyk et al. 2012).

Clinical evidence suggests that cancer cells and the tumourmicroenvironmentmutu-
ally shape each other (Gallaher et al. 2019). This supports the idea that tumours can
be seen as evolving ecosystems where cancer cells with different phenotypic charac-
teristics proliferate, die, undergo genotypic and phenotypic changes, and compete for
space and resources under the selective pressure exerted by the various components of
the tumourmicroenvironment (Gallaher andAnderson 2016; Gay et al. 2016; Ibrahim-
Hashim et al. 2017; Korolev et al. 2014; Lloyd et al. 2016; Loeb 2001; Merlo et al.
2006; Michor and Polyak 2010; Villa et al. 2021; Vander Linden and Corbet 2020). In
this light, intra-tumour phenotypic heterogeneity can be regarded as the outcome of
an eco-evolutionary process in which spatial variability of the concentration of abiotic
factors (i.e. substrates and metabolites) across the tumour supports the formation of
distinct ecological niches whereby cells with different phenotypic characteristics may
be selected (Casciari et al. 1992; Gatenby et al. 2007; Hockel and Vaupel 2001).

In normal tissues, cells produce the energy required to sustain their proliferation
via oxidative phosphorylation (i.e. they rely on oxygen as their primary source of
energy) and turn to glycolysis only when oxygen is scarce. In tumours, the presence of
hypoxic regions (i.e. regionswhere the oxygen levels are below the physiological ones)
induces cells to transiently switch to a glycolytic metabolic phenotype (i.e. to rely on
glucose as their primary source of energy) (Vaupel et al. 2001). Cancer cells eventually
acquire such a glycolytic phenotype and express it also in aerobic conditions, leading
to the so-called Warburg effect (Kim and Dang 2006). The interplay between the high
glycolytic rate of cancer cells and low perfusion in tumours brings about accumulation
of lactate (i.e. a waste product of glycolysis), which causes acidity levels in the tumour
microenvironment to rise (i.e. the pH level drops) (Tang et al. 2012).

Since hypoxia and acidity act as environmental stressors promoting selection for
cancer cells with amore aggressive phenotype (Robertson-Tessi et al. 2015; Tang et al.
2012), an in-depth theoretical understandingof the spatio-temporal processes that drive
the adaptation of tumour cells to hypoxic and acidic microenvironments may open up
new avenues of research in oncology and cancer treatment (Martinez-Outschoorn
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et al. 2016). In this regard, mathematical models can be an important source of sup-
port to cancer research, as they enable extrapolation beyond scenarios which can be
investigated through experiments andmay reveal emergent phenomena thatwould oth-
erwise remain unobserved (Anderson andQuaranta 2008; Byrne 2010; Chaplain 2020;
Chisholm et al. 2016; Eastman et al. 2020; Hamis and Powathil 2020; Poleszczuk et al.
2015). For instance, in their pioneering paper (Gatenby and Gawlinski 1996), Gatenby
and Gawlinski used a reaction–diffusion system to explore how nonlinear interactions
between cancer cells and abiotic components of the tumour microenvironment may
shape tumour growth. The Gatenby–Gawlinski model has recently been extended in
Strobl et al. (2020), in order to take into account the presence of cells with different
phenotypic characteristics within the tumour. Hybrid cellular automaton models have
been employed to study the impact of hypoxia and acidity on tumour growth and
invasion (Anderson et al. 2006, 2009; Gatenby et al. 2007; Hatzikirou et al. 2012;
Kim et al. 2018; Robertson-Tessi et al. 2015). A mechanical model of tumour growth
whereby cells are allowed to switch between aerobic and anaerobic metabolism was
presented in Astanin and Preziosi (2009). Integro-differential equations and partial
integro-differential have been used in Ardaševa et al. (2020a), Chaplain et al. (2021),
Lorenzi et al. (2018), Lorz et al. (2015), Villa et al. (2021) to investigate the ecological
role of hypoxia in the development of intra-tumour phenotypic heterogeneity.

In this paper, we complement these earlier studies by presenting a mathematical
model to study the influence of hypoxia and acidity on the evolutionary dynamics of
cancer cells in vascularised tumours. The model comprises a system of partial integro-
differential equations that describe the phenotypic evolution of cancer cells in response
to dynamic variations in the spatial distribution of three abiotic factors that are key
players in tumour metabolism: oxygen, glucose and lactate.

The remainder of the paper is organised as follows: In Sect. 2, we present the
model equations and the underlying modelling assumptions. In Sect. 3, we summarise
the main results of numerical simulations of the model and discuss their biological
implications. Section 4 concludes the paper and provides a brief overview of possible
research perspectives.

2 Model Description

We consider a one-dimensional region of vascularised tissue of length L > 0. We
describe the spatial position of every tumour cell in the tissue region by a scalar
variable x ∈ [0,L], and we assume a blood vessel to be present at x = 0 (cf. the
schematic in Fig. 1a). Moreover, building upon the modelling framework developed
in Chaplain et al. (2021), Lorenzi et al. (2018), Lorz et al. (2015), Villa et al. (2021),
we model the phenotypic state of every cell by a vector y = (y1, y2) ∈ [0, 1]2 (cf. the
schematics in Fig. 1b). Here, y1 ∈ [0, 1] represents the normalised level of expression
of an acidity-resistant gene (e.g. the LAMP2 gene), while y2 ∈ [0, 1] represents the
normalised level of expression of a hypoxia-resistant gene (e.g. the GLUT-1 gene)
(Damaghi et al. 2015; Gatenby et al. 2007).

We describe the phenotypic distribution of tumour cells at position x and time
t ∈ [0,T], with T > 0, by means of the local population density function n(t, x, y)
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Fig. 1 a Schematic of the spatial domain defined as a one-dimensional region of vascularised tissue of
length L. A blood vessel is assumed to be present at x = 0. b Schematics illustrating the relationships
between the values of the variables y2 and y1 modelling the phenotypic state of tumour cells and the levels
of resistance to hypoxia and acidosis (Color figure online)

(i.e. the local phenotypic distribution of tumour cells). We define the cell density
ρ(t, x), the local mean level of expression of the acidity-resistant gene μ1(t, x) and
the local mean level of expression of the hypoxia-resistant gene μ2(t, x) as

ρ(t, x) :=
∫

[0,1]2
n(t, x, y) dy, μi (t, x) := 1

ρ(t, x)

∫
[0,1]2

yi n(t, x, y) dy (1)

for i = 1, 2. Moreover, we define the phenotypic distribution of tumour cells across
the whole tissue region f (t, y) as the mean value of n(t, x, y) on the interval [0,L],
i.e.

f (t, y) := 1

L

∫ L

0
n(t, x, y) dx . (2)

Similarly, we define the levels of expression of the acidity-resistant gene and the
hypoxia-resistant gene across the whole tissue region as the mean values of μ1(t, x)
and μ2(t, x) on the interval [0,L], respectively, i.e.

ν1(t) := 1

L

∫ L

0
μ1(t, x) dx and ν2(t) := 1

L

∫ L

0
μ2(t, x) dx . (3)

The local concentrations of oxygen, glucose and lactate at position x and time t are
denoted by So(t, x), Sg(t, x) and Sl(t, x), respectively.
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2.1 Dynamics of Tumour Cells

We describe the dynamics of tumour cells through the following balance equation for
the local population density function n(t, x, y)

∂n

∂t
= βn

∂2n

∂x2︸ ︷︷ ︸
undirected, random
cell movement

+ θ Δyn︸ ︷︷ ︸
spontaneous

phenotypic changes

+ R (So, Sg, Sl , ρ, y) n︸ ︷︷ ︸
proliferation and death

, (4)

with (t, x, y) ∈ (0,T] × (0,L) × (0, 1)2, subject to suitable initial conditions. We
complement (4) with zero-flux boundary conditions at x = 0 and x = L (i.e. we
assume that cells cannot leave the tissue region) and zero-flux boundary conditions on
the boundary of the square [0, 1]2 (i.e. we assume that cells cannot have normalised
levels of gene expression smaller than 0 or larger than 1).

The first term on the right-hand side of the partial integro-differential equation (4)
models the effect of undirected, randommovement, which is described through Fick’s
first law of diffusion with diffusivity βn > 0.

The second termon the right-hand side of the partial integro-differential equation (4)
models the effect of heritable, spontaneous phenotypic changes, which occur at rate
θ > 0. Similar diffusion terms have been used in a number of previous papers tomodel
the effect of spontaneous phenotypic changes (Alfaro and Veruete 2019; Almeida
et al. 2019; Ardaševa et al. 2020b; Bouin et al. 2012; Chisholm et al. 2015; Iglesias
and Mirrahimi 2018; Genieys et al. 2006; Lorenzi et al. 2016; Mirrahimi and Gandon
2020; Perthame andGénieys 2007) and can be obtained as the deterministic continuum
limit of corresponding stochastic individual-based models in the asymptotic regime of
large numbers of individuals and small phenotypic changes (Champagnat et al. 2006;
Chisholm et al. 2016).

The function R(So, Sg, Sl , ρ, y) represents the fitness of tumour cells in the pheno-
typic state y at position x and time t under the environmental conditions given by the
concentrations of abiotic factors So(t, x), Sg(t, x) and Sl(t, x), and the cell density
ρ(t, x) (i.e. R(So, Sg, Sl , ρ, y) is the phenotypic fitness landscape of the tumour). We
use the following definition

R(So, Sg, Sl , ρ, y) := P(So, Sg, y2)︸ ︷︷ ︸
proliferation and
death due to

oxygen-driven selection

− D(Sl , y1)︸ ︷︷ ︸
death due to

lactate-driven selection

− d(ρ).︸ ︷︷ ︸
death due to
competition
for space

(5)

Here, the function P(So, Sg, y2) is the rate at which cells with level of expression y2
of the hypoxia-resistant gene proliferate via oxidative phosphorylation and glycolysis
and die due to oxygen-driven selection (i.e. P(So, Sg, y2) is a net proliferation rate).
The function D(Sl , y1) is the rate at which cells with level of expression y1 of the
acidity-resistant gene die due to lactate-driven selection. The function d(ρ) models
the rate of cell death due to competition for space associated with saturation of the
cell density.
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2.1.1 Modelling Oxygen-Driven Selection

Based on the theoretical results and experimental data presented in Korolev et al.
(2014), Vaupel et al. (2001), we focus on a scenario corresponding to the following
biological assumptions.

Assumption 1 There exist two threshold levels of the oxygen concentration OM >

Om > 0 such that the environment surrounding the cells is: hypoxic if So ≤ Om ;
moderately oxygenated if Om < So < OM ; normoxic (i.e. well oxygenated) if So ≥
OM .

Assumption 2 Cells proliferate at a rate that depends on the concentrations of oxygen
and glucose. Moreover, the trade-off between increase in cell death associated with
sensitivity to hypoxia and decrease in cell proliferation associated with acquisition of
resistance to hypoxia results in the existence of a level of expression of the hypoxia-
resistant gene which is the fittest in that: a lower level of gene expression would
correlate with a lower resistance to hypoxia and thus a higher death rate; a higher
level of gene expression would correlate with a larger fitness cost and thus a lower
proliferation rate. Cells with levels of gene expression that are closer to the fittest one
are more likely to survive than the others. Hence, the farther the gene expression level
of a cell is from the fittest one, the more likely is that the cell will die due to a form of
oxygen-driven selection.

Assumption 3 In normoxic environments (i.e. when So ≥ OM ), the energy required
for cell proliferation is produced via oxidative phosphorylation and the cell prolifer-
ation rate is a monotonically increasing function of the concentration of oxygen. In
hypoxic environments (i.e. when So ≤ Om), the energy required for cell proliferation
is produced via glycolysis and the cell proliferation rate is a monotonically increasing
function of the concentration of glucose. In moderately oxygenated environments (i.e.
when Om < So < OM ), the energy required for cell proliferation is produced via
both oxidative phosphorylation and glycolysis. Moreover, the cell proliferation rate
is a monotonically increasing function of the concentrations of oxygen and glucose,
and lower values of the oxygen concentration correlate with a greater tendency of the
cells to proliferate via glycolysis.

Assumption 4 The fittest level of expression of the hypoxia-resistant gene (i.e. the
gene associated with the variable y2) may vary with the oxygen concentration. In
particular: in normoxic environments (i.e. when So ≥ OM ), the fittest level of gene
expression is the minimal one (i.e. y2 = 0); in hypoxic environments (i.e. when
So ≤ Om) the fittest level of gene expression is the maximal one (i.e. y2 = 1); in
moderately oxygenated environments (i.e. when Om < So < OM ), the fittest level of
gene expression is a monotonically decreasing function of the oxygen concentration
(i.e. it decreases from y2 = 1 to y2 = 0 when the oxygen concentration increases).

Under Assumptions 1 and 2, we define the net proliferation rate P(So, Sg, y2) as

P(So, Sg, y2) := po(So)︸ ︷︷ ︸
proliferation via

oxidative phosphorylation

+ pg(So, Sg)︸ ︷︷ ︸
proliferation via

glycolysis

− ηo
(
y2 − ϕo(So)

)2
︸ ︷︷ ︸

death due to
oxygen-driven selection

. (6)
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In (6), the function po(So) models the rate of cell proliferation via oxidative phos-
phorylation, while the function pg(So, Sg) models the rate of cell proliferation via
glycolysis. Furthermore, the third term in the definition given by (6) is the rate of
death induced by oxygen-driven selection. Here, the parameter ηo > 0 is a selection
gradient that quantifies the intensity of oxygen-driven selection and the functionϕo(So)
is the fittest level of expression of the hypoxia-resistant gene under the environmental
conditions given by the oxygen concentration So.

Remark 1 In (6), the distance between y2 and ϕo(So) is computed as
(
y2 − ϕo(So)

)2.
Alternatively, one could compute such a distance as

∣∣y2 −ϕo(So)
∣∣. However, we have

chosen
(
y2 − ϕo(So)

)2 over
∣∣y2 − ϕo(So)

∣∣ because, as discussed in Ardaševa et al.
(2020a), Lorenzi et al. (2016), it leads to a smoother fitness function which is closer
to the approximate fitness landscapes which can be inferred from experimental data
through regression techniques.

Under Assumptions 3 and 4, we use the definitions of the functions po(So),
pg(So, Sg) and ϕo(So) given hereafter

po(So) := γo So
αo + So

w(So), pg(So, Sg) := γg Sg
αg + Sg

(
1 − w(So)

)
, (7)

with

w(So) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 So ≥ OM

1 − OM − So
OM − Om

Om < So < OM

0 So ≤ Om

(8)

and

ϕo(So) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 So ≥ OM

OM − So
OM − Om

Om < So < OM

1 So ≤ Om .

(9)

In (7), the parameters γo > 0 and γg > 0 model the maximum rates of cell pro-
liferation via oxidative phosphorylation and glycolysis, respectively. The parameters
αo > 0 and αg > 0 are the Michaelis–Menten constants of oxygen and glucose. The
weight function w(So) defined via (8) ensures that Assumption 3 is satisfied, while
definition (9) of ϕo(So) is such that Assumption 4 is satisfied (cf. the plot in Fig. 2a).
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2.1.2 Modelling Lactate-Driven Selection

Based on theoretical results and experimental data presented in Robertson-Tessi et al.
(2015), we focus on a scenario corresponding to the following biological assumptions.

Assumption 5 There exist two threshold levels of the lactate concentration LM >

Lm > 0 such that the environment surrounding the cells is: mildly acidic if Sl ≤ Lm ;
moderately acidic if Lm < Sl < LM ; highly acidic if Sl ≥ LM .

Assumption 6 Cells die at a rate that depends on the concentration of lactate. More-
over, the trade-off between increase in cell death associated with sensitivity to acidity
and decrease in cell proliferation associated with acquisition of resistance to acidity
results in the existence of a level of expression of the acidity-resistant gene which
is the fittest in that: a lower level of gene expression would correlate with a lower
resistance to acidity and thus a higher death rate; a higher level of gene expression
would correlate with a larger fitness cost and thus a lower proliferation rate. Cells with
levels of gene expression that are closer to the fittest one are more likely to survive
than the others. Hence, the farther the gene expression level of a cell is from the fittest
one, the more likely is that the cell will die due to a form of lactate-driven selection.

Assumption 7 The fittest level of expression of the acidity-resistant gene (i.e. the gene
associated with the variable y1) may vary with the lactate concentration. In particular:
in mildly acidic environments (i.e. when Sl ≤ Lm), the fittest level of gene expression
is the minimal one (i.e. y1 = 0); in highly acidic environments (i.e. when Sl ≥ LM )
the fittest level of gene expression is the maximal one (i.e. y1 = 1); in moderately
acidic environments (i.e. when Lm < Sl < LM ), the fittest level of gene expression is
a monotonically increasing function of the lactate concentration (i.e. it increases from
y1 = 0 to y1 = 1 when the lactate concentration increases).

Under Assumptions 5 and 6, we define the rate of cell death due to lactate-driven
selection D(Sl , y1) as

D(Sl , y1) := ηl
(
y1 − ϕl(Sl)

)2
. (10)

In (10), the parameter ηl > 0 is a selection gradient that quantifies the intensity
of lactate-driven selection and the function ϕl(Sl) is the fittest level of expression
of the acidity-resistant gene under the environmental conditions given by the lactate
concentration Sl . Considerations analogous to those made in Remark 1 on the term(
y2−ϕo(So)

)2 in (6) apply to the term (
y1−ϕl(Sl)

)2 in (10). Finally, we use the defini-
tion of the function ϕl(Sl) given hereafter (cf. the plot in Fig. 2b), so that Assumption 7
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Fig. 2 a Plot of the fittest level of expression of the hypoxia-resistant gene ϕo(So) defined via (9). The
vertical, dashed lines highlight the oxygen levels Om and OM . Hence, the white region corresponds to
normoxic conditions, the pale-blue region corresponds to moderately oxygenated environments and the
blue region corresponds to hypoxic conditions. b Plot of the fittest level of expression of the acidity-resistant
gene ϕl (Sl ) defined via (11). The vertical, dashed lines highlight the lactate levels Lm and LM . Hence,
the white region corresponds to mildly acidic conditions, the pale-green region corresponds to moderately
acidic conditions and the green region corresponds to highly acidic conditions (Color figure online)

is satisfied:

ϕl(Sl) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 Sl ≤ Lm

Sl − Lm

LM − Lm
Lm < Sl < LM

1 Sl ≥ LM .

(11)

2.1.3 Modelling Competition for Space

We define the rate of cell death due to competition for space associated with saturation
of the cell density as

d(ρ) := κ ρ. (12)

Here, the proportionality constant κ > 0 is related to the local carrying capacity of
the tumour, which may vary depending on the tumour type.
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2.2 Dynamics of Abiotic Factors

Oxygenandglucose are consumedby tumour cells,while lactate is producedby tumour
cells as a waste product of glycolysis. Moreover, oxygen, glucose and lactate diffuse
in space and decay over time. Hence, their dynamics are governed by the following
balance equations for the functions So(t, x), Sg(t, x) and Sl(t, x), respectively,

∂So
∂t

= βo
∂2So
∂x2︸ ︷︷ ︸

diffusion

− λo So︸ ︷︷ ︸
natural
decay

− ζo po(So) ρ,︸ ︷︷ ︸
consumption by tumour cells

(13)

∂Sg
∂t

= βg
∂2Sg
∂x2︸ ︷︷ ︸

diffusion

− λg Sg︸ ︷︷ ︸
natural
decay

− ζg pg(So, Sg) ρ︸ ︷︷ ︸
consumption by tumour cells

(14)

and

∂Sl
∂t

= βl
∂2Sl
∂x2︸ ︷︷ ︸

diffusion

− λl Sl︸︷︷︸
natural
decay

+ ζl pg(So, Sg) ρ,︸ ︷︷ ︸
production by tumour cells

(15)

with (t, x) ∈ (0,T] × (0,L), subject to suitable boundary conditions (see considera-
tions below) and initial conditions.

In (13)–(15), the parameters βo > 0, βg > 0 and βl > 0 are the diffusion coef-
ficients of oxygen, glucose and lactate, respectively, while the parameters λo > 0,
λg > 0 and λl > 0 are the natural decay rates of the three abiotic factors. The third
term on the right-hand side of (13) is the consumption rate of oxygen by tumour
cells, which is proportional to the product between the cell density ρ and the rate of
cell proliferation via oxidative phosphorylation po(So), which is defined via (7). The
parameter ζo > 0 is a conversion factor linked to oxygen consumption by the cells.
Analogous considerations hold for the third term on the right-hand side of (14), which
models the consumption rate of glucose by tumour cells. Furthermore, the third term
on the right-hand side of (15) is the production rate of lactate by tumour cells, which is
assumed to be proportional to the product between the cell density ρ and the rate of cell
proliferation via glycolysis pg(So, Sg) defined via (7). The constant of proportionality
is the conversion factor ζl > 0 linked to lactate production by the cells.

We assume that oxygen and glucose enter the spatial domain through the blood
vessel only, while lactate is flushed out through the blood vessel only. Hence, focussing
on the case where the inflow rate of oxygen and glucose and the outflow rate of lactate
are constant, we complement (13)–(15) with the following boundary conditions at
x = 0

So(t, 0) = So, Sg(t, 0) = Sg, Sl(t, 0) = Sl for all t > 0, (16)

where So > 0 and Sg > 0 are related to the average physiological levels of oxygen and
glucose in proximity to blood vessels, while Sl > 0 is a small parameter of value close
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to zero. In particular, we have So > OM and Sl < Lm . Moreover, we assume that far
from the blood vessel the concentrations of oxygen and glucose drop to some lower
values 0 < So < So and 0 < Sg < Sg , which correspond to the levels of oxygen and
glucose, which are typically observed in regions distant from blood vessels. In partic-
ular, we have So < Om . Furthermore, we model abnormal accumulation of lactate,
which is expected to occur far from blood vessels, imposing zero-flux boundary con-
ditions. Therefore, we complement (13)–(15) with the following boundary conditions
at x = L

So(t,L) = So, Sg(t,L) = Sg,
∂Sl(t,L)

∂x
= 0 for all t > 0. (17)

3 Main Results

In this section, we present the results of numerical simulations of the mathematical
model defined by (4) coupled with (13)–(15) andwe discuss their biological relevance.
First, we describe the set-up of numerical simulations (see Sect. 3.1). Next, we present
a sample of numerical solutions that summarise the spatial dynamics of tumour cells
and abiotic factors (see Sect. 3.2). Then, we report on the results of numerical sim-
ulations showing the evolutionary dynamics of tumour cells and the emergence of
phenotypic heterogeneity (see Sect. 3.3). Finally, we present the results of numerical
simulations that reveal the existence of alternative evolutionary pathways that may
lead to the development of resistance to hypoxia and acidity in vascularised tumours
(see Sect. 3.4).

3.1 Set-Up of Numerical Simulations

Numerical simulations are carried out assuming L = 400μm, which is chosen coher-
ently with experimental data reported in Molavian et al. (2009), and t ∈ [0,T], where
the final time T > 0 is such that the solutions of the model equations are at numerical
equilibrium for t = T.

Initial Conditions We consider (13), (14) and (15) subject, respectively, to the fol-
lowing initial conditions

So(0, x) = S0o (x), Sg(0, x) = S0g(x) and Sl(0, x) = S0l (x) ≡ Sl . (18)

Here, the functions S0o (x) and S0g(x) (see Fig. 3) are defined in such a way as to
match the experimental equilibrium distributions of oxygen and glucose presented in
Molavian et al. (2009, Fig. 2), while Sl is the same small parameter used in (16),
i.e. Sl < Lm . Initial conditions (18) correspond to a situation in which the initial
distributions of oxygen and glucosematchwith experimental equilibrium distributions
of such abiotic factors and lactate is present at a uniform level which is below the
threshold level Lm , that is, the level below which the environment surrounding the
cells is mildly acidic and the fittest level of expression of the acidity-resistant gene is
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Fig. 3 Plots of the initial distribution of oxygen S0o (x) (blue curve, axis on the left) and the initial distribution
of glucose S0g(x) (red curve, axis on the right) which are defined in such a way as to match the experimental
equilibrium distributions of oxygen and glucose presented in Molavian et al. (2009, Fig. 2). The vertical,
dashed lines highlight the points xOM and xOm such that S0o (xOM ) = OM and S0o (xOm ) = Om . Hence,
the white region corresponds to normoxic conditions, the pale-blue region corresponds to moderately
oxygenated environments and the blue region corresponds to hypoxic conditions (Color figure online)

the minimal one. Moreover, we complement (4) with the following initial condition

n(0, x, y) = n0(x, y) := 200 exp

(
− (x − 0)2

0.0002
− |y − 0|2

0.4

)
, (19)

which corresponds to a biological scenario in which at the initial time t = 0 most
tumour cells are concentrated near the blood vessel and are characterised by the mini-
mal expression level of both the hypoxia-resistant gene and the acidity-resistant gene.

Boundary Conditions We use the following values of the parameters So, Sg and Sl
in (16)

So = 2.08 × 10−6 g/cm3, Sg = 1.35 × 10−4 g/cm3, Sl = 10−8 g/cm3 (20)

and the following values of the parameters So and Sg in (17)

So = 2 × 10−10 g/cm3, Sg = 1.35 × 10−6 g/cm3. (21)

The values of So and Sg correspond to the average physiological levels of oxygen and
glucose in proximity to blood vessels reported in Molavian et al. (2009). Moreover,
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the values of So and Sg correspond to the 0.1% of So and the 1% of Sg , respectively.
This is because, based on experimental data reported in Molavian et al. (2009), we
expect the concentrations of oxygen and glucose at 400µm from the blood vessel (i.e.
at x = L) to drop, respectively, below the 0.1% and the 1% of their value near the
blood vessel.

Parameter Values Unless otherwise explicitly stated, we use the values of the model
parameters listed in Table 1, which are chosen to be consistent with the existing
literature, except for the values of the parameters ηo, ηl , λl and ζl that are model
specific in that we could not find them in the literature and are defined on the basis of
the following considerations. The value of the conversion factor for lactate production
ζl is chosen to be the same as the value of the conversion factor for glucose consumption
ζg . Furthermore, the value of the rate of natural decay of lactate λl is such that the
distribution of lactate at numerical equilibrium (i.e. the graph of Sl(T, x)) is similar to
the lactate distributions reported inMolavian et al. (2009). Finally, although the values
of the selection gradients ηo and ηl are chosen with exploratory aim, a systematic
sensitivity analysis of the evolutionary dynamics of tumour cells to the values of
these parameters was carried out, and the key findings from such sensitivity analysis
are summarised by the results presented in Sect. 3.4. We also note that the value of
the rate of phenotypic changes given in Table 1 is consistent with experimental data
reported in Doerfler and Böhm (2006) and Duesberg et al. (2000).

Numerical Methods Numerical solutions are constructed using a uniform discreti-
sation of the interval [0,L] as the computational domain of the independent variable
x and a uniform discretisation of the square [0, 1]2 as the computational domain of
the independent variable y. We also discretise the interval [0,T] with a uniform step.
The method for constructing numerical solutions is based on an explicit finite differ-
ence scheme in which a three-point and a five-point stencils are used to approximate
the diffusion terms in x and y, respectively, and an implicit–explicit finite difference
scheme is used for the reaction terms (LeVeque 2007; Lorz et al. 2013). All numerical
computations are performed in Matlab.

3.2 Dynamics of the Cell Density and the Concentrations of Abiotic Factors

The dynamics of the density of tumour cells and the concentrations of abiotic factors
are illustrated by the plots in Fig. 4. In summary, the cell density and the concentration
of lactate at successive times (i.e. the graphs of ρ(t, x) for four different values of t
and Sl(t, x) for three different values of t) are displayed in Fig. 4a, c, respectively,
while the concentrations of oxygen and glucose at time T (i.e. the graphs of So(T, x)
and Sg(T, x)) are displayed in Fig. 4b.

The dashed lines in Fig. 4 highlight the spatial positions xOM and xOm at which
the oxygen concentration at time T crosses, respectively, the threshold values OM and
Om (i.e. So(T, xOM ) = OM and So(T, xOm ) = Om). Hence, the white region (i.e.
the interval [0, xOM ]), the pale-blue region (i.e. the interval (xOM , xOm )) and the blue
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Table 1 Parameter values used in numerical simulations

Par. Biological meaning Value Units References

βo Diffusion coefficient of oxygen 1.46 × 10−5 cm2 s−1 Molavian et al. (2009)

βg Diffusion coefficient of glucose 1.10 × 10−6 cm2 s−1 Molavian et al. (2009)

βl Diffusion coefficient of lactate 1.9 × 10−6 cm2 s−1 Molavian et al. (2009)

βn Cell motility 10−13 cm2 s−1 Villa et al. (2021)

θ Rate of phenotypic changes 10−13 s−1 Villa et al. (2021)

λo Rate of natural decay of oxygen 1.2 × 10−3 s−1 Molavian et al. (2009)

λg Rate of natural decay of glucose 2.33 × 10−5 s−1 Molavian et al. (2009)

λl Rate of natural decay of lactate 5 × 10−2 s−1 Ad hoc

γo Max. prolif. rate via oxidative
phosphorylation

3.65 × 10−7 s−1 Molavian et al. (2009)

αo Michaelis-Menten constant of
oxygen

6.4 × 10−9 g cm−3 Molavian et al. (2009)

γg Max. prolif. rate via glycolysis 3.42 × 10−7 s−1 Molavian et al. (2009)

αg Michaelis–Menten constant of
glucose

9 × 10−6 g cm−3 Molavian et al. (2009)

ηo Selection gradient related to oxygen 3.65 × 10−2 s−1 Ad hoc

ηl Selection gradient related to lactate 10−2 s−1 Ad hoc

κ Rate of cell death due to competition
for space

2 × 10−10 cm3 s−1 cells−1 Lorenzi et al. (2018)

ζo Conversion factor for oxygen
consumption

10−8 g cells−1 Lorenzi et al. (2018)

ζg Conversion factor for glucose
consumption

10−8 g cells−1 Lorenzi et al. (2018)

ζl Conversion factor for lactate
production

10−8 g cells−1 Ad hoc

Om Threshold level of oxygen for
hypoxic env.

8.2 × 10−9 g cm−3 Vaupel et al. (2001)

OM Threshold level of oxygen for
normoxic env.

4.3 × 10−7 g cm−3 Vaupel et al. (2001)

Lm Threshold level of lactate for mildly
acidic env.

2 × 10−5 g cm−3 Robertson-Tessi et al. (2015)

LM Threshold level of lactate for highly
acidic env.

7.15 × 10−5 g cm−3 Robertson-Tessi et al. (2015)

L Max. distance from blood vessel 400 µm Molavian et al. (2009)

region (i.e. the interval [xOm ,L]) correspond to normoxic, moderately oxygenated and
hypoxic environmental conditions, respectively.

The curves in Fig. 4a summarise the evolution of the cell number density ρ(t, x),
which behaves like an invading front whereby growth is saturated at a value that
decreases with the distance from the blood vessel (i.e. ρ(t, x) converges to a form
of generalised transition wave Berestycki and Hamel 2012; Berestycki and Nadin
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2020). These results illustrate how the synergistic interaction between cell prolifera-
tion, which occurs until the local carrying capacity of the tissue is reached, and cell
movement allows tumour cells, which are initially located in the proximity of the blood
vessel, to invade the surrounding tissue. The result that the plateau value of the cell
number density decreases with the distance from the blood vessel, which is a result
with broad structural stability under parameter changes (see Appendix A), reflects the
fact that, in our model, the cell proliferation rate in normoxic conditions, whereby
the energy needed for cell proliferation is produced via oxidative phosphorylation, is
higher than the cell proliferation rate in moderately oxygenated environments, which
in turn is higher than the cell proliferation rate in hypoxic conditions, whereby the
energy needed for cell proliferation is produced via glycolysis (cf. the blue curve in
Fig. 5). This is in linewith experimental evidence, indicating that glycolysis is less effi-
cient than oxidative phosphorylation as a mechanism to produce the energy required
for cell proliferation.

Moreover, the curves in Fig. 4b show how the reaction–diffusion dynamics of oxy-
gen and glucose, along with the inflow through the blood vessel and the consumption
by tumour cells, lead the concentrations of such abiotic factors to converge to some
stable values, which decrease as the distance from the blood vessel increases (i.e. at
t = T, So(t, x) and Sg(t, x) appear to be at numerical equilibrium and are monotoni-
cally decreasing functions of x). Notice that the distributions of oxygen and glucose
at the final time T are close to the initial distributions S0o (x) and S0g(x) displayed in
Fig. 3. This is to be expected. In fact, since S0o (x) and S0g(x) are defined in such a way
as to match experimental equilibrium distributions of oxygen and glucose, under the
biologically informed parameter values (cf. Table 1) and boundary conditions (cf. (16),
(17) and (20), (21)) used here, the concentrations So(t, x) and Sg(t, x) reach quickly
numerical equilibrium. We verified via additional numerical simulations (results not
shown) that, as one would expect, the concentrations of oxygen and glucose at numer-
ical equilibrium do not depend on the choice of the initial conditions.

Finally, the curves in Fig. 4c summarise the evolution of the concentration of lactate
Sl(t, x), which is the result of the interplay between the production of this abiotic
factor by tumour cells, its reaction–diffusion dynamics and its outflow through the
blood vessel. It is known that, as a waste product of glycolysis, lactate is mainly
produced and accumulate in moderately oxygenated and hypoxic regions, where cell
proliferation relies more on glycolysis and tissue perfusion is poorer. In agreement
with this, the curves in Fig. 4c demonstrate that the concentration of lactate increases
with the distance from the blood vessel. In particular, the values attained by Sl(T, x),
which depend on the values of the production rate of lactate in our model (cf. the red
curve in Fig. 5), are in agreement with lactate concentrations reported in Molavian
et al. (2009).

3.3 Evolutionary Dynamics of Tumour Cells and Emergence of Phenotypic
Heterogeneity

Asdiscussed in the previous section, reaction–diffusiondynamics of abiotic factors and
mutual interactions between abiotic factors and tumour cells lead to the emergence
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Fig. 4 a Plots of the cell density ρ(t, x) at four successive time instants (yellow, orange, red and burgundy
lines). The burgundy line highlights ρ(T, x). b Plots of the concentrations of oxygen So(T, x) (blue line) and
glucose Sg(T, x) (red line). c Plots of the concentration of lactate Sl (t, x) at three successive time instants
(light-green, green anddark-green lines). The dark-green line highlights Sl (T, x). In every panel, the vertical,
dashed lines highlight the points xOM and xOm such that So(T, xOM ) = OM and So(T, xOm ) = Om .
Hence, thewhite region corresponds to normoxic conditions, the pale-blue region corresponds tomoderately
oxygenated environments and the blue region corresponds to hypoxic conditions (Color figure online)

Fig. 5 Plots of the cell proliferation rate po(So(T, x)) + pg(So(T, x), Sg(T, x)) (blue curve, axis on the
left) and the production rate of lactate ζl pg(So(T, x), Sg(T, x)) ρ(T, x) (red curve, axis on the right)
defined via (7). The vertical, dashed lines highlight the points xOM and xOm such that So(T, xOM ) = OM
and So(T, xOm ) = Om . Hence, the white region corresponds to normoxic conditions, the pale-blue region
corresponds to moderately oxygenated environments and the blue region corresponds to hypoxic conditions
(Color figure online)

of spatial variations in the concentrations of oxygen and lactate—i.e. the oxygen
concentration So(T, x) is a monotonically decreasing function of x , while the lactate
concentration Sl(T, x) is a monotonically increasing function of x (cf. plots in Fig. 4b,
c).

Spatial variability of oxygen and lactate concentrations can lead to the formation
of environmental gradients resulting in the selection for cells with phenotypic charac-
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teristics that vary with distance from the blood vessel, thus promoting the emergence
of intra-tumour phenotypic heterogeneity. The numerical results displayed in Fig. 6
support the idea that this can be effectively captured by our model.

The dashed lines in Fig. 6a, b highlight the fittest levels of expression of the hypoxia-
resistant gene (see Fig. 6a) and the acidity-resistant gene (see Fig. 6b) at time T [i.e.
the graphs of ϕo(So(T, x)) and ϕl(Sl(T, x))], while the solid lines display the local
mean levels of expression of the hypoxia-resistant gene (see Fig. 6a) and the acidity-
resistant gene (see Fig. 6b) at four successive times (i.e. the graphs of μ2(t, x) and
μ1(t, x) for four different values of t). In analogy with Fig. 4, the vertical, dashed
lines in Fig. 6a highlight the spatial positions xOM and xOm at which the oxygen
concentration at time T crosses, respectively, the threshold values OM and Om (i.e.
So(T, xOM ) = OM and So(T, xOm ) = Om). Hence, the white region corresponds
to normoxic conditions, the pale-blue region corresponds to moderately oxygenated
environments and the blue region corresponds to hypoxic conditions. Moreover, the
vertical, dashed lines in Fig. 6b highlight the spatial positions xLm and xLM atwhich the
lactate concentration at time T crosses, respectively, the threshold values Lm and LM

(i.e. Sl(T, xLm ) = Lm and Sl(T, xLM ) = LM ). Hence, the white region corresponds
to mildly acidic conditions, the pale-green region corresponds to moderately acidic
conditions and the green region corresponds to highly acidic conditions.

As shown by the plots in Fig. 6a, b, the local mean levels of expression of the
hypoxia- and acidity-resistant genes converge, as time passes, to the fittest ones (i.e.
μ2(T, x) matches with ϕo(So(T, x)) and μ1(T, x) matches with ϕl(Sl(T, x)), the val-
ues of which vary with the distance from the blood vessel depending on the local
concentrations of oxygen and lactate. In more detail, the local mean level of expres-
sion of the hypoxia-resistant gene at time T is the minimal one in normoxic conditions
(i.e. μ2(T, x) ≡ 0 for x ∈ [0, xOM ]), the maximal one in hypoxic conditions (i.e.
μ2(T, x) ≡ 1 for x ∈ [xOm ,L]) and increases with the oxygen concentration in
moderately oxygenated environments (i.e. μ2(T, x) increases monotonically from 0
to 1 for x ∈ (xOM , xOm )). Furthermore, the local mean level of expression of the
acidity-resistant gene at time T is the minimal one in the mildly acidic region (i.e.
μ1(T, x) ≡ 0 for x ∈ [0, xLm ]), the maximal one in highly acidic conditions (i.e.
μ1(T, x) ≡ 1 for x ∈ [xLM ,L]) and increases with the lactate concentration in mod-
erately acidic environments (i.e. μ1(T, x) increases monotonically from 0 to 1 for
x ∈ (xLm , xLM )). These are results with broad structural stability under parameter
changes (see Appendix A).

Finally, the plots in Fig. 6c–e show that, at every position x ∈ [0,L], the local
phenotypic distribution of tumour cells at time T (i.e. the local population density
function n(T, x, y)) is unimodal and attains its maximum at the fittest phenotypic
state y = (

ϕo(So(T, x)), ϕl(Sl(T, x)
)
. As discussed in Appendix A, such a qualitative

behaviour ofn(T, x, y) is in agreementwith predictions basedon the formal asymptotic
results presented in Villa et al. (2021).

The numerical results of Fig. 6 are complemented by the numerical results displayed
in Fig. 7, which summarise the time evolution of the phenotypic distribution of tumour
cells across the whole tissue region (i.e. the function f (t, y) defined via (2)) and show
that the maximum point of the distribution departs from the point y = (0, 0) (i.e. the
point corresponding to the minimal expression level of both the acidity-resistant gene
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Fig. 6 a Plots of the normalised level of expression of the hypoxia-resistant geneμ2(t, x) at four successive
time instants (yellow, orange, red and light-green lines). The light-green line highlights μ2(T, x) and the
burgundy, dashed line highlights the fittest level of expression of the hypoxia-resistant gene ϕo(So(T, x))
defined via (9). The vertical, dashed lines highlight the points xOM and xOm such that So(T, xOM ) = OM
and So(T, xOm ) = Om . Hence, the white region corresponds to normoxic conditions, the pale-blue region
corresponds tomoderately oxygenated environments and the blue region corresponds to hypoxic conditions.
b Plots of the normalised level of expression of the acidity-resistant gene μ1(t, x) at four successive
time instants (yellow, orange, red and light-blue lines). The light-blue line highlights μ1(T, x), and the
burgundy, dashed line highlights the fittest level of expression of the acidity-resistant gene ϕl (Sl (T, x))
defined via (11). The vertical, dashed lines highlight the points xLm and xLM such that Sl (T, xLm ) = Lm
and Sl (T, xLM ) = LM . Hence, the white region corresponds to mildly acidic conditions, the pale-green
region corresponds to moderately acidic conditions and the green region corresponds to highly acidic
conditions. c–e Plots of the local phenotypic distribution of tumour cells n(T, x, y) at the points x = xa ,
x = xb and x = xc highlighted, respectively, by the circle, square and triangle markers shown in a and b
(Color figure online)

and the hypoxia-resistant gene)—cf. the initial condition n0(x, y) defined via (19)—
and moves toward the point y = (1, 1), which corresponds to the maximal expression
level of both the hypoxia-resistant gene and the acidity-resistant gene (i.e. the degree
of malignancy of the tumour increases over time).

These results recapitulate key ideas about the eco-evolutionary dynamics of tumour
cells proposed inMaley et al. (2017) by demonstrating how patchy resources (i.e. oxy-
gen and glucose) and hazards (i.e. the selective pressure effects of lactate),which define
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Fig. 7 Plots of the phenotypic distribution of tumour cells across the whole tissue region f (t, y) defined
according to (2) at six successive time instants t1 < t2 < . . . < t6 (Color figure online)

the ecology of the tumour, can create multiple habitats whereby different phenotypic
variants may be selected according to the principle of the “survival of the fittest” (i.e.
through a functional trade-off between the ability to survive under certain environ-
mental conditions and the evolutionary cost of acquiring such an ability). In the same
vein, these results also support the idea that tumour growth can be conceptualised as an
ecological process driven by consecutive phases of invasion and colonisation of new
tissue habitats by tumour cells, which may be accelerated by the presence of gradients
of abiotic factors corresponding to harsher environmental conditions.

3.4 Alternative Evolutionary Pathways Leading to the Development of Resistance
to Hypoxia and Acidity

In line with the classification of the evolutionary and ecological features of neoplasms
presented in Maley et al. (2017), the ratio between the selection gradients ηo and ηl
of our model could be seen as a measure of the impact that hypoxia and acidity may
have on the eco-evolutionary dynamics of tumour cells. Hence, in this section we
explore how the dynamics of the levels of expression of the acidity-resistant gene and
the hypoxia-resistant gene across the whole tissue region (i.e. the functions ν1(t) and
ν2(t) defined via (3)) are affected by the value of the ratio ηo/ηl .

The plot in Fig. 8, which displays the curve φ(t) = (
ν1(t), ν2(t)

)
, demonstrates

that resistance to hypoxia and resistance to acidity arise via alternative evolutionary
pathways depending on the value of ηo/ηl . Coherently with the results presented in the
previous section, φ(t) departs from the point (0.15, 0.15) (i.e. the point corresponding
to the initial levels of expression of the acidity-resistant gene and the hypoxia-resistant
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Fig. 8 Plots of the curveφ(t) = (
ν1(t), ν2(t)

)
for different values of the ratio between the selection gradient

related to oxygen ηo and the selection gradient related to lactate ηl . The functions ν1(t) and ν2(t) defined
via (3) model the levels of expression of the acidity-resistant gene and the hypoxia-resistant gene across
the whole tissue region, respectively (Color figure online)

gene across the whole tissue region) and, for all values of ηo/ηl considered, ultimately
converges to a point corresponding to a high expression level of both the acidity-
resistant gene and the hypoxia-resistant gene. However, larger values of the ratio ηo/ηl
lead the level of expression of the hypoxia-resistant gene ν2(t) to increase faster than
the level of expression of the acidity-resistant gene ν1(t), while smaller values of ηo/ηl
correlate with a faster increase of ν1(t) and a slower increase of ν2(t). Furthermore,
for intermediate values of the ratio ηo/ηl we observe a simultaneous increase of the
values of ν1(t) and ν2(t), whereas sufficiently large and sufficiently small values of
ηo/ηl correlate with a decoupling between the increase of ν1(t) and ν2(t). In more
detail, if the ratio ηo/ηl is sufficiently high, first ν2(t) increases while ν1(t) remains
almost constant, and then, when ν2(t) is sufficiently high, ν1(t) starts increasing as
well. On the other hand, in the case where ηo/ηl is sufficiently low, we have that ν1(t)
increases first and then ν2(t) starts increasing as soon as ν1(t) becomes sufficiently
high.

These results communicate the biological notion that: the strength of the selective
pressures exerted by oxygen and lactate on tumour cells, which are quantified by
the values of the selection gradients ηo and ηl , may shape the emergence of hypoxic
resistance and acidic resistance in tumours; the order in which such forms of resistance
develop depends on the intensity of oxygen-driven selection in relation to the intensity
of lactate-driven selection.
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4 Conclusions and Research Perspectives

In this work, we have developed a mathematical modelling approach to investigate
the influence of hypoxia and acidity on the evolutionary dynamics of cancer cells in
vascularised tumours.

The results of numerical simulations of a calibrated version of the model based on
real data recapitulate the eco-evolutionary spatial dynamics of tumour cells and their
adaptation to hypoxic and acidicmicroenvironments. In particular, the results obtained
indicate that tumour cells characterised by lower levels of expression of hypoxia- and
acidity-resistant genes are to be expected to colonise well-oxygenated and mildly
acidic regions of vascularised tissues, whereas cells expressing a more aggressive
phenotype characterised by higher levels of resistance to hypoxia and acidity will
ultimately populate tissue regions corresponding to hypoxic and acidic microenviron-
ments. Such theoretical findings recapitulate histological data on ductal carcinoma
in situ, showing that the levels at which the acidity-resistant gene LAMP2 and the
hypoxia-resistant gene GLUT-1 are expressed by cancer cells increase moving from
the walls to the centre of the milk duct (i.e. moving from more oxygenated and less
acidic regions to regions that are less oxygenated and more acidic) (Damaghi et al.
2015; Gatenby et al. 2007).

Moreover, our theoretical findings reconcile the conclusions of Gatenby et al.
(2007), suggesting that tumour cells acquire first resistance to hypoxia and then resis-
tance to acidity, and the conclusions of Robertson-Tessi et al. (2015), supporting the
idea that the two forms of resistance are acquired in reverse order, by showing that
the order in which resistance to hypoxia and resistance to acidity arise depend on the
ways in which oxygen and lactate act as environmental stressors in the evolutionary
dynamics of tumour cells, which are known to vary between tissue types and between
patients (Maley et al. 2017).

We concludewith a brief overviewof possible research perspectives.Along the lines
of Lorenzi et al. (2021), the modelling framework presented here could be extended to
incorporate additional details of cell movement and mechanical interactions between
cells (Ambrosi and Preziosi 2002; Astanin and Preziosi 2008; Byrne and Preziosi
2003), which would make it possible to investigate the interplay between phenotypic
evolution of cancer cells and tumour growth. Alternative ways of modelling the effect
of heritable, spontaneous phenotypic changes, for instance via integral terms (Barles
et al. 2009; Busse et al. 2020; Calsina et al. 2013; Diekmann et al. 2005; Lorz et al.
2013), could also be considered, in order to capture finer details of the processes
that drive phenotypic changes (Amadori et al. 2015, 2018; Carja and Plotkin 2017;
Champagnat et al. 2006; Di Costanzo et al. 2018). Moreover, it would be relevant
to include in the model the effects of stress-induced phenotypic changes caused by
hypoxia and acidity,whichmight be taken into account by introducing adrift term in the
balance equation for the local population density function of tumour cells, as similarly
done in Celora et al. (2021), Chisholm et al. (2015), Lorenzi et al. (2015). In the vein
of Alfaro and Veruete (2019), Lorenzi and Pouchol (2020), Michod et al. (2006),
Nguyen et al. (2019), it would also be interesting to consider possible generalisations
of the definition of the fitness function employed here, for instance by letting the
selection gradients depend on the concentrations of the abiotic factors, which would
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allow the concavity of the fitness function to vary across the tumour depending on the
local environmental conditions, and by introducing multiple fitness peaks, in order to
explore alternative ways in which the spatial and evolutionary dynamics of tumour
cells, and their dynamical interactions with abiotic factors, may drive the emergence
of intra-tumour phenotypic heterogeneity (Gerlinger et al. 2012).

Building on Ardaševa et al. (2020a), it would be interesting to generalise the model
to study the effects of fluctuations in the inflow rate of oxygen and glucose and the out-
flow rate of lactate in the evolution of cancer cells. In fact, when in hypoxic conditions,
cancer cells are known to produce and secrete proangiogenic factors which induce the
formation of new blood vessels departing from existing ones. Such an angiogenic
process results in the formation of a disordered tumour vasculature whereby the rates
at which oxygen and glucose enter the tumour and the rate at which lactate is flushed
out through intra-tumour blood vessels fluctuate over time, which impacts on the evo-
lutionary dynamics of cancer cells (Dewhirst 2009; Kimura et al. 1996; Matsumoto
et al. 2010; Michiels et al. 2016).

It would also be interesting to extend the model in order to investigate the role
of phenotypic transitions triggered by hypoxia and acidity—such as the epithelial–
mesenchymal transition induced by hypoxic environmental conditions (Misra and
Pandey 2012; Tam et al. 2020; Zhang et al. 2015) and the acquisition of the metastatic
phenotype promoted by acidic microenvironments (Damaghi et al. 2015; DeClerck
and Elble 2010; Fais et al. 2014)—in the phenotypic adaptation of cancer cells and
tumour growth.

Furthermore, since resistance to hypoxia is known to correlate with resistance to
chemotherapy and radiotherapy (Cosse and Michiels 2008; DeClerck and Elble 2010;
Lewin et al. 2018; Prokopiou et al. 2015; Teicher 1994), building on Chaplain et al.
(2021); Lorenzi et al. (2018); Lorz et al. (2015), it would be relevant for anti-cancer
therapy to address numerical optimal control for an extended version of the model
that takes into account the effect of chemotherapy and/or radiotherapy (Almeida et al.
2019; Pouchol et al. 2018), which could inform the development of optimised cancer
treatment protocols that exploit evolutionary and ecological principles (Acar et al.
2020; Gatenby et al. 2009; Korolev et al. 2014; Merlo et al. 2006).

Finally, it would certainly be interesting to extend the model presented here to two-
and three-dimensional spatial domains. This would make it possible to explore the
evolutionary dynamics of tumour cells in a broader range of biological and clinical
scenarios and, in particular, it would allow to investigate how the level of tissue vascu-
larisation and the distribution of blood vessels may affect the eco-evolutionary process
leading to the emergence of resistance to hypoxia and acidity in vascularised tumours.
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A Steady-State Properties of theModel for the Dynamics of Tumour
Cells and Robustness of the Results Obtained

Steady-State Properties of themodel for the dynamics of tumour cells Using a time
scale separation approach and a formal asymptoticmethod similar to those employed in
Villa et al. (2021), one can formally show that when spontaneous phenotypic changes
and undirected, random cell movement occur on slower time scales compared to cell
division and death, as in the case of this work (cf. the parameter values listed in
Table 1), and the fitness function R(So, Sg, Sl , ρ, y1, y2) is a strictly concave function
of y = (y1, y2) of the form considered here, i.e.

R (So, Sg, Sl , ρ, y1, y2) := p (So, Sg, Sl , y1, y2) − κρ (22)

with

p (So, Sg, Sl , y1, y2) := γo So
αo + So

(
1 − ϕo(So)

) + γg Sg
αg + Sg

ϕo(So)

−ηo
(
y2 − ϕo(So)

)2 − ηl
(
y1 − ϕl(Sl)

)2 (23)

where ϕo : R+ → [0, 1] and ϕl : R+ → [0, 1], the steady-state distribution of tumour
cells, n∞(x, y1, y2), will be unimodal and such that the steady-state cell density,

ρ∞(x) =
∫ 1

0

∫ 1

0
n∞(x, y1, y2) dy1 dy2,

the steady-state local mean level of expression of the acidity-resistant gene,

μ∞
1 (x) = 1

ρ∞(x)

∫ 1

0

∫ 1

0
y1 n

∞(x, y1, y2) dy1 dy2,

and the steady-state local mean level of expression of the hypoxia-resistant gene,

μ∞
2 (x) = 1

ρ∞(x)

∫ 1

0

∫ 1

0
y2 n

∞(x, y1, y2) dy1 dy2,
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will satisfy the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
(
S∞
o (x), S∞

g (x), S∞
l (x), ρ∞(x), μ∞

1 (x), μ∞
2 (x)

)
= 0,

∂R

∂ y1

(
S∞
o (x), S∞

g (x), S∞
l (x), ρ∞(x), μ∞

1 (x), μ∞
2 (x)

)
= 0,

∂R

∂ y2

(
S∞
o (x), S∞

g (x), S∞
l (x), ρ∞(x), μ∞

1 (x), μ∞
2 (x)

)
= 0,

∀x ∈ [0,L],

where S∞
o (x), S∞

g (x) and S∞
l (x) are the steady-state concentrations of oxygen, glu-

cose and lactate, respectively.
Substituting definitions (22) and (23) into the above system and solving for ρ∞,

μ∞
1 and μ∞

2 yields

ρ∞(x) = 1

κ

(
γo S∞

o (x)

αo + S∞
o (x)

(
1 − ϕo(S

∞
o (x))

) + γg S∞
g (x)

αg + S∞
g (x)

ϕo(S
∞
o (x))

)
(24)

and

μ∞
1 (x) = ϕl(S

∞
l (x)), μ∞

2 (x) = ϕo(S
∞
o (x)). (25)

These formal results are confirmed both by the plots in Fig. 6c–e, which show that,
at every position x ∈ [0,L], the local phenotypic distribution of tumour cells at
the end of numerical simulations n(T, x, y) is unimodal, and by the plots in Fig. 9,
which demonstrate that, defining S∞

o (x), S∞
g (x) and S∞

l (x) as So(T, x), Sg(T, x)
and Sl(T, x) displayed in Fig. 4, respectively, and using the same parameter values
as those used to obtain the numerical results of Figs. 4 and 6, there is an excellent
quantitative match between: ρ∞(x) defined via (24) and ρ(T, x) displayed in Fig. 4;
μ∞
1 (x) defined via (25) and μ1(T, x) displayed in Fig. 6; μ∞

2 (x) defined via (25) and
μ2(T, x) displayed in Fig. 6.

Robustness of the Results Obtained From the form of the steady-state cell density
ρ∞ given by (24), the form of the steady-state local mean level of expression of the
acidity-resistant gene μ∞

1 given by (25), and the form of the steady-state local mean
level of expression of the hypoxia-resistant gene μ∞

2 given by (25), one can see that
the qualitative properties of the results presented in Sects. 3.2 and 3.3—i.e. the fact
that:

(i) the plateau value of the cell density ρ decreases with the distance from the blood
vessel;

(ii) the local mean level of expression of the acidity-resistant gene μ1 at equilibrium
is the minimal one in mildly acidic regions, the maximal one in highly acidic
conditions and increases with the lactate concentration in moderately acidic envi-
ronments;
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Fig. 9 a Comparison between ρ∞(x) defined via (24) (dashed line) and ρ(T, x) displayed in Fig. 4 (solid
line). b Comparison between μ∞

2 (x) defined via (25) (dashed line) and μ2(T, x) displayed in Fig. 6 (solid
line). c Comparison between μ∞

1 (x) defined via (25) (dashed line) and μ1(T, x) displayed in Fig. 6 (solid
line). Here, ρ∞(x), μ∞

1 (x) and μ∞
2 (x) are computed defining S∞

o (x), S∞
g (x) and S∞

l (x) as So(T, x),
Sg(T, x) and Sl (T, x) displayed in Fig. 4, and using the same parameter values as those used to obtain the
numerical results of Figs. 4 and 6 (cf. Table 1) (Color figure online)

(iii) the local mean level of expression of the hypoxia-resistant gene μ2 at equilibrium
is the minimal one in normoxic conditions, the maximal one in hypoxic conditions
and increases with the oxygen concentration in moderately oxygenated environ-
ments

– remain intact under a broad range of parameter values.

References

Acar A, Nichol D, Fernandez-Mateos J, Cresswell GD, Barozzi I, Hong SP, Trahearn N, Spiteri I, StubbsM,
Burke R et al (2020) Exploiting evolutionary steering to induce collateral drug sensitivity in cancer.
Nat Commun 11(1):1–14

Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Models
Methods Appl Sci 12(5):737–754

Alfaro M, Veruete M (2019) Evolutionary branching via replicator-mutator equations. J Dyn Differ Equ
31(4):2029–2052

Almeida L, Bagnerini P, Fabrini G, Hughes BD, Lorenzi T (2019) Evolution of cancer cell populations under
cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model. ESAIM.
Math Model Numer Anal 53(4):1157–1190

Amadori AL, Calzolari A, Natalini R, Torti B (2015) Rare mutations in evolutionary dynamics. J Differ
Equ 259(11):6191–6214

AmadoriAL,NataliniR, PalmigianiD (2018)A raremutationmodel in a spatial heterogeneous environment.
Ecol Complex 34:188–197

Anderson ARA, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8(3):227–234
Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evo-

lution driven by selective pressure from the microenvironment. Cell 127(5):905–915
Anderson ARA, Rejniak KA, Gerlee P, Quaranta V (2009) Microenvironment driven invasion: a multiscale

multimodel investigation. J Math Biol 58(4–5):579
Ardaševa A, Gatenby RA, Anderson ARA, Byrne HM, Maini PK, Lorenzi T (2020a) A mathematical

dissection of the adaptation of cell populations to fluctuating oxygen levels. Bull Math Biol 82(6):81

123



83 Page 26 of 29 G. Fiandaca et al.

ArdaševaA,GatenbyRA,AndersonARA,ByrneHM,Maini PK, Lorenzi T (2020b) Evolutionary dynamics
of competing phenotype-structured populations in periodically fluctuating environments. J Math Biol
80(3):775–807

Astanin S, Preziosi L (2008) Multiphase models of tumour growth. In: Bellomo N, de Angelis E (eds)
Selected topics in cancer modeling. Birkhäuser, Boston, pp 1–31

Astanin S, Preziosi L (2009) Mathematical modelling of the Warburg effect in tumour cords. J Theor Biol
258(4):578–590

Barles G, Mirrahimi S, Perthame B et al (2009) Concentration in Lotka-Volterra parabolic or integral
equations: a general convergence result. Methods Appl Anal 16(3):321–340

Berestycki H, Hamel F (2012) Generalized transition waves and their properties. Commun Pure Appl Math
65(5):592–648

Berestycki H, Nadin G (2020) Asymptotic spreading for general heterogeneous Fisher-KPP type equations.
Memoirs American Mathematical Society, In press

Bouin E, Calvez V, Meunier N, Mirrahimi S, Perthame B, Raoul G, Voituriez R (2012) Invasion fronts
with variable motility: phenotype selection, spatial sorting and wave acceleration. C R Math 350(15–
16):761–766

Busse J-E, Cuadrado S, Marciniak-Czochra A (2020) Local asymptotic stability of a system of integro-
differential equations describing clonal evolution of a self-renewing cell population under mutation.
arXiv preprint arXiv:2004.05353

Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev
Cancer 10(3):221–230

Byrne HM, Preziosi L (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol
J IMA 20(4):341–366

Calsina À, Cuadrado S, Desvillettes L, Raoul G (2013) Asymptotics of steady states of a selection-mutation
equation for small mutation rate. Proc Sect A Math R Soc Edinb 143(6):1123

Carja O, Plotkin JB (2017) The evolutionary advantage of heritable phenotypic heterogeneity. Sci Rep
7(1):1–12

Casciari JJ, Sotirchos SV, Sutherland RM (1992) Variations in tumor cell growth rates and metabolism with
oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol 151(2):386–394

Celora GL, Byrne HM, Zois C, Kevrekidis PG (2021) Phenotypic variation modulates the growth dynam-
ics and response to radiotherapy of solid tumours under normoxia and hypoxia. arXiv preprint
arXiv:2101.05563

Champagnat N, Ferrière R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic
processes to macroscopic models. Theor Popul Biol 69(3):297–321

Chaplain MAJ (2020) Multiscale modelling of cancer: micro-, meso- and macro-scales of growth and
spread. In: Bizzarri M (ed) Approaching complex diseases. Springer, Berlin, pp 149–168

ChaplainMAJ, Lorenzi T, Villa C (2021) Evolutionary dynamics in vascularised tumours under chemother-
apy. Vietnam J Math 49:143–167

Chisholm RH, Lorenzi T (2016) Cell population heterogeneity and evolution towards drug resistance in
cancer: biological and mathematical assessment, theoretical treatment optimisation. Biochim Biophys
Acta (BBA) Gener Subj 1860(11):2627–2645

Chisholm RHC, Lorenzi T, Lorz A, Larsen AK, de Almeida LN, Escargueil A, Clairambault J (2015)
Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-
genetic instability and stress-induced adaptation. Cancer Res 75(6):930–939

ChisholmRH,Lorenzi T,Desvillettes L,HughesBD (2016) Evolutionary dynamics of phenotype-structured
populations: from individual-levelmechanisms to population-level consequences. Zeitschrift für ange-
wandte Mathematik und Physik 67(100):1–34

Cosse J-P, Michiels C (2008) Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy
and promotes cancer progression. Anti-Cancer Agents Med Chem 8(7):790–797

Damaghi M, Tafreshi NK, Lloyd MC, Sprung RW, Estrella VC, Wojtkowiak JW, Morse DL, Koomen JM,
Bui MM, Gatenby RA, Gillies RJ (2015) Chronic acidosis in the tumour microenvironment selects
for overexpression of LAMP2 in the plasma membrane. Nat Commun 6:8752

DeClerck K, Elble RC (2010) The role of hypoxia and acidosis in promoting metastasis and resistance to
chemotherapy. Front Biosci 15:213–225

Dewhirst MW (2009) Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress.
Radiat Res 172(6):653–665

123

http://arxiv.org/abs/2004.05353
http://arxiv.org/abs/2101.05563


A Mathematical Study of the Influence of Hypoxia… Page 27 of 29 83

Di Costanzo E, Giacomello A, Messina E, Natalini R, Pontrelli G, Rossi F, Smits R, Twarogowska M
(2018) A discrete in continuous mathematical model of cardiac progenitor cells formation and growth
as spheroid clusters (Cardiospheres). Math Med Biol J IMA 35(1):121–144

Diekmann O, Jabin P-E, Mischler S, Perthame B (2005) The dynamics of adaptation: an illuminating
example and a Hamilton-Jacobi approach. Theor Popul Biol 67(4):257–271

Doerfler W, Böhm P (2006) DNA methylation: development, genetic disease and cancer. Springer, Berlin,
p 310

Duesberg P, Stindl R, Hehlmann R (2000) Explaining the high mutation rates of cancer cells to drug and
multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc Natl Acad
Sci 97(26):14295–14300

Eastman B, Wodarz D, Kohandel M (2020) The effects of phenotypic plasticity on the fixation probability
of mutant cancer stem cells. J Theor Biol 503:110384

Fais S, Venturi G, Gatenby B (2014) Microenvironmental acidosis in carcinogenesis and metastases: new
strategies in prevention and therapy. Cancer Metastasis Rev 33(4):1095–1108

Iglesias SF, Mirrahimi S (2018) Long time evolutionary dynamics of phenotypically structured populations
in time-periodic environments. SIAM J Math Anal 50(5):5537–5568

Gallaher J, Anderson ARA (2016) Evolution of intratumoral phenotypic heterogeneity: the role of trait
inheritance. Interface Focus 3(4):20130016

Gallaher JA, Brown J, AndersonARA (2019) The impact of proliferation-migration tradeoffs on phenotypic
evolution in cancer. Sci Rep 9:2425

GatenbyRA,Gawlinski ET (1996)A reaction-diffusionmodel of cancer invasion. Cancer Res 56(24):5745–
5753

Gatenby RA, Smallbone K, Maini PK, Rose F, Averill JG, Nagle RB,Worrall LJ, Gillies RJ (2007) Cellular
adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97(5):646–
653

Gatenby RA, Silva AS, Gillies RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69(11):4894–4903
Gay L, Baker A-M, Graham TA (2016) Tumour cell heterogeneity, Faculty of 1000 Ltd, 5
Genieys S, Volpert V, Auger P (2006) Adaptive dynamics: modelling Darwin’s divergence principle. C R

Biol 329(11):876–879
GerlingerM,RowanAJ, Horswell S, Larkin S, Endesfelder D,Gronroos E,Martinez P,MatthewsN, Stewart

A, Tarpey P et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion
sequencing. New Engl J Med 366:883–892

Gillies RJ, Verduzco D, Gatenby RA (2012) Evolutionary dynamics of carcinogenesis and why targeted
therapy does not work. Nat Rev Cancer 12(7):487–493

Hamis SJ, Powathil GG (2020) Can we crack cancer? In: Matthäus F, Matthäus S, Harris S, Hillen T (eds)
The art of theoretical biology. Springer, Berlin, pp 50–51

Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) ‘Go or grow’: the key to the emergence
of invasion in tumour progression? Math Med Biol J IMA 29(1):49–65

HockelM,Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, andmolecular aspects.
J Natl Cancer Inst 93(4):266–276

Ibrahim-Hashim A, Robertson-Tessi M, Enriquez-Navas PM, Damaghi M, Balagurunathan Y, Wojtkowiak
JW, Russell S, Yoonseok K, Lloyd MC, Bui MM et al (2017) Defining cancer subpopulations by
adaptive strategies rather thanmolecular properties provides novel insights into intratumoral evolution.
Cancer Res 77(9):2242–2254

Kim J-W,DangCV (2006)Cancer’smolecular sweet tooth and theWarburg effect. CancerRes 66(18):8927–
8930

Kim Y, Kang H, Powathil G, Kim H, Trucu D, Lee W, Lawler SE, Chaplain MAJ (2018) Role of extra-
cellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in
glioblastoma. PLoS ONE 13(10):e0204865

Kimura H, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong K, Dewhirst MW (1996)
Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in
tumor parenchyma. Cancer Res 56(23):5522–5528

Korolev KS, Xavier JB, Gore J (2014) Turning ecology and evolution against cancer. Nat Rev Cancer
14(5):371–380

LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady-state
and time-dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

123



83 Page 28 of 29 G. Fiandaca et al.

Lewin TD, Maini PK, Moros EG, Enderling H, Byrne HM (2018) The evolution of tumour composition
during fractionated radiotherapy: implications for outcome. Bull Math Biol 80(5):1207–1235

LloydMC, Cunningham JJ, BuiMM,Gillies RJ, Brown JS, Joel S, GatenbyRA (2016)Darwinian dynamics
of intratumoral heterogeneity: not solely random mutations but also variable environmental selection
forces. Cancer Res 76(11):3136–3144

Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61(8):3230–3239
Lorenzi T, Pouchol C (2020) Asymptotic analysis of selection-mutation models in the presence of multiple

fitness peaks. Nonlinearity 33(11):5791
Lorenzi T, Chisholm RH, Desvillettes L, Hughes BD (2015) Dissecting the dynamics of epigenetic changes

in phenotype-structured populations exposed to fluctuating environments. J Theor Biol 386:166–176
Lorenzi T, Chisholm RH, Clairambault J (2016) Tracking the evolution of cancer cell populations through

the mathematical lens of phenotype-structured equations. Biol Direct 11(1):43
Lorenzi T, Venkataraman C, Lorz A, Chaplain MAJ (2018) The role of spatial variations of abiotic factors

in mediating intratumour phenotypic heterogeneity. J Theor Biol 451(14):101–110
Lorenzi T, Perthame B, Ruan X (2021) Invasion fronts and adaptive dynamics in a model for the growth of

cell populations with heterogeneous mobility. Eur J Appl Math, in press
Lorz A, Lorenzi T, Hochberg ME, Clairambault J, Perthame B (2013) Populational adaptive evolution,

chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM. Math Model Numer Anal
47(2):377–399

Lorz A, Lorenzi T, Clairambault J, Escargueil A, Perthame B (2015)Modeling the effects of space structure
and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull Math
Biol 77(1):1–22

Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, Silva AS, Gerlinger M, Yuan
Y, Pienta KJ et al (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev
Cancer 17(10):605–619

Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP (2016) Cancer metabolism: a
therapeutic perspective. Nat Rev Clin Oncol 14(1):11–31

Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nature
Rev Cancer 12(5):323–334

Matsumoto S, Yasui H, Mitchell JB, Krishna MC (2010) Imaging cycling tumor hypoxia. Cancer Res
70(24):10019–10023

Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat
Rev Cancer 6(12):924–935

Michiels C, Tellier C, Feron O (2016) Cycling hypoxia: a key feature of the tumor microenvironment.
Biochim Biophys Acta (BBA) Rev Cancer 1866(1):76–86

Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM (2006) Life-history evolution and the origin of
multicellularity. J Theor Biol 239(2):257–272

Michor F, Polyak K (2010) The origins and implications of intratumor heterogeneity. Cancer Prev Res
3(11):1361–1364

Mirrahimi S, Gandon S (2020) Evolution of specialization in heterogeneous environments: equilibrium
between selection, mutation and migration. Genetics 214(2):479–491

Misra A, Pandey C, Sze SK, Thanabalu T (2012) Hypoxia activated EGFR signaling induces epithelial to
mesenchymal transition (EMT). PLoS ONE 7(11):e49766

Molavian HR, Kohandel M, Milosevic M, Sivaloganathan S (2009) Fingerprint of cell metabolism in the
experimentally observed interstitial pH and pO2 in solid tmors. Cancer Res 69(23):9141–9147

Nguyen TN, Clairambault J, Jaffredo T, Perthame B, Salort D (2019) Adaptive dynamics of hematopoi-
etic stem cells and their supporting stroma: a model and mathematical analysis. Math Biosci Eng
16(5):4818–4845

Perthame B, Génieys S (2007) Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit.
Math Model Nat Phenom 2(4):135–151

Poleszczuk J, Hahnfeldt P, Enderling H (2015) Evolution and phenotypic selection of cancer stem cells.
PLoS Comput Biol 11(3):e1004025

Pouchol C, Clairambault J, Lorz A, Trélat E (2018) Asymptotic analysis and optimal control of an
integro-differential system modelling healthy and cancer cells exposed to chemotherapy. Journal de
Mathématiques Pures et Appliquées 116:268–308

123



A Mathematical Study of the Influence of Hypoxia… Page 29 of 29 83

Prokopiou S, Moros EG, Poleszczuk J, Caudell J, Torres-Roca JF, Latifi K, Lee JK, Myerson R, Harrison
LB, Enderling H (2015) A proliferation saturation index to predict radiation response and personalize
radiotherapy fractionation. Radiat Oncol 10(1):1–8

Robertson-Tessi M, Gillies RJ, Gatenby RA, Anderson ARA (2015) Impact of metabolic heterogeneity on
tumor growth, invasion, and treatment outcomes. Cancer Res 75(8):1567–1579

Strobl MAR, Krause AL, Damaghi M, Gillies RJ, Anderson ARA, Maini PK (2020) Mix and match:
phenotypic coexistence as a key facilitator of cancer invasion. Bull Math Biol 82(1):1–26

Tam SY, Wu VWC, Law HKW (2020) Hypoxia-induced epithelial-mesenchymal transition in cancers:
HIF-1α and Beyond. Front Oncol 10:486

Tang X, Lucas JE, Chen JL-Y, LaMonte G, Wu J, Wang MC, Koumenis C, Chi J-T (2012) Functional
interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs.
Cancer Res 72(2):491–502

Teicher BA (1994) Hypoxia and drug resistance. Cancer Metastasis Rev 13(2):139–168
Vander Linden C, Corbet C (2020) Reconciling environment-mediated metabolic heterogeneity with the

oncogene-driven cancer paradigm in precision oncology. Semin Cell Dev Biol 98:202–210
Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia.

Med Oncol 18:243
Villa C, Chaplain MA, Lorenzi T (2021) Modeling the emergence of phenotypic heterogeneity in vascular-

ized tumors. SIAM J Appl Math 81(2):434–453
ZhangW,ShiX, PengY,WuM,ZhangP,XieR,WuY,YanQ,WangSLJ (2015)HIF-1α promotes epithelial-

mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS
ONE 10(6):e0129603

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A Mathematical Study of the Influence of Hypoxia and Acidity on the Evolutionary Dynamics of Cancer
	Abstract
	1 Introduction
	2 Model Description
	2.1 Dynamics of Tumour Cells
	2.1.1 Modelling Oxygen-Driven Selection
	2.1.2 Modelling Lactate-Driven Selection
	2.1.3 Modelling Competition for Space

	2.2 Dynamics of Abiotic Factors

	3 Main Results
	3.1 Set-Up of Numerical Simulations
	3.2 Dynamics of the Cell Density and the Concentrations of Abiotic Factors
	3.3 Evolutionary Dynamics of Tumour Cells and Emergence of Phenotypic Heterogeneity
	3.4 Alternative Evolutionary Pathways Leading to the Development of Resistance to Hypoxia and Acidity

	4 Conclusions and Research Perspectives
	A Steady-State Properties of the Model for the Dynamics of Tumour Cells and Robustness of the Results Obtained
	References




