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incorporated into target cells23–25  (Figure  1). Moreover, by analogy 
with other model systems, they may constitute important intercellular 
signaling factors in the male reproductive system. In this review, the 
contribution of epididymal miRNAs to the control of gene expression, 
intercellular communication via EVs, and male fertility will be 
described with support from in  vitro studies from human samples 
and in vivo studies stemming from different transgenic mouse models. 
Furthermore, the characteristics of miRNAs originating from the 
epididymis will be related to their potential as molecular targets for 
the noninvasive diagnosis of idiopathic male infertility.

MICRORNAS ARE KEY REGULATORS OF CELL FUNCTIONS

Synthesis and functions of miRNAs
It is estimated that 98% of the genomic output in mammals is transcribed 
as noncoding RNA.26 Of the noncoding RNA species expressed by cells, 
miRNAs are small (~22 nt) endogenous nucleotide sequences regulating 
posttranscriptional gene expression.27,28 MicroRNA precursors are 
first transcribed as long hairpin pri-miRNAs from protein-coding 
and noncoding transcription units. Expression of miRNA genes 
is regulated by transcription factors in a similar manner to that of 
protein-coding genes, and many miRNAs are encoded in the genome 
as clusters, which can range from 2 to 19 miRNA hairpins encoded 

INTRODUCTION
One of the unique features of the epididymis is the regionalized and 
fine-tuned gene expression pattern found in the somatic epithelial 
cells throughout the entire length of this organ.1–7 This expression 
is controlled by luminal exocrine factors and hormones, as well as 
noncoding RNAs,8–11 and triggers the secretion of extracellular factors 
that make contact with maturing spermatozoa in a region-specific 
manner.12 Therefore, each epididymal region possesses distinct 
patterns of gene expression that are related to physiological functions 
important for the sequential steps in sperm maturation.13,14 As the 
genome of spermatozoa is silent, owing to the extreme compaction of 
its DNA, successful sperm maturation in the epididymis essentially 
depends on interactions with components from the surrounding 
fluid, i.e.,  the epididymal fluid. The composition of this fluid is 
controlled by the surrounding epithelial cell populations that function 
in a well-orchestrated manner via intercellular cross-talk.15–19 As it 
is observed in most biological systems, epididymal epithelial cells 
release extracellular vesicles (EVs), called epididymosomes. The latter 
are heterogeneous with respect to size and protein markers and carry 
small noncoding RNAs, including microRNAs (miRNAs).20–22 These 
extracellular factors are active biomolecules capable of modifying 
both posttranscriptional gene expression and the cell phenotype once 
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in tandem in close proximity.29 After transcription, pri-miRNAs are 
sequentially processed by (i) the Drosha–DGCR8 complex to generate 
70-nt pre-miRNAs, and then by (ii) the Dicer–TRBP2 complex to form 
22-nt miRNA duplexes. One strand of each duplex is loaded into the 
RNA-induced silencing complex (RISC) with Argonaute 2 (Ago2) and 
posttranscriptionally regulates gene expression after the binding of its 
“seed region” (nucleotides 2–8) to the 3’ untranslated regions (3’UTR) 
of target mRNAs. This process results in either mRNA de-adenylation 
and degradation or translational repression.30 Both experimental and 
in silico approaches based on base pair complementarity indicate that 
a single miRNA may target hundreds of mRNAs,31 which underscores 
the broad range of action of miRNAs.

Role of miRNAs in male fertility
As miRNAs are important for the control of cellular functions, the 
deregulation of miRNA production is associated with pathological 
conditions and the malfunction of some systems, including the male 
reproductive system.32 The absence of the major enzymes involved 
in the miRNA biogenesis (i.e., Dicer and Dgcr8) is lethal at an early 
stage of embryonic development.33 Therefore, different mouse models 
have been developed by using the Cre–Lox system to study the role of 
miRNAs in specific cells and organs of the male reproductive system. 
Deletion of the gene encoding the enzyme Dicer in Sertoli cells, 
germ cells, and epididymal principal cells impairs the production of 
mature miRNAs and induces male infertility.34–38 Mouse models with 
a conditional deletion of Dicer1 in the male germ line have revealed 
the importance of small noncoding RNAs in primordial germ cell 
development39,40 and spermatogenesis.36,41 In addition, the absence of 
mature miRNAs in Sertoli cells blocks spermatogenesis as a result of 
defective Sertoli cell maturation and an incapacity to provide adequate 
support for meiosis and spermiogenesis.42 Whereas sperm production 
clearly depends on miRNA genesis, sperm maturation also appears to 

be impaired when mature miRNAs are not produced in the principal 
cells of the epididymis from Dicerfx/fx; Defb41iCre (Dicer cKO) mice.34,35 
For instance, these mice produced spermatozoa, but the latter had a 
decreased ability to bind to and fertilize an oocyte.34 Furthermore, in 
order to assess the role of individual miRNAs in the male reproductive 
system, several studies have focused on the role of specific miRNAs 
that are highly expressed in this system.43–45 For example, the double 
inactivation (dKO) of miR-34b/c and miR-449 miRNA clusters that are 
enriched in the testis results in the dysregulation of more than 200 genes 
and leads to both male and female infertility. In this model, infertility 
results from a reduced sperm production and decreased sperm motility 
in dKO males or from the lack of cilia in the oviduct in dKO female.44,45 
Moreover, the double disruption of miRNAs enriched in the testis and 
epididymis (e.g., miR-200b and miR-429) does not impair male fertility 
but has a profound effect on pituitary functions and female fertility.43 
Whereas the targeted deletion of miRNA candidates is a necessary step 
to assess their function in vivo, the ablation of a single miRNA gene 
seldom leads to a perceptible phenotype in mice, most likely due to 
the compensatory action of related miRNAs.

CONTROL OF EPIDIDYMAL GENE EXPRESSION BY MICRORNAS
Gene expression is highly regionalized along the different segments 
of the epididymis from mammalian species. Several studies have 
underscored the role of miRNAs in the regulation of epididymal gene 
expression by using different approaches. First, the production of the 
Dicer1fl/fl; Defb41iCre/wt mouse model, in which Dicer is specifically 
deleted in the proximal caput epididymidis, helped assess the overall 
contribution of miRNAs to gene expression in this specific region.35 
For instance, expression of lipocalin 8  (Lcn 8), cystatin 8  (Cst 8), 
androgen receptor (Ar), estrogen receptor 2 (Esr 2) and glutathione 
peroxidase 5 (GPX5) transcripts has been shown to be significantly 
reduced in the Dicer1fl/fl; Defb41iCre/wt mouse caput epididymidis. 
These changes are associated with a profound phenotype affecting 
male reproductive functions (i.e., absence of initial segment, failure 
to generate offspring) similar to that observed in two Ar knock-out 
mouse models.46,47 Although study of the Dicer1fl/fl; Defb41iCre/wt mouse 
model suggests an important role played by Dicer-dependent miRNAs 
in epididymal gene expression and physiology, further investigations 
are needed to determine whether the effect of miRNAs is direct, or 
mediated by Ar, whose reduced expression in Dicer1fl/fl; Defb41iCre/wt 
mice may affect the expression of target genes containing androgen 
response elements (AREs) in their promoter regions. Secondly, global 
approaches such as microarrays or deep sequencing have been used to 
identify epididymal miRNA candidates associated with the regulation 
of epididymal genes at the posttranscriptional level.8,48,49 Because some 
miRNAs can bind to a target mRNA and subsequently induce its 
degradation, the expression of these miRNAs is negatively correlated 
with that of their target mRNAs from the same sample. Thus, 
microarray analyses of both the miRNA and mRNA content of human 
epididymides have allowed the identification and characterization 
of spatially-  and temporally-regulated miRNA/target mRNA pairs 
potentially involved in regionalized gene expression and in the 
postnatal development/aging of this organ.8,49 For instance, expression 
of 16 miRNAs is negatively correlated in three epididymal regions 
with their predicted target mRNAs,8 including claudin-10 (Cldn10), 
which is involved in tight junction formation, cystic fibrosis 
transmembrane conductance regulator (Cftr), whose gene mutation 
is associated with male infertility,50 sperm-associated antigen 8/CD52 
and glioma pathogenesis-related 1-like protein 1 (Glipr1L1), which 
encodes proteins that associate with maturing spermatozoa in the 

Figure 1: Extracellular microRNAs (ex-miRNAs) participate in intercellular 
communication. Secreted miRNAs are transported by extracellular 
vesicles (EVs) and transferred to recipient cells, where they regulate 
posttranscriptional gene expression. Different types of EVs exist. 
Membrane-derived exosomes are released from cells as endosomes 
containing multivesicular bodies (MVB) that fuse with the plasma membrane. 
Microvesicles (MVs) are released from the plasma membrane via outward 
budding. Multivesicular cargo (MVC) is released by membrane budding 
during apocrine secretion. Extracellular vesicles and their miRNA cargo are 
transferred to recipient cells after endocytosis or membrane fusion.
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epididymis.51,52 In addition, 22 miRNAs differentially expressed in 
the human epididymis during aging are negatively correlated with 
their predicted target mRNAs, suggesting that changes in epididymal 
miRNA expression during aging may lead to age-specific gene 
expression through mRNA cleavage.49 Finally, the direct effect of 
miRNA candidates found in the epididymis on gene expression has 
been explored in vitro by using molecular constructions. The most 
commonly used methods are luciferase reporter constructs that contain 
the 3’UTR of a target mRNA with the miRNA binding site(s) located 
downstream of the luciferase gene. After transfection, validation of 
miRNA efficiency is established when a decrease in luciferase activity 
is observed compared with control conditions. By using this approach, 
miR-7578 has been shown to directly target early growth response 
protein 1 (Egr1), and to act as a negative regulator of the inflammatory 
response in a model of epididymal inflammation.53 In addition, 
Ma and collaborators have elegantly demonstrated that miR-29a is 
markedly upregulated during postnatal epididymal development in 
rats, and directly alters the expression of nuclear autoantigenic sperm 
protein  (NASP), a protein involved in cell cycle progression.54 The 
decreased expression of NASP induced by miR-29a inhibited PC-1 and 
DC-2 epididymal cell line proliferation, suggesting a role for miR-29a in 
the reduced proliferation observed in the epididymis. In addition, the 
expression of some miRNAs, including miR-29a, is directly regulated 
by androgens, as miRNAs are associated with ARE binding sites55 and 
responsive to castration/androgen replacement.56 Androgens may also 
have an indirect effect on miRNA expression since the expression of 
Dicer itself is altered in the mouse epididymis following castration.55 
This paradigm recognizes miRNAs as important androgen-dependent 
regulators that participate in the fine-tuning of gene expression 
important for the maintenance of epididymal physiology.

EXTRACELLULAR MICRORNAS AND INTERCELLULAR 
COMMUNICATION

Extracellular vesicles carry miRNAs
Mature miRNAs are released from most cells, including immune 
and epithelial cells, and participate in intercellular communication, 
a process by which miRNAs are disseminated by extracellular fluid 
and transferred to remote target cells.23–25 As such, mature miRNAs 
are able to regulate gene expression by a novel form of endocrine-like 
cell-to-cell communication.57,58 Extracellular miRNAs  (ex-miRNAs) 
have been identified in all body fluids examined thus far59 and can 
be found associated with protein carriers  (e.g.,  argonaute RISC 
catalytic component 2), lipoproteins (e.g., high density lipoproteins), 
or transported and protected from RNase assault by extracellular 
vesicles  (EVs)60–62  (Figure  1). Extracellular vesicles encompass 
a complex diversity of vesicles  –  including microvesicles and 
nanovesicles - which differ in size, mode of secretion, and lipid and 
protein composition. Despite the efforts deployed by the research 
community to categorize this diversity and define a strict EV 
nomenclature,63,64 no consensus has been reached to date.65 It has been 
repeatedly documented that microvesicles – including microparticles 
and ectosomes- measure more than 0.2 μm in diameter and are released 
by shedding or budding from the plasma membrane. On the contrary, 
nanovesicles such as exosomes generally measure between 30 and 
100 nm and are released by fusion of multivesicular bodies (MVBs) 
or late endosomes with the plasma membrane. However, because the 
absolute classification of EVs has not been determined beyond doubt, 
and biological fluids are a mixture of different types of EVs, it is difficult 
to compartmentalize our EVs of interest in one or the other category. 

For instance, EVs present in the epididymal fluid are referred to as 
epididymosomes and consist of a heterogeneous population of EVs with 
sizes ranging from approximately 25 to 500 nm. Research performed 
by the  Robert Sullivan group and other laboratories has contributed 
to the categorization of epididymosomes from different animal models 
such as mice,66,67 hamsters,68 rats,69,70 bulls,71,72 rams73,74 and humans,75 
and to the appreciation of their physiological role in epididymal sperm 
maturation (for exhaustive references refer to Sullivan and Saez, 2013).21 
Given that the epididymis is controlled by luminal factors, including 
EVs, and that intercellular communication involving miRNAs appears 
to be a well-conserved mechanism in most biological systems, the 
epididymis is an ideal model with which to study such a widespread 
biological mechanism. Thus, the notion that miRNAs are released into 
the extracellular space whence they can modify the phenotype of target 
recipient cells, represents a novel paradigm of intercellular signalling,76 
which could have profound implications for the control of male fertility.

Role of epididymosomes in the transport of ex‑miRNAs
Epididymosomes present with a spherical shape, a bilayered membrane, 
and are released from principal cells into the epididymal fluid via 
apocrine secretion.66,77 They show heterogeneity with regard to size 
and structure,66 protein, lipid and nucleic acid composition,20,66,78,79 
and relative density78,80 in different segments of the epididymis. We 
have recently identified small vesicles in the bovine epididymal fluid 
that share some characteristics with exosomes.79 For example, these 
vesicles measure between 20 and 150  nm and express tetraspanin 
CD9, one of the more common exosome markers.63 Proteomic analyses 
performed on total epididymosome preparations from humans and 
bulls corroborate these findings, since several proteins known to be 
enriched in exosomes (e.g., CD63, Rab proteins, HSP70 and HSP90, 
annexins, MHC class I) have been identified.75,81 However, although 
MVBs, which mediate exosome release from cells, are present all 
along the epididymal epithelium, evidence is still lacking that fusion 
occurs between the former and the apical pole of the epithelium. The 
miRNA cargo in EVs can be taken up by specific target cells via the 
interaction between EVs with exposed phosphatidylserine (PS) and cell 
surface proteins such as TIM-1/4, SED-1, ADAM10 and MFGE8.63,82 
We recently showed that crude sperm-free epididymal fluids from 
humans and mice, contain more than 3000 EVs with exposed PS per 
microliter of epididymal fluid, suggesting a role for this sub-population 
of EVs in intercellular communication.83 Overall, the diversity of 
EVs found in epididymal fluid may underlie the broad spectrum of 
biological functions associated with these EVs in the reproductive 
tract. Deeper characterization of these subpopulations will help in 
deciphering the intricate events that control epididymal physiology 
and sperm maturation.

Epididymosomes are recognized as potent mediators of intercellular 
communication since they are capable of transferring hydrophobic as 
well as soluble proteins84 from epididymal epithelial cells to maturing 
spermatozoa.21 They are also involved in the transfer of lipids to the 
gamete resulting in modification of the latter’s membrane fluidity.66,79 
While there is no evidence that epididymosomes can fuse with a 
target cell under physiological conditions, these EVs express adhesion 
molecules, such as integrin and MFGE8 that are usually involved in 
selective targeting and uptake by recipient cells,63,81 and transport 
a broad spectrum of noncoding RNAs, including miRNAs.20 From 
results of miRNA microarray studies performed on bovine epididymal 
samples, we have demonstrated that  (i) distinct populations of 
ex-miRNAs are associated with epididymosomes from different regions 
of the organ,20 and (ii) the miRNA profile found in EVs does not mirror 
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that of the surrounding epithelial cells, suggesting that epididymal 
miRNAs employ a selective secretion pathway that is regulated in a 
region-specific manner to control epididymal functions (Figure 2). 
For instance, miR-202 is a miRNA enriched in EVs from the proximal 
bovine and human epididymis and a tumor suppressor that has been 
shown to repress cell proliferation in hepatocytes.85,86 From the fact 
that the epididymis is a unique organ with an effective capacity to 
evade tumorigenicity,87 it is likely that some ex-miRNAs, including 
miR-202, participate in the maintenance of the epididymal epithelium 
via inactivation of cellular oncogene products. In addition, miR-1224, 
a miRNA highly enriched in EVs from the distal epididymis, 
regulates the immune response in the presence of inflammation.88 As 
epididymitis often occurs in the distal part of the male reproductive 
system, miR-1224 may be involved in the control of this urological 
disease. Of importance is that ex-miRNA populations associated with 
epididymosomes do not reflect miRNA profiles from the surrounding 
epithelium  (Figure  2). While partially understood, this selective 

and regulatory mechanism of miRNA secretion has been detected 
during the release of exosomes from many cell types,89–91 and might 
be triggered by the binding of miRNA consensus motifs (EXOmotifs) 
to the heterogeneous ribonucleoprotein A2B1, which directs miRNA 
sorting into exosomes after being sumoylated.92 Whether epididymal 
cells use this mechanism of miRNA selection to communicate with 
high selectivity to other cells remains to be determined.

ROLE OF EX-MIRNA IN THE NONINVASIVE DIAGNOSIS OF 
MALE INFERTILITY
Seminal plasma is a mixture of fluids originating from the distinct 
internal organs of the male reproductive tract  (e.g.,  prostate gland, 
seminal vesicles, testis and epididymis) and contains water-soluble 
molecules, and membranous components including EVs and their 
ex-miRNA cargos, that are solely secreted from specific organs or 
compartments. Therefore, quantification of some of these factors in 
seminal plasma can be a useful noninvasive indicator for evaluating 
male reproductive tract dysfunction, and is a valuable strategy compared 
with invasive tissue biopsy of reproductive organs. Seminal plasma 
contains significant amounts of highly stable ex-miRNAs, whose 
detection has been shown to be associated with male infertility.93–95 For 
instance, the levels of miR-34c-5p, miR-122, miR-146b-5p, miR-181a, 
miR-374b, miR-509-5p and miR-513a-5p decreased in seminal plasma 
from azoospermic donors, whereas increased in asthenozoospermic 
patients.93 On the premise that seminal plasma contains a mixture 
of secretions/EVs originating from the internal organs of the male 
reproductive tract, including the epididymis, we sought and indirectly 
identified ex-miRNAs associated with human epididymosomes by 
using vasectomy and vasovasostomy as models96  (Figure  3a–c). In 
these surgical models, ex-miRNAs of epididymal origin are absent from 
seminal plasma of vasectomized donors, and restored together with duct 
patency, in seminal plasma from vasovasostomized donors. Eighteen 
miRNAs were identified among the seminal ex-miRNAs responsive 
to vasectomy and its reversal.96 Most of these were also found to be 
associated with bovine epididymosomes (Figure 2), with the exception 
of six members belonging to the miR-888 cluster family (i.e., miR-888, 
mir-890, miR-891a/b, miR-892a/b), which is well-conserved among 
human and nonhuman primates, but absent from other mammalian 
species.97 This cluster of miRNAs displays some specific features, as it 
is located on the X chromosome and almost exclusively expressed in 
epididymal tissues.97,98 Its rapid evolution, as well as its restricted tissue 
location, confers a role for this group of miRNAs in the establishment of 
primate-specific epididymal functions. While predicted targets of these 
miRNAs are associated with epididymal physiology and immune cell 
functions as determined from in silico studies97 (Figure 3d and e), the 
physiological functions of these candidates still need to be confirmed 
in vivo or in engineered human tissues.

CONCLUSION
Increasing evidence from transgenic mouse models and clinical 
investigations shows the importance of miRNAs in the control of 
male fertility. In the human epididymis, these miRNAs are present 
in somatic cells where they control target gene expression in a 
region-specific manner. Notably, they are released from epithelial cells 
via EVs and are proposed to participate in the exocrine regulation of 
cellular functions (Figure 4). Given the heterogeneity of EVs found 
in epididymal fluid, it is likely that a subpopulation is dedicated 
to being taken up by epididymal epithelial cells, while others are 
retained in the extracellular fluid as a component of seminal plasma 
at the time of ejaculation. Whether EVs can directly interfere with 

Figure 2: Selective release of extracellular miRNAs (ex-miRNAs) from 
epididymal cells. Extracellular-miRNA populations associated with 
epididymosomes do not reflect the miRNA profiles of the surrounding 
epithelium, suggesting the existence of a selective and regulatory mechanism 
before miRNA release, as observed for circulating blood cells. Box A: miRNAs 
found enriched in epididymosomes; Box B: miRNAs found enriched in the 
surrounding epithelium; miRNAs in italics are conserved in bovine and 
human epididymosomes; miRNAs in bold font are exclusively found in human 
epididymosomes; *refers to miRNAs that are only expressed in the male 
reproductive system of humans and nonhuman primates.97,98
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maturing spermatozoa by transferring noncoding RNAs, remains to be 
addressed. Overall, while the extracellular transfer of genetic material 
adds a novel dimension to the cell-to-cell communication modes in the 
epididymis, it remains important to define the routes through which 
this transfer might occur, and to assess the potential of EVs and their 
miRNA cargo in the development of new diagnostic tools.
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