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ABSTRACT

Background: Interferon lambda receptor 1 (IFNLR1) is a type II cytokine receptor that clings 
to interleukins IL-28A, IL29B, and IL-29 referred to as type III IFNs (IFN-λs). IFN-λs act 
through the JAK-STAT signaling pathway to exert antiviral effects related to preventing and 
curing an infection. Although the immune function of IFN-λs in virus invasion has been 
described, the molecular mechanism of IFNLR1 in that process is unclear.
Objectives: The purpose of this study was to elucidate the role of IFNLR1 in the pathogenesis 
and treatment of porcine reproductive and respiratory syndrome virus (PRRSV).
Methods: The effects of IFNLR1 on the proliferation of porcine alveolar macrophages (PAMs) 
during PRRSV infection were investigated using interference and overexpression methods.
Results: In this study, the expressions of the IFNLR1 gene in the liver, large intestine, small 
intestine, kidney, and lung tissues of Dapulian pigs were significantly higher than those in 
Landrace pigs. It was determined that porcine IFNLR1 overexpression suppresses PRRSV 
replication. The qRT-PCR results revealed that overexpression of IFNLR1 upregulated antiviral 
and IFN-stimulated genes. IFNLR1 overexpression inhibits the proliferation of PAMs and 
upregulation of p-STAT1. By contrast, knockdown of IFNLR1 expression promotes PAMs 
proliferation. The G0/G1 phase proportion in IFNLR1-overexpressing cells increased, and 
the opposite change was observed in IFNLR1-underexpressing cells. After inhibition of the 
JAK/STAT signaling pathway, the G2/M phase proportion in the IFNLR1-overexpressing cells 
showed a significant increasing trend. In conclusion, overexpression of IFNLR1 induces 
activation of the JAK/STAT pathway, thereby inhibiting the proliferation of PAMs infected 
with PRRSV.
Conclusion: Expression of the IFNLR1 gene has an important regulatory role in PRRSV-
infected PAMs, indicating it has potential as a molecular target in developing a new strategy 
for the treatment of PRRSV.
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INTRODUCTION

Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped positive-
stranded RNA virus within the family Arteriviridae, order Nidovirales [1]. The latest 
classification of the International Committee on Taxonomy of Viruses (ICTV) indicates 
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that PRRSV is a porcine arterivirus (Porartevirus; https://talk.ictvonline.org/ictv-reports/
ictv_online_report/). Pigs of different ages, breeds, and genders can be infected with PRRSV, 
with pregnant sows and piglets less than one month being the most susceptible. Porcine 
reproductive and respiratory syndrome (PRRS) is characterized by sow miscarriages, piglet 
dyspnea, and high mortality. Since the PRRSV was detected in wild boars in Europe and 
North America in 1987, it has resulted in substantial economic losses to the global pig 
industry [2]. Previous studies have shown that the persistence of the PRRSV within swine 
herds is often related to the recurrence of secondary infections [3,4]. PRRSV infection can 
elicit poor innate interferon and cytokine responses [5,6]. Therefore, PRRSV has been 
speculated to have immunosuppressive effects in pigs. In previous study, a large number 
of positive selection genes were identified in Dapulian pigs by performing specific-locus 
amplified fragment sequencing (SLAF) analysis. These genes are under positive selection 
pressure to adapt to environmental changes during species evolution [7]. Historically, 
Dapulian pigs are known for their resistance and immune properties [8]. The interferon 
lambda receptor 1 (IFNLR1) gene is one such positive selection gene and may have an 
important role in the disease resistance and adaptability of Dapulian pigs. The encoded 
protein product of this gene is a member of the type II cytokine receptor family [9]. 
Interferon (IFN)-λ identifies and combines with the dimer receptor complex formed by the 
IFNLR1 and IL10Rβ chains, subsequently activating the Janus kinase (JAK)- signal transducer 
and activator of transcription (STAT), phosphorylated (p)-protein kinase B, and mitogen-
activated protein kinase/extracellular signal-regulated kinases signaling pathways, which 
exert antiviral and growth-suppressive activity in vitro and in vivo [10-12]. After IFN secretion 
activates the downstream signaling pathways, a variety of IFN-stimulated genes (ISGs) are 
transcribed to initiate the host defense response to the virus.

Interferon is an inducible protein. Normal cells generally do not produce interferon 
spontaneously, only having the potential to synthesize interferon, and the interferon gene 
is in a suppressed quiescent state. IFN-λs are usually induced in virus-infected cells but, like 
IFN-α and IFN-β, can also be induced by other mechanisms. IFN-λ is considered an epithelial 
cytokine, which is mainly expressed in antigen-presenting cells. Since the IFNLR1 gene is 
most abundantly expressed in epithelial-derived cells, this determines the tropism of the IFN-λ 
responses [13]. For example, PRRSV induces IFN-λ1 and IFN-λ3 expression at the mRNA level 
after the infection of porcine alveolar macrophages (PAMs) [14]. Recently, additional research 
has indicated that IFNLR1 is also widely expressed in immune cells. In viral infection or acute 
inflammation, IFN-λ can directly or indirectly act on immune cells to exert immunoregulatory 
functions [15]. Neutrophils can express IFNLR1 in mice infected with the influenza virus [16]. 
Over the past few years, IFNLR1 has been broadly investigated for its mutations associated with 
various diseases in humans [17,18]. It has been reported that West Nile virus (WNV) infection 
in vivo in the brain and spinal cord of IFNLR1(-/-) mice can replicate and spread quickly [19]. 
Although IFNLR1 is involved in biological activities induced by IFN-λs, including antiviral, 
antitumor, and immune regulation, research on these activities is still needed.

The anti-cell proliferation activity of IFN-λs varies greatly among different cell lines, and it has 
a close relationship with the expression of its IFNLR1 receptor. Cell proliferation is not only a 
cell life activity, but also is a necessary process for cell maintenance and for compensating for 
cell damage. Completion of this process is mainly accomplished by regulating the cell cycle. 
The cell cycle can be split into four phases: G1, S, G2, and mitosis (M), and cells that are no 
longer cycling are said to be quiescent or in phase G0. Mammalian cells regulate cell growth, 
genome replication, and cell division, all of which occur during the cell cycle [20]. The two 
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gap phases, G1 and G2, are separated by the S phase, during which DNA is replicated and are 
followed by mitosis, in which the DNA is divided between two new nuclei. After mitosis, the 
cell itself divides and each daughter cell repeats the cycle being at G1 or exits the cell cycle at 
G0. Under normal circumstances, the initiation and orderly progress of the cell cycle requires 
strict regulation by various regulatory factors. Cell-cycle proteins (cyclins), cyclin-dependent 
kinases (CDKs), and cyclin-dependent kinase inhibitors (CKIs) are the three main cell-cycle 
regulatory molecules. In addition, cell-cycle checkpoints are important in determining the 
transition of cells from one phase to the next [21]. So far, the effect of IFNLR1 on the cell cycle 
and its corresponding molecular mechanism have not been reported.

At present, there are few studies on the role of IFNLR1 in resisting PRRSV infection. After 
the PRRSV enters the pig body, it first invades PAMs, causing severe pneumonia. This study 
used interference and overexpression methods to analyze the effect of IFNLR1 on PAM 
proliferation. The purpose of the study was to elucidate the potential role of the IFNLR1 gene 
in the prevention and treatment of PRRSV.

MATERIALS AND METHODS

Cell line and virus, tissue collection
Twelve two-month-old PRRSV-negative pigs, including six Dapulian pigs and six Landrace 
pigs, were purchased from the Jining breeding farm in Shandong province, China. All pigs 
were raised u the same environment and management conditions. After slaughter at the 
indicated time, tissue samples, including lung, liver, large intestine, spleen, lymph gland, 
kidney, heart, small intestine, tonsil, and muscle, were immediately frozen in liquid nitrogen 
and stored at −80°C. All animal care and treatment procedures were approved by the Animal 
Ethics Committee of Shandong Agricultural University, China and performed following that 
committee's guidelines and regulations (Approval No.: 2004006).

HP-PRRSV strain TA-12 (GenBank Accession No. HQ416720) was provided by Professor 
Yihong Xiao of Shandong Agricultural University. The PAMs were preserved in the laboratory.

Tissue distribution
Total RNA was extracted with TRIzol reagent (TaKaRa, Dalian, China), and cDNA preparation 
was performed using a PrimeScript First Strand cDNA Synthesis Kit (TaKaRa, Dalian, China) 
according to the manufacturer's protocol. The mRNA expression of IFNLR1 was detected and 
analyzed by quantitative real-time PCR (qRT-PCR). HPRT1 was used as an internal control.

qRT-PCR
After reverse transcription, qRT-PCR was performed on a Roche LightCycler96 machine 
using a 20 µL system and SYBR Green. The fold change values for changes in expression were 
obtained by applying the 2-ΔΔCT method. The primer sequences are listed in Table 1.

Antibodies and reagents
The antibody against p-STAT1 (P42224 rabbit phospho-STAT1[S727] antibody) was purchased 
from Abcepta Biotech (Suzhou, China). Antibody against STAT1 (bs-9584R rabbit anti-STAT1 
antibody) was purchased from Bioss Biotech (Beijing, China). Antibody against β-Actin 
(AF0003 β-Actin mouse monoclonal antibody) was purchased from Beyotime Biotech 
(Shanghai, China). Antibody against IFNLR1 (abs120780 rabbit anti-IL-28R polyclonal 
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antibody) was purchased from Absin Biotech (Shanghai, China). The RNA interference 
fragment was obtained from GenePharma (Shanghai, China). JAK inhibitor I (HY-50856) was 
purchased from MedChemExpress Biotech (Shanghai, China).

Cell culture
PAMs were cultured in Hyclone1640 culture medium containing 10% fetal bovine serum 
(FBS), 1% penicillin-streptomycin, and 1% MEM nonessential amino acids solution, under 
CO2 in a constant-temperature incubator at 37°C (5% CO2 and 95% humidity). The medium 
was changed every day, and cells subcultured every other day.

Virus infection
PAMs were infected and incubated with HP-PRRSV-12 at multiplicity of infection (MOI) levels 
of 0.05, 0.1, 0.5, and 1.0. Incubated cells were harvested at 0, 6, 24, and 48 h post-infection, 
and qRT-PCR was performed to detect IFN-λ1, IFN-λ3, and IFNLR1 mRNA expression.

Cell transfection and test grouping
Polymerase chain reaction (PCR) was carried out using IFNLR1 primers (sequences are shown 
in Table2), and the products were cloned into the pcDNA3.1(+) vector and bidirectionally 
sequenced. The siRNA was designed according to porcine IFNLR1. The siRNA sequence of 
IFNLR1 had the same composition as the siRNA of the negative control but had no homology. 
All interference fragments were synthesized by GenePharma (Shanghai GenePharma Co., 
Shanghai, China), and the sequences are listed in Table 3. When PAMs were at 50-70% 
confluence, 2500 ng pcDNA3.1(+), pcDNA3.1 (+)-IFNLR1 plasmid, SiNC, or 20 mL siRNA 
were transfected using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to 
the manufacturer's instructions. The results of western blot analysis showed that both the 
plasmid and interference fragment were successfully transfected. The treated group was 
infected with HP-PRRSV-12 at MOI = 0.5 for 48 h after transfection.
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Table 1. The gene-specific primer sequences used for quantitative real-time polymerase chain reaction analysis
Gene Primer sequences
IFNLR1-F CCCAGTTTCTCTGCGGACAC
IFNLR1-R ATGCCCCAGTGTCCTACCTC
IFN-λ1-F ACATCCACGTCGAACTTCAGGCT
IFN-λ1-R AGGCGGAAGAGGTTGAACATGAC
IFN-λ3-F ACATCCACGTCGAACTTCAGGCT
IFN-λ3-R GATGTGCAAGTCTCCACTGGT
IRF 7-F TGCAAAGTCTACTGGGAGGTG
IRF 7-R AAGGTGCCGAAGTCGAAGAT
ISG 15-F AGTTCTGGCTGACTTTCGAG
ISG 15-R AGGCGCAGATTCATATACACG
IFIT1-F TGCAACAACACACCCACAGA
IFIT1-R GCATTATTACTCATGGTTGCTGTGA
OAS1-F TCCAGCAACTCAAGAAACCCA
OAS1-R CCAGAGACCCATCCAGATTC
PKR-F CAGCAAATACGTCAGAAAGCAG
PKR-R GGGCGAGGTAAATGTAGGTG
MX1-F CCACCTGAAGAAGGGCTAC
MX1-R AACAGGGGCAGAGTTTTAC
PRRSV N-F AGATCATCGCCCAACAAAAC
PRRSV N-R GACACAATTGCCGCTCACTA
HPRT1-F CATTATGCCGAGGATTTGG
HPRT1-R CTTGAGCACACAGAGGGCTA



Viral titer
Marc-145 cells were seeded into 96-well plates for culture overnight. After plasmid or 
siRNA transfection, the HP-PRRSV strain was diluted with DMEM 10 times to a series of 
concentrations, and cells from 10 wells were added to each dilution concentration. When the 
cells were inoculated with PRRSV for 48h, the number of cells with a cytopathic effect (CPE) 
was observed under an inverted microscope. Finally, the 50% tissue culture infected dose 
(TCID50) was determined using the Reed-Muench method.

Cell proliferation assay
PAMs were seeded in 96-well plates at a density of 1 × 104 cells/well in 100 μL of growth 
medium. The test grouping and treatment methods are the same as above. Then, 10 μL 
of Cell Counting Kit 8 (CCK8) reagent (Beyotime Biotech, Beijing, China) were added to 
each well, and incubation continued for 3 h at 37°C. Finally, an automatic microplate reader 
(Molecular Devices, Sunnyvale) was used to determine the cell proliferation index at 450 nm, 
per the manufacturer's instructions.

Western blot analysis
Protein extracts from cultured cells were prepared and underwent western blot analysis. 
Protein concentrations were determined using a BCA Protein Assay kit (Tiangen Biotech, 
Beijing, China). Total protein samples (30 µg) were separated by SDS-PAGE (12%) and 
transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore, Shanghai, China). 
The membranes were incubated overnight with the indicated antibodies at 4°C. Then the 
secondary antibody was added, and the membranes incubated for 1.5 h. The membranes 
were then subjected to ECL reagents to detect immunoreactivities, and β-actin was used as an 
internal control.

Cell cycle analysis
PAMs were cultured in 6-well plates (1 × 106 cells/well) with 2 mL of growth medium. The cells 
were collected by conventional digestion centrifugation and washed with PBS solution before 
the cell concentration was adjusted to 1 × 106 mL-1. Finally, cells were fixed in 70% ethanol 
overnight at −20°C before applying the Cell Cycle Analysis Kit (Beyotime Biotech, Beijing, China). 
Subsequently, the cells were analyzed by performing flow cytometry (BD LSRFortessa Flow 
Cytometer, BD Biosciences, USA). All data were analyzed by using FlowJo Software v10.0.7.
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Table 2. The gene-specific primer sequences used for polymerase chain reaction analysis
Gene Primer sequences
IFNLR1-F0 GGGAGGTGGGAACGGGT
IFNLR1-R0 TCACCTGTGCAGTGTCATCC
IFNLR1-F1 GAACGGGTCCCACCCTG
IFNLR1-R2 AGGTCATAGGACAGGTGGCT

Table 3. The primer sequences for the assessed siRNAs
Gene Primer sequences
Si-NC-F UUCUCCGAACGUGUCACGUTT
Si-NC-R ACGUGACACGUUCGGAGAATT
Si-IFNLR1-F CCAAGCCUACCUGCUUCUUTT
Si-IFNRL1-R AAGAAGCAGGUAGGCUUGGTT



Statistical analysis
The data are expressed as means ± standard deviations (n = 3). Statistical testing was performed 
using one-way analysis of variance (ANOVA). The means were compared by using Duncan's 
multiple range test as contained in SAS 9.2 software (SAS Institute Inc., USA). Data were plotted 
using GraphPad Prism 5 and are presented as mean ± standard deviation values. Statistical 
significance (p < 0.05) of differences is indicated by the presence of a-d letters within a column; 
different letters within a column denote a significant difference between means.

RESULTS

Different IFNLR1 gene expressions in different tissues of Dapulian and 
Landrace pigs
In this study, qRT-PCR was used to detect the relative expression level of the IFNLR1 gene in ten 
tissue types sampled from two-month-old Dapulian and Landrace pigs. The statistical analysis 
results are shown in Fig. 1A, which show that IFNLR1 was expressed in all tissues of both breeds. 
Between the two pig breeds, the expressions of the liver, large intestine, small intestine, kidney, 
and lung tissues were significantly higher in Dapulian pigs than in Landrace pigs (p < 0.05). 
Furthermore, western blot analysis was used to examine the expression levels of IFNLR1 protein 
in the lung tissues of Dapulian and Landrace pigs (Fig. 1B). The results were consistent with the 
quantitative results, indicating the accuracy of the fluorescence-based quantitative results.

Suppression of IFNLR1 expression by PRRSV infection
To investigate whether the expression of type III IFNs was affected by PRRSV inoculation, 
we utilized a PAM cell line shown to be infected by PRRSV. When PAMs were infected with 
PRRSV, the IFN-λ1 and IFN-λ3 mRNAs were upregulated, peaking at 48 h after inoculation, 
as shown by the qRT-PCR results (Fig. 2A and B). Based on that result, type III IFNs do affect 
PAMs, indicating that it is reasonable to use PAMs to explore the role of IFNLR1 in PRRSV 
inoculation. Subsequently, PAMs were collected at different MOI levels at 24 h post-infection. 
The results indicated that the IFNLR1 mRNA level was significantly down-regulated by PRRSV 
infection (p<0.01), resulting in an approximately 2-fold decrease (Fig. 2C).
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Fig. 1. Expression of IFNRL1 in various tissues of Dapulian and Landrace pigs. (A) Relative mRNA expression of IFNLR1 in lung, liver, large intestine, spleen, lymph 
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Suppression of PRRSV replication by IFNLR1 overexpression
The mRNA expression of IFNLR1 was changed in PAMs after transfection by pcDNA3.1(+), 
pcDNA3.1(+)-IFNLR1, si-NC, and si-IFNLR1 plasmids. The qRT-PCR results indicated that the 
IFNLR1 knockdown efficiency was 62.55% (Fig. 3A). Compared with the pcDNA3.1(+) group, 
the expression of IFNRL1 in the pcDNA3.1(+)-IFNLR1 group was significantly higher (p < 0.05; 
Fig. 3B). Western blot analysis was performed to verify the presence of IFNLR1 expression 
(Fig. 3C). These results show that the overexpression plasmid was successfully transfected 
into PAMs, which was consistent with our expectations, indicating the PAMs could be used for 
further functional study of IFNLR1. After interference, the mRNA level of the PRRSV N protein 
was elevated significantly (p < 0.05; Fig. 4A). After overexpression, the TCID50 was measured at 
48 h post-infection, and the results showed that the control group virus titer was significantly 
higher than that of the pcDNA3.1(+)-IFNLR1 group (p < 0.01; Fig. 4D). In addition, the PRRSV 
N protein level changes were consistent with the viral titer changes (Fig. 4E).

Activation of JAK/STAT signaling pathway by IFNLR1 overexpression
To investigate the effect of IFNLR1 gene expression on the JAK/STAT signaling pathway, 
Western blot analysis was used to detect the STAT1 level in each treatment group. The results 
demonstrated that the level of STAT1 phosphorylation was higher in IFNLR1- overexpressing 
PAMs than in the control group PAMs. Conversely, the opposite result was obtained in the 
IFNLR1-knockdown PAMs (Fig. 5).
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The relative expression of IFN-stimulated genes and antiviral genes by IFNLR1
In order to further clarify the changes in the IFN signal pathway, the mRNA expressions 
of interferon regulator factor 7 (IRF7), interferon-induced protein with tetratricopeptide 
repeats 1 (IFIT1), and interferon-stimulated gene 15 (ISG15) in each treatment group were 
assessed. Compared with the control and pcDNA3.1(+)groups, the expression levels of the 
three IFN-stimulated genes were markedly increased (p < 0.01; Fig. 6A); to the contrary, 
IFNLR1-silencing yielded opposite results. To explore the effect of the IFNLR1 on the mRNA 
expression levels of the antiviral genes 2′-5′-oligoadenylate synthetase 1 (OAS1), protein kinase 
R (PKR), and myxoma resistance protein 1 (MX1), qRT-PCR analysis was performed. As Fig. 6B 
shows, the mRNA level of PKR and MX1 in the IFNLR1 overexpression group was significantly 
higher than those in the other three treatment groups and the non-transfected control group 
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(p < 0.01; Fig. 6B). In contrast, there was no statistically significant difference in OAS gene 
expression between the pcDNA3.1(+) and pcDNA3.1(+)-IFNLR1 groups (p > 0.05).

Inhibition of PRRSV-infected PAM proliferation by IFNLR1 overexpression
Absorption values were detected by microplate reader at a 450 nm wavelength in each group 
after incubation for 24 h and 48 h. The results are represented in Fig. 7. Compared with the 
corresponding control group, the proliferation ability of the IFNLR1 overexpression and 
knockdown groups had not changed significantly at 24 h. However, at 48 h, PAM proliferation 
had decreased significantly in the IFNRL1 overexpression group compared to that in the 
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pcDNA3.1(+) group (p < 0.01; Fig. 7A). On the contrary, the proliferation ability of the IFNLR1 
knockdown PAMs had significantly increased (p < 0.01; Fig. 7B).

Effect of IFNLR1 on cell-cycle transitions in PRRSV-infected PAMs
To investigate the effects of PRRSV on cell proliferation, cell-cycle phase changes were 
detected by performing flow cytometry. PRRSV infection disrupted the normal PAM cell 
cycle. At 48 h, the proportion of PAMs in the G0/G1 phase was reduced, while the PAMs at the 
S and G2/M phases increased significantly. The results demonstrated that the G0/G1 phase 
(56.67%) and S phase (19.53%) PAMs in the transfected IFNLR1 group were significantly 
greater than those in the transfected pcDNA3.1(+) group (51.60% and 15.50%, respectively; 
p < 0.05). In the transfected IFNLR1 group, 10.01% of the PAMs were at the G2/M phase 
compared to 17.70% in the transfected pcDNA3.1 group, a notable difference between the 
two groups (p < 0.01). In contrast, the main cell-cycle phase change in the IFNLR1 knockout 
group was an increase of PAMs at the G2/M phase (p < 0.01; Fig. 8A and B).

Effect of inhibiting JAK/STAT pathway on proliferation and cell cycle of 
PRRSV-infected PAMs
When JAK inhibitor I (800 nM), an inhibitor of the JAK/STAT pathway, was added to 
pcDNA3.1(+) PAMs and IFNLR1 overexpression PAMs, the phosphorylation level of STAT1 
was obviously decreased (Fig. 9A). Furthermore, a CCK8-based assessment was performed to 
determine the level of PAM proliferation in each group. The results showed that proliferation 
ability increased after JAKI was added, suggesting that the inhibition of PAM proliferation by 
IFNLR1 was reduced (Fig. 9B). When the JAK/STAT pathway inIFNLR1-overexpressing PAMs 
was inhibited, the percentage of PAMs at the G2/M phase increased (Fig. 10).
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DISCUSSION

A positive selection gene IFNLR1 was previously identified in Dapulian pigs by performing high-
throughput sequencing [7]. Historically, Dapulian pigs have been known for their infection 
resistance and immunity characteristics. This study explored the role of the IFNLR1 gene in the 
process of antiviral infection in pigs. Previous research on the gene functions of IFNLR1 has 
been mainly based on the mouse model. So far, it has been reported that IFNLR1 is involved 
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in biological activities, including antivirus, antitumor, and immunomodulation activities. 
However, little has been reported about the expression pattern and immune reactions of 
porcine IFNLR1 in response to PRRSV stimulation in vitro. The current research revealed for the 
first time that the IFNLR1 gene has a vital role in defending against PRRSV invasion.

The study results confirming the tissue distribution of porcine IFNLR1 were useful in 
revealing the recognition, induction, and inflammatory reaction of the host to the pathogen. 
The results showed an abundance of IFNLR1 in lung and lymph gland tissues both Dapulian 
and Landrace pigs, although the abundance was higher in the Dapulian pigs. Those results 
indicate that the IFNLR1 gene has a crucial role in the immune system of both pig breeds. This 
could be due to the stimulation from viruses or bacteria in the external environment, which 
subsequently promotes activation of the type III interferon signaling pathway. The lung is 
one of the most important organs of the animal body, and its primary function is to exchange 
gas with the outside world. Because lungs are directly connected to the outside world, it is 
an organ that is very vulnerable to external invasion. Previous studies have shown that when 
PRRSV invades the body, it first attacks macrophages in alveoli [6,22]. These results indicate 
that the IFNLR1 gene has a significant role in the antiviral infection-related processes in 
porcine lungs.

PRRSV infection promotes the expression of type III interferon but inhibits IFNLR1 gene 
expression, further indicating the IFN signal pathway feature of IFNLR1. After knockout, 
the virus titer increases, which may be due to the specific binding of IFNλs that participate 
in signal transduction, which reduces antiviral and antitumor efficacy. The response of 
IFN-λs in vitro depends on the expression of its receptor, IFNLR1. Prior research displayed 
that overexpression of IL-28Ra, a response of non-responding cells to IFN-λ, was restored 
[23]. Our results are similar to those in the following research studies. Taniguchi et al. [24] 
constructed type III IFN receptor knockout H358 cells by adding interference fragments and 
compared the Measles virus (MeV) proliferation between normal and knockout cells. In all 
cases, virus titers of IFNLR1 knockout cells (IFNLR1 KO1 and KO2 clones) were significantly 
higher than those in control cells.

IFNs do not have a direct antiviral effect; instead, they initiate a series of signal transduction 
cascades to induce the expression of ISGs to exert their antiviral effects [25]. ISG15, IFIT1, and 
IRF7 are important ISGs that can be rapidly induced and expressed by IFNs. Their expression 
products have direct antiviral activity and have an immunomodulatory role during viral 
infection. For example, ISG15 is a ubiquitination-like protein that can modify the ISG target 
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protein and inhibit the virus [26]. IFIT1 is generally expressed in IFN-dependent inducible 
expression in cells and has been reported to affect virus replication. Correct addition of the 
mRNA cap structure during the infection inhibits virus transcription and protein synthesis 
[27]. This study showed that IFNLR1 overexpression could induce upregulation of ISG15, IFIT1, 
and IRF7 in PAMs. This further indicates that the downstream signal pathway activated by 
the binding of the IFNLR1 gene and the interferon ligand has an important role in inhibiting 
PRRSV infection. Several studies have shown that OAS1, PRK, and MX1 proteins have natural 
resistances to viruses and can act directly on viruses [28-30]. Our results show that IFNLR1 
induces significant upregulation of PKR and MX1 mRNA levels, but a change in OAS gene 
expression was not noticeable. We speculate that this may be due to the type III interferon 
signaling pathway mainly relying on PRK and MX1 antiviral proteins to produce an anti-
infective effect after being stimulated by PRRSV. Also, there may be synergy or antagonism 
among them, but follow-up experiments are needed to investigate that suggestion.

As further elucidation of the therapeutic mechanism of IFNLR1, our results demonstrated 
that overexpression of IFNLR1 could inhibit the proliferation of PAMs infected with PRRSV, 
whereas IFNLR1 knockdown promoted PAM proliferation. In addition, overexpression of 
IFNLR1 significantly increased the proportion of G0/G1 and S phase PAMs and decreased 
the proportion at the G2/M phase. Notably, the opposite result was observed in IFNLR1 
knockdown PAMs. Finally, western blot analysis was used to show that IFNLR1 inhibited 
PAM proliferation by activating the JAK/STAT signaling pathway. Based on these results, it is 
concluded that the high expression of the IFNLR1 gene in Dapulian pigs may be related to the 
strength of their disease resistance.

Previous studies have shown that PRRSV replication causes host immune regulation, 
leading to weakened adaptive immunity and innate immune responses [31,32]. During the 
PRRSV infection process, the virus mainly infects the lungs and lymphatic organs, and it 
can replicate and proliferate in those organs. The main cell types infected by PRRSV in vivo 
are monocyte cells, especially PAMs, which are the principal target of PRRSV infection. 
In support of that observation, the titer of PRRSV is reportedly the highest in lung tissue 
[33]. It is noteworthy that some Chinese indigenous pig breeds display resistance to 
PRRSV infection, such as Dapulian [34] and Tongcheng [35] pigs. Hu described the whole 
blood gene expression profiles of Dapulian and Landrace pigs treated with CpG ODN 
[36]. Subsequently, transcriptome profiling of PAMs from PRRSV-infected Tongcheng and 
Large White pigs was performed using RNA-sequencing [37]. We compared their results 
and noted that Tongcheng and Dapulian pigs share several common immune-relevant 
differentially expressed genes, such as the CXCR6 and CCR5 genes. This similarity may form 
a theoretical basis for explaining the strong disease resistance of these two breeds. In this 
study, we observed that the expression of the IFNLR1 gene in lung tissue of Dapulian pigs 
was significantly higher than that in Landrace pigs, illustrating that IFNLR1 could be a key 
candidate gene for use in determining the pathogenesis and treatment of PRRSV.

Type III IFN, also known as IFN-λ, is a member of the IL-10-related cytokine family. At 
present, the function of IFN-λs has not been not fully described. Initial studies show that 
IFN-λs exhibit antiviral, antiproliferative immunoregulatory functions similar to those of IFN 
types I and II. Various cell cultures and in vivo experiments on humans have confirmed that 
IFN-λs have activity against multiple viruses, including respirovirus and rotavirus [38,39]. In 
pigs, IFNλs can inhibit the replication of porcine epidemic diarrhea virus (PEDV) in epithelial 
cells [40]. Similarly, recombinant IFN-λ1 has been shown to enhance the immune response 
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of the PRRSV DNA vaccine [41]. Part of the IFN-λ function is controlled by a set of cellular 
genes, which are rapidly induced by the binding of IFN-λs to specific receptors. The IFN-λs 
receptor complex consists of a unique ligand-binding chain, IFNLR1 (also known as IL28RA), 
and an accessory chain, IL10R2, that is shared with the IL10 receptor [9]. The low expression 
of IFNLR1 in Western commercial pigs appears to be an important factor that makes them 
more susceptible to PRRSV.

The results of this study have demonstrated that IFNLR1 overexpression can suppress PAM 
proliferation in PRRSV-infected cells. This is consistent with prior studies that reported 
IL28RA overexpression could markedly inhibit the proliferation of HaCat cells in vitro [42]. 
Flow cytometry showed that IFNLR1 overexpression down-regulated the percentage of PAMs 
at the G2/M phase, indicating that the cell cycle was arrested in the S phase; a contrasting 
result was obtained in IFNLR1 knockdown PAMs. These results indicate that IFNLR1 inhibits 
cell proliferation by affecting the cell-cycle process. We speculate that this is an important 
way for IFNLR1 to participate in the antiviral function activated by IFN-λs. Several researchers 
have shown that many viruses and their related proteins can perturb the cell cycle and induce 
cell-cycle arrest during infection [21,43]. Inhibition at the G2/M phase of the host cell cycle is 
a well-known strategy used by RNA and DNA viruses [44]. Song demonstrated that the p53/
p21 pathway is involved in the G2/M cell-cycle arrest of PRRSV-infected MARC-145 cells [45]. 
Furthermore, experiments with small molecule inhibitors have shown that cell-cycle arrest at 
the G2/M phase can benefit the early stages of the human immunodeficiency virus (HIV) life 
cycle by increasing the number of integrated proviruses [46]. Dove reported that infectious 
bronchitis virus (IBV) could induce G2/M phase cell-cycle arrest in infected cells, thereby 
promoting favorable conditions for viral replication [47]. Our results are consistent with 
these reports. The proportion of PAMs in the G2/M phase increased significantly after PRRSV 
infection. We further detected cell cycle changes after transfection with the pcDNA3.1(+)-
IFNLR1 plasmid. The results indicate that, compared to the control group, the G2/M 
percentage was markedly decreased in IFNLR1-overexpressing cells. Interestingly, cyclins are 
a class of proteins that can precisely regulate the cell cycle, and they have an important role in 
regulating cell proliferation and division. Therefore, the effect of IFNLR1 on cyclin function 
needs to be studied.

In order to evade the host's innate immune system, PRRSV has evolved a variety of strategies 
to protect itself while fighting with the host, including interfering with the host's JAK/STAT 
signaling pathway. Previous study has shown that PRRSV infection can inhibit JAK/STAT 
signal transduction and ISGs expression induced by type I interferon [48]. Recently, it was 
reported that PRRSV nsp1β inhibits the activity of JAK/STAT signaling pathway by inhibiting 
the expression of karyopherin-α1 (KPNA1) and preventing the IFN-stimulated gene factor 
(ISGF3) complex from entering the nucleus [49]. These results strongly suggest that the JAK/
STAT pathway can have an immunomodulatory role in PRRSV infection. Among the signaling 
pathways associated with IFNLR1, the JAK/STAT pathway is the most classic [50]. After IFN-
λs bind to specific receptors, Jak1 and Tyk2 protein kinases are activated through tyrosine 
phosphorylation, and STAT1 and STAT2 are phosphorylated by the activated JAK protein, 
promoting the expression of IFN-stimulated genes (ISGs). Researchers have previously 
reported that activation of the IFNLR1 signaling pathway can increase the phosphorylation 
level of STAT protein in different cell types [51,52]. Moreover, the anti-growth effect of IFN-
λs is inseparable from the expression of JAK1 and STAT1. In our study, after transfection 
of the pcDNA3.1(+)-IFNLR1 plasmid, the phosphorylation level of STAT1 was significantly 
increased, and immediately after the JAK inhibitor was added, the IFNLR1 gene inhibition 
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of cell proliferation weakened. These results indicate that the inhibitory effect of IFNLR1 
on PAM proliferation was partly dependent on the activation of STAT1 phosphorylation. 
IFNLR1 and its signaling pathway induce the expression of antiviral proteins (such as MX1 
and PKR) and promote the release of proinflammatory cytokines and chemokines (such 
as CXCL10 and CXCL11) for participation in antiviral immune responses. However, an 
excessive inflammatory response due to a large number of inflammatory factors is usually 
fatal. Therefore, the molecular mechanisms of IFNLR1 and the associated signaling pathway 
involved in regulating the expression of inflammatory factors need to be further explored.

In summary, overexpression of IFNLR1 inhibits the proliferation of PRRSV-infected PAMs 
by changing cell-cycle progression. We speculate that IFNLR1 is an important target gene 
involved in the pathogenesis of PRRSV and may have potential in its treatment.
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