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Here we propose a cone-beam composite-circling mode to solve the quasi-short object problem, which is to reconstruct a short
portion of a long object from longitudinally truncated cone-beam data involving the short object. In contrast to the saddle curve
cone-beam scanning, the proposed scanning mode requires that the X-ray focal spot undergoes a circular motion in a plane facing
the short object, while the X-ray source is rotated in the gantry main plane. Because of the symmetry of the proposed mechanical
rotations and the compatibility with the physiological conditions, this new mode has significant advantages over the saddle curve
from perspectives of both engineering implementation and clinical applications. As a feasibility study, a backprojection filtration
(BPF) algorithm is developed to reconstruct images from data collected along a composite-circling trajectory. The initial simula-
tion results demonstrate the correctness of the proposed exact reconstruction method and the merits of the proposed mode.
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1. INTRODUCTION

Since its introduction in 1973 [1], X-ray CT has revolution-
ized clinical imaging and become a cornerstone of radiology
departments. Closely correlated to the development of X-ray
CT, the research for better image quality at lower dose has
been pursued for important medical applications with car-
diac CT being the most challenging example. The first dy-
namic CT system is the dynamic spatial reconstructor (DSR)
built at the Mayo Clinic in 1979 [2, 3]. In a 1991 SPIE con-
ference, for the first time we presented a spiral cone-beam
scanning mode to solve the long object problem [4, 5] (re-
construction of a long object from longitudinally truncated
cone-beam data). In 1990s, single-slice spiral CT became the
standard scanning mode of clinical CT [6]. In 1998, multi-
slice spiral CT entered the market [7, 8]. With the fast evolu-
tion of the technology, helical cone-beam scanning becomes
a main mode of clinical CT. Moreover, just as there have been
strong needs for clinical imaging, there are equally strong de-
mands for preclinical imaging, especially of genetically engi-
neered mice [9–11].

To meet the biomedical needs and technical challenges, it
is imperative that cone-beam CT methods and architectures
must be developed in a systematic and innovative manner so
that the momentum of the CT technical development as well

as clinical and preclinical applications can be sustained and
increased. For that purpose, our CT research has been for
superior dynamic volumetric low-dose imaging capabilities.
Since the long object problem has been well studied by now,
we recently started working on the quasi-short object prob-
lem (reconstruction of a short portion of a long object from
longitudinally truncated cone-beam data involving the short
object).

Currently, the state-of-the-art cone-beam scanning for
clinical cardiac imaging follows either circular or helical tra-
jectories. The former only permits approximate cone-beam
reconstruction because of the inherent data incompleteness.
The latter allows theoretically exact reconstruction but due
to the openness of helical scanning there is no satisfactory
scheme to utilize cone-beam data collected near the two ends
of the involved helical segment. Recently, saddle-curve cone-
beam scanning was studied for cardiac CT [12, 13], which
can be directly implemented by compositing circular and lin-
ear motions: while the X-ray source is rotated in the vertical
x-y plane, it is also driven back and forth along the z-axis.
Because the electromechanical needs are very challenging for
converting a motor rotation to the linear oscillation and han-
dling the acceleration of the X-ray source along the z-axis,
it is rather difficult to implement directly the saddle-curve
scanning mode in practice, and it has not been employed by
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any CT company. However, it does represent a very promis-
ing solution to the quasi-short object problem. Early this
year, we invented a composite-circling scanning principle to
solve the quasi-short object problem [14].

In Section 2, we will define the new scanning mode. In
Section 3, we will describe a backprojection filtration- (BPF-)
based exact reconstruction algorithm. In Section 4, we will
present representative simulation results. In Section 5, we
discuss some related issues and conclude the paper.

2. COMPOSITE-CIRCLING SCANNING

When an X-ray focal spot is in a 2D (no, linear, circular, or
other types) motion on the plane, or more general in a 3D
motion within a neighborhood, facing a short object to be
reconstructed, and the X-ray source is at the same time ro-
tated in a transverse plane of a patient, the synthesized 3D
scanning trajectory can take various forms with respect to
the short object. Specifically, let R1a ≥ 0 and R1b ≥ 0 be the
lengths of the two semiaxes of the scanning range in the focal
spot plane facing the short object, and R2 > 0 the radius of
the tube scanning circle on the x-y plane, we define a family
of saddle-like composite trajectory as
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where s ∈ R represents time, ω1 and ω2 are the angular fre-
quencies of the focal spot and tube rotations, respectively.
When the ratio between ω1 and ω2 is an irrational number
or a rational number with large numerator in its reduced
form, the scanning curve covers a band of width 2R1a, allow-
ing a uniform sampling pattern. With all the possible settings
of R1a, R1b, R2, ω1, and ω2, we have numerous cone-beam
scanning trajectories including saddle curves and composite-
circling loci that can be used to solve the quasi-short problem
exactly. We are particularly interested in a rational ratio be-
tween ω1 and ω2 in this paper, which will result in a period-
ical scanning trajectory. Without loss of generality, we reex-
press (1) as
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where m > 1 is a rational number. When R1b = 0 and m = 2,
we obtain the standard saddle curve. When R1a = R1b, we
have our proposed composite-circling trajectory. Some rep-
resentative composite-circling curves are shown in Figure 1.

As mentioned in the introduction, while the saddle curve
cone-beam scanning does meet the requirement for exact
cone-beam cardiac CT, it imposes quite hard mechanical
constraints. In contrast to the saddle curve cone-beam scan-
ning, our proposed composite-circling requires that the X-
ray focal spot undergo a circular motion in a plane facing the

short object to be reconstructed, while the X-ray source is ro-
tated in the main gantry plane (see Figure 2). Preferably, we
may let the patient sit or stand straight and make the gantry
plane parallel to the earth surface. Because of the symme-
try of the proposed mechanical rotations and the compati-
bility with the physiological conditions, we believe that this
approach to cone-beam CT of the short object has significant
advantages over the existing cardiac CT methods and the
standard saddle curve oriented systems from perspectives of
both engineering implementation and clinical applications.

3. EXACT RECONSTRUCTION

3.1. Notations

Assume an object function f (r) is located at the origin of
the natural coordinate system O. For any unit vector β, let us
define a cone-beam projection of f (r) from a source point
ρ(s) on a composite-circling trajectory by

Df
(
ρ(s),β

)
:=
∫∞

0
f
(
ρ(s) + tβ

)
dt. (3)

Then, we define a unit vector β as the one pointing to r from
ρ(s) on the composite-circling trajectory

β(r, s) := r− ρ(s)
∣
∣r− ρ(s)

∣
∣
. (4)

As shown in Figure 3, a generalized PI-line can be defined as
the line through a point and across the composite-circling
trajectory at two points ρ(sb(r)) and ρ(st(r)), where sb =
sb(r) and st = st(r) are the rotation angles corresponding to
these two points. At the same time, the PI-segment (also re-
ferred to as a chord) is defined as the part of the generalized
PI-line between ρ(sb(r)) and ρ(st(r)), the PI-arc as the part
of the scanning trajectory between ρ(sb(r)) and ρ(st(r)), and
the PI-interval as (sb, st). All the PI-segments form a convex
hull H of the composite-circling curve where the exact recon-
struction is achievable according to the generalized backpro-
jection filtration (BPF) approach [15, 16].

To perform the BPF reconstruction from data collected
along a composite-circling trajectory, we define a unit vector
along the chord

eπ(r) := ρ
(
st(r)

)− ρ(sb(r)
)

∣
∣ρ
(
st(r)

)− ρ(sb(r)
)∣
∣

, (5)

and set up a local coordinate system associated with the tra-
jectory. Initially, we only consider the circular scanning tra-
jectory Γ̃ of the X-ray tube in the x-y plane which can be
expressed as

Γ̃ = {ρ̃(s) | ρ̃1(s) = R2 cos(s), ρ̃2(s) = R2 sin(s), ρ̃3(s) = 0
}
.

(6)

For a given s, we define a local coordinate system for ρ̃(s)
by three orthogonal unit vectors d1 := (− sin(s), cos(s), 0),
d2 := (0, 0, 1), and d3 := (− cos(s),− sin(s), 0) (see Figure 4).
Equispatial cone-beam data are measured on a planar de-
tector array parallel to d1 and d2 at a distance D from ρ̃(s)
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Figure 1: Composite-circling scanning curves with different parameter combinations. (a) m = 2, R1a = R1b = 10, R2 = 57; (b) m = 2,
R1a = R1b = 50, R2 = 57; (c) m = 3, R1a = R1b = 10, R2 = 57; (d) m = 2.5, R1a = R1b = 10, R2 = 57.

with D = R2 + Dc, where the constant Dc is the distance
between the z-axis and the detector plane. A detector posi-
tion in the array is denoted by (u, v), which are signed dis-
tances along d1 and d2, respectively. Let (u, v) = (0, 0) cor-
respond to the orthogonal projection of ρ̃(s) onto the de-
tector array. If s is given, (u, v) are determined by β. Thus,
the cone-beam projection data along a direction β from ρ̃(s)
can be rewritten in the planar detector coordinate system as
p̃(s,u, v) := Df (ρ̃(s),β) with

u = Dβ·d1

β·d3
, v = Dβ·d2

β·d3
. (7)

Now, let us consider the circular rotation of the focal spot
at the given time s. According to our definition (2), the fo-
cal spot rotation plane is parallel to the local area detec-
tor, and the orthogonal projection of the circling focal spot
position ρ(s) in the above-mentioned local area detector is
(R1b sin(ms),R1a cos(ms)). Thus, the cone-beam projection
data along a direction β from ρ(s) can be rewritten in the
same local planar detector coordinate system as p(s,u, v) :=
Df (ρ(s),β) with

u = Dβ·d1

β·d3
+ R1b sin(ms), v = Dβ·d2

β·d3
+ R1a cos(ms).

(8)

3.2. Reconstruction algorithm

In 2002, an exact and efficient helical cone-beam reconstruc-
tion method was developed by Katsevich [17, 18], which is
a breakthrough in the area of helical/spiral cone-beam CT.
The Katsevich formula is in a filtered backprojection (FBP)
format using data from a PI-arc within a slightly enlarged
Tam-Danielsson window. By interchanging the order of the
Hilbert filtering and backprojection, Zou and Pan proposed
a backprojection filtration (BPF) formula in the standard he-
lical scanning case [19]. This BPF formula can reconstruct an
object from the data within the Tam-Danielsson window. For
important biomedical applications including bolus-chasing
CT angiography [20] and electron-beam CT/micro-CT [21],
our group first proved the general validity of both the BPF
and FBP formulae in the case of cone-beam scanning along
a general smooth trajectory [15, 16, 22, 23]. Our group also
formulated the generalized FBP and BPF algorithms in a uni-
fied framework [23], and applied them in the cases of gen-
eralized n-PI-window [24] and saddle curve scanning [13].
Note that our generalized BPF and FBP formulae as well as
others’ results [25] on general cone-beam reconstruction are
valid to any smooth scanning loci, and they can be certainly
applied to the reconstruction problem with the proposed
composite-circling trajectory. Based on our experience with
the cone-beam reconstruction from data along a saddle curve
[13], the BPF algorithm is more computationally efficient
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Figure 2: Compositing-circling scanning mode. In such a CT sys-
tem, the scanning trajectory is a composition of two circular mo-
tions: while an X-ray focal spot is rotated on a plane facing a short
object to be reconstructed, the X-ray source is also rotated around
the object on the gantry plane. Once a projection dataset is ac-
quired, exact or approximate reconstruction can be done in a num-
ber of ways (Copyright by Wang G, Yu HY, US Provisional Patent
Application, 2007).

than the PI-line-based FBP, and they have similar noise char-
acteristics. Therefore, here we will use the BPF method and
describe its major steps as follows.

Step 1 (Cone-beam data differentiation). For every projec-
tion, compute the derivative data G(s,u, v) from the projec-
tion data p(s,u, v):

G(s,u, v) ≡ ∂

∂s
Df
(
ρ(s),β

)∣
∣
β fixed =

d

ds
p(s,u, v)

∣
∣
β fixed

=
(
∂

∂s
+
∂u

∂s

∂

∂u
+
∂v

∂s

∂

∂v

)

p(s,u, v),

(9)

where

∂u

∂s
=
(
u− R1b sin(ms)

)2

D
+D +mR1b cos(ms),

∂v

∂s
=
(
u− R1b sin(ms)

)(
v − R1a cos(ms)

)

D
−mR1a sin(ms).

(10)

The detailed derivations of (10) are in Appendix A.

Step 2 (Weighted backprojection). For every chord specified
by sb and st and for every point r on the chord, compute the
weighted backprojection data

b(r) :=
∫ st(r)

sb(r)
G
(
s,u, v

) ds
∣
∣r− ρ(s)

∣
∣

(11)
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Figure 3: Concepts of the PI-Segment (chord) and associated PI-
arc.

with

u = Dβ(r, s)·d1

β·d3
+ R1b sin(ms),

v = Dβ(r, s)·d2

β·d3
+ R1a cos(ms).

(12)

Step 3 (Inverse Hilbert filtering). For every chord specified
by sb and st , perform the inverse Hilbert filtering along the
1D chord direction eπ(r) to reconstruct f (r) from b(r). The
filtering formulation is essentially the same as in our previous
papers [13, 16, 24].

Step 4 (Image rebinning). Rebin the reconstructed image
into the natural coordinate system by determining the
chord(s) for each grid point in the natural coordinate sys-
tem. The rebinning scheme is the same as what we used for
the saddle curve [13]. However, there are some differences in
the method for determining a chord, which will be described
in the next subsection.

3.3. Chord determination

For our composite-circling mode, we assume that R1b ≤
R2/(2m). In this case, the projection of the trajectory in the
x-y plane will be a convex single curve (Appendix B). Among
all the potential composite-circling trajectories, we now tar-
get the case m = 2 which is similar to the popular saddle
curve setting. That is, we will study how to determine a chord
for a fixed point for m = 2 in this subsection.

As shown in Figure 5, to find a chord containing the fixed
point r0 = (x0, y0, z0) in the convex hull H, we first consider
the projection curve of the trajectory in the x-y plane. Due
to the convexity of the projection curve, any line passing a
point inside the curve in the x-y plane has two and only
two intersections with the projection curve. Then, we con-
sider a special plane x = x0. In this case, there are two inter-
section points between the plane and the projection curve.
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Solving the equation R2 cos(s) − R1b sin(2s) sin(s) = x0, that
is, R2 cos(s) − 2R1b(1 − cos2(s)) cos(s) = x0, we can obtain
one and only one real root −1 ≤ qcos ≤ 1 for cos(s) [26],
and the view angles s1 = −cos−1(qcos) and s3 = −s1 that cor-
respond to the two intersection points W1 and W3. On the
other hand, we consider another special plane y = y0. Solv-
ing the equation R2 sin(s) + R1b sin(2s) cos(s) = y0, that is,
R2 sin(s) + 2R1b(1 − sin2(s)) sin(s) = y0, we have the only
real root −1 ≤ qsin ≤ 1 and the view angles s2 = sin−1(qsin)
and s4 = π − s2 corresponding to the two intersection points
W2 and W4. Clearly, the above four angles satisfy s1 < s2 <
s3 < s4. Now, we consider a chord Lπ intersecting the line Lz
parallel to the z-axis through the point (x0, y0, z0). In the x-y
plane, the projection of the line Lz is the point (x0, y0) and
the projection of Lπ passes through the point (x0, y0). Ac-
cording to the definition of a composite-circling curve, the

line �W1W3 intersects Lz at (x0, y0,R1a cos(2s1)) while �W2W4

intersects Lz at (x0, y0,R1a cos(2s2)). Recall that we have as-
sumed that r0 is inside the convex hull H, there will be
R1a cos(2s1) ≤ z0 ≤ R1a cos(2s2), that is, R1a(2q2

cos − 1) ≤
z0 ≤ R1a(1− 2q2

sin). When the starting point Wb of Lπ moves
from W1 to W2 smoothly, the corresponding end point Wt

will change from W3 to W4 smoothly, and the z-coordinate
of its intersection with Lz will vary from R1a(2q2

cos − 1) to
R1a(1 − 2q2

sin) continuously. Therefore, there exists at least
one chord Lπ that intersects Lz at r0 and satisfies sb1 ∈
(s1, s2), st1 ∈ (s3, s4). Because the composite-circling trajec-
tory is closed, we can immediately obtain another chord cor-
responding to the PI-interval (st1, sb1 + 2π). The union of the
two intervals yields a 2π scan range. Similarly, we can find
sb2 ∈ (s2, s3) and st2 ∈ (s4, s1 + 2π) as well as the chord in-
tervals (sb2, st2) and (st2, sb2 + 2π). Hence, we can perform
reconstruction at least four times for a given point inside the
hull of a composite-circling trajectory. These properties are
very similar to that of a saddle curve [12, 13].

y

x

W1

W2

Wb

(0, 0)

Lπ

(x0, y0)

Wt W3

W4

e⊥π

Figure 5: Projection of the chord and composite-circling trajectory
on the x-y plane.

Based on the above discussion, to illustrate the proce-
dure for the chord determination, we list the following pseu-
docodes for numerically finding the chord corresponding to
the PI-interval (sb1, st1):

(S1) set sbmin = s1, sbmax = s2;
(S2) set sb1 = (sbmax + sbmin )/2 and find st1 ∈ (s3, s4) so that

�ρ(sb1)ρ(st1) intersects Lz:

(S2.1) compute the unit direction e⊥π in the x-y plane
(see Figure 5);

(S2.2) set stmin = s3, stmax = s4, and st1 = (stmax +
stmin )/2;

(S2.3) compute the projection δ = (ρ(st1)− r0)·e⊥π ;
(S2.4) if δ = 0 stop, else go to (S2.2) and set stmax = st1

if δ > 0, and set stmin = st1 if δ < 0;

(S3) compute z′ of the intersection point between
�ρ(sb1)ρ(st1) and Lz;

(S4) if z′ = z0 stop, else go to (S2) and set sbmax = sb1 if
z′ > z0 and set sbmin = sb1z′ < z0.

Note that e⊥π in S2.1 is the direction perpendicular to
�ρ(sb1)ρ(st1) and at the left side of �ρ(sb1)ρ(st1). Given the

fact that implementation details of the above-described BPF
method and chord determination scheme are similar to what
we published in our previous papers [13, 16, 24, 27], we will
not elaborate them further.

4. SIMULATION RESULTS

To verify the correctness of the exact reconstruction method
and demonstrate the merits of the composite-circling scan-
ning mode, we implemented the reconstruction algorithm
developed in Section 3 in MatLab on a PC (2.0 Gagabyte
memory, 2.8 GHz CPU), with all the computationally in-
tensive parts coded in C. A composite-circling trajectory
was made with R1a = R1b = 10 cm, R2 = 57 cm, and
m = 2.0, which is consistent with the specifications of avail-
able commercial CT scanners and satisfies the requirements
for the exact reconstruction of a quasi-short object, such as
the head and heart. In our simulation, the well-known 3D
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Figure 6: Reconstructed slices of the 3D Shepp-Logan phantom in the natural coordinate system with the display window [1, 1.05]. The top
slices were reconstructed from noise-free data collected along the proposed composite-circling trajectory while the bottom ones were from a
saddle curve [13]. The left and right slices were cut at X = 0 cm and Z = −2.5 cm, respectively. The two profiles were plotted along the white
lines in each slice.

Shepp-Logan head phantom [28] was used. The phantom
was contained in a spherical region of radius 10 cm. We also
assumed a virtual plane detector and set the distance from
the detector array to the z-axis (Dc) to zero. The detector ar-
ray contained 523×732 detector elements with each covering
0.391×0.391 mm2. When the X-ray source was moved along
a turn of the composite-circling trajectory, 1200 cone-beam
projections were equiangularly acquired.

Similar to what we did for the reconstruction in the sad-
dle curve case, 258 starting points sb were first uniformly se-
lected from the interval [−0.4492π,−0.0208π]. From each
ρ(sb), 545 chords were made with the end-point parame-
ter st uniformly in the interval [sb + 0.8883π, sb + 1.1150π].
Furthermore, each chord contained 432 sampling points
over a length 28.8 cm. Finally, the reconstructed images were
rebinned into a 256 × 256 × 256 matrix in the natural
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Figure 7: Same as Figure 6 but from noisy data with N0 = 106.

coordinate system. Beside, our method was also evaluated
with noisy datasets. We assumed that N0 photons were emit-
ted by the X-ray source but onlyN photons arrived at the de-
tector element after being attenuated in the object, obeying a
Poisson distribution. The noise standard deviations in the re-
constructed images were about 3.18× 10−3 and 10.05× 10−3

for N0 = 106 and 105, respectively. Figures 6 and 7 illustrate
some typical image slices reconstructed from noise-free and

noisy datasets collected along our composite-circling trajec-
tory, as well as the counterparts from a saddle curve [13].
While the composite-circling scanning is easier than a sad-
dle curve in engineering implementation, there is no evident
difference between the images reconstructed from the data
collected along a composite-circling and a saddle curve be-
cause of their exactness. We remark that the stripe artifacts
in Figure 6 were introduced by the interpolation involving
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phantom edges. This type of artifacts disappeared when we
used a modified differentiable Shepp-Logan head phantom
[29].

5. DISCUSSIONS AND CONCLUSIONS

To solve the quasi-short object problem, we have proposed
a family of saddle-like scanning trajectories but we have
only numerically evaluated the composite-circling mode
with m = 2. This does not mean that the case m = 2
of the composite-circling mode is the optimal. We are ac-
tively working to investigate the properties of the saddle-like
curves, and optimize the parameters and protocols.

Although the generalized BPF method has been devel-
oped for exact image reconstruction from data collected
along a composite-circling trajectory, the method is not ef-
ficient because of its shift-variant property. Recently, Katse-
vich announced an important progress towards exact and ef-
ficient general cone-beam reconstruction for two classes of
scanning loci [30]. The first class covers smooth and of pos-
itive curvature and torsion. The second type covers general-
izes circle-plus curves [31]. Inspired by his finding, we tend
to believe that there exists an exact and efficient algorithm
for exact cone-beam composite-circling reconstruction. We
are working hard to develop such an algorithm.

We acknowledge that for cone-beam composite-circling,
we would need to rotate an X-ray tube in a plane facing a
short object or have a rotating focal spot in the tube, which is
not a straightforward task. However, the situation with sad-
dle curve cone-beam scanning is even more difficult, since
an X-ray tube or focal spot must be moved back and forth
rapidly along the z-axis for a high longitudinal sampling rate.
Given the paramount importance of exact cone-beam car-
diac CT and the continued rapid development of the source
and detector technology, our objective to solve the quasi-
short object problem optimally with saddle-like cone-beam
scanning curves is well justified. Even if neither cone-beam
saddle curve scanning nor composite-circling will be im-
plemented in the near future, the use of a fixed focal spot
in a rotating X-ray tube will be likely modified or replaced
soon with the use of distributed sources. We believe that in
the next decade, advances in distributed and other types of
X-ray sources will define a new revolution in CT, which is
the hardware foundation entirely consistent with our ongo-
ing research on cone-beam saddle-like curve-based recon-
struction algorithms. Therefore, saddle-like curves, includ-
ing saddle and composite-circling trajectories but not lim-
ited to them, will become increasingly important for cardiac
cone-beam CT research and applications.

Regarding the engineering implementation of our
composite-scanning mode, we recognize that the collimation
problem must be effectively addressed [14]. Because the X-
ray source, detector array, and collimators are mounted on
the same data acquisition system (DAS), we can omit the
rotation of the whole DAS. That is, the focal spot is circu-
larly rotated in the plane parallel to the patient motion direc-
tion, and we need to have a collimation design to reject most
of scattered photons for any focal spot position. During the
scan, we can adjust the direction and position of the detector

array and associated collimators to keep the line connecting
the detector array center and the focal spot perpendicular to
the detector plane and make all the collimators focus on the fo-
cal spot all the time. This can be mechanically done, synchro-
nized by the rotation of the focal spot. In this case, the focal
spot rotation plane and the detector plane are not parallel in
general. Other designs for the same purpose are possible in
the same spirit of this invention. Furthermore, our approach
can also be adapted for inverse geometry based cone-beam
CT [14].

In conclusion, we have developed a novel composite-
circling mode and method for solving the quasi-short object
problem exactly, which has better mechanical rotation stabil-
ity and physiological compatibility than saddle curve scan-
ning. Our generalized BPF method has been evaluated that
reconstructs images from cone-beam data collected along a
composite-circling trajectory for the case m = 2. The simu-
lation results have demonstrated the correctness and merits
of the proposed composite-circling mode and exact BPF re-
construction algorithm.

APPENDICES

A. DERIVATIONS OF FORMULAE (10)

For a given unit direction β, its projection position in the
local coordinate system can be expressed as

u = Dβ·d1

β·d3
+ R1b sin(ms), v = Dβ·d2

β·d3
+ R1a cos(ms).

(A.1)

Hence, we have

∂u

∂s
=
(
Dβ·d1

β·d3

)′
=Dβ·d

′
1

β·d3
−Dβ·d1β·d′3

(β·d3)2 +mR1b cos(ms),

∂v

∂s
=
(
Dβ·d2

β·d3

)′
=Dβ·d

′
2

β·d3
−Dβ·d2β·d′3

(β·d3)2 −mR1a sin(ms).

(A.2)

Since d′1 = d3, d′2 = 0 and d′3 = −d1, we obtain

∂u

∂s
= Dβ·d3

β·d3
+
D
(
β·d1

)2

(
β·d3

)2 +mR1b cos(ms),

∂v

∂s
= Dβ·d2β·d1

(
β·d3

)2 −mR1a sin(ms).

(A.3)

By (A.1), it follows readily that

∂u

∂s
=
(
u− R1b sin(ms)

)2

D
+D +mR1b cos(ms),

∂v

∂s
=
(
u− R1b sin(ms)

)(
v − R1a cos(ms)

)

D
−mR1a sin(ms).

(A.4)
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B. PROOF OF THE CONVEX PROJECTION
CONDITION R1b ≤ R2/(2m)

The projection of our composite-circling trajectory on the x-
y plane can be expressed as

PΓ =
{
ρ(s) | ρ1(s) = R2 cos(s)− R1b sin(ms) sin(s),

ρ2(s) = R2 sin(s) + R1b sin(ms) cos(s)
}
.

(B.1)

According to Liu and Traas (Lemma 2.7), a single close C2-
continuous curve is globally convex if and only if the curva-
ture at every point on the curve is nonpositive [32]. Hence, it
is required that ρ′(s)× ρ′′(s) ≥ 0 for any s ∈ R. Since

ρ′1(s) = −R2 sin(s)− R1b sin(ms) cos(s)

−mR1b cos(ms) sin(s),

ρ′2(s) = R2 cos(s)− R1b sin(ms) sin(s)

+mR1b cos(ms) cos(s),

ρ′′1 (s) = −R2 cos(s) + R1b
(
m2 + 1

)
sin(ms) sin(s)

− 2mR1b cos(ms) cos(s),

ρ′′2 (s) = −R2 sin(s)− R1b
(
m2 + 1

)
sin(ms) cos(s)

− 2mR1b cos(ms) sin(s),

(B.2)

we have

ρ′(s)× ρ′′(s) = ρ′1(s)ρ′′2 (s)− ρ′′1 (s)ρ′2(s)

= (R2 sin(s) + R1b sin(ms) cos(s)

+mR1b cos(ms) sin(s)
)

× (R2 sin(s) + R1b
(
m2 + 1

)
sin(ms) cos(s)

+ 2mR1b cos(ms) sin(s)
)

+
(
R2 cos(s)− R1b

(
m2 + 1

)
sin(ms) sin(s)

+ 2mR1b cos(ms) cos(s)
)

× (R2 cos(s)− R1b sin(ms) sin(s)

+mR1b cos(ms) cos(s)
)

= (m2 − 1
)
R2

1bcos2(ms) + 3mR2R1b cos(ms)

+
(
m2 + 1

)
R2

1b + R2
2.

(B.3)

Letting z = tg2(ms/2), we arrive at

ρ′(s)× ρ′′(s) ≥ 0

⇐⇒ (
m2 − 1

)
R2

1b

(
1− z
1 + z

)2

+ 3mR2R1b

(
1− z
1 + z

)

+
(
m2 + 1

)
R2

1b + R2
2 ≥ 0

⇐⇒ (
R2

2 + 2m2R2
1b − 3mR2R1b)z2 + 2

(
R2

2 + 2R2
1b

)
z

+
(
R2

2 + 2m2R2
1b + 3mR2R1b

) ≥ 0,
(B.4)

where the relationship cos(ms) = (1 − z)/(1 + z) has been
used. Given that R2 > 0, R1b ≥ 0, 2(R2

2 + 2R2
1b) > 0, and (R2

2 +
2m2R2

1b + 3mR2R1b) > 0, we obtain the following necessary
and sufficient condition for ρ′(s)× ρ′′(s) ≥ 0 at any s ∈ R:

R2
2 + 2m2R2

1b − 3mR2R1b ≥ 0, (B.5)

which implies that R1b ≤ R2/(2m) or R1b ≥ R2/m. When
R1b ≥ R2/m, the curve PΓ becomes a complex curve (not sin-
gle), and this case should be excluded. Hence R1b ≤ R2/(2m)
is the necessary and sufficient condition for the convex pro-
jection of the composite-circling trajectory on the x-y plane.
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