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Abstract

Numerous studies demonstrated the lack of transferability of polygenic score (PGS) models

across populations and the problem arising from unequal presentation of ancestries across

genetic studies. However, even within European ancestry there are ethnic groups that are

rarely presented in genetic studies. For instance, Russians, being one of the largest,

diverse, and yet understudied group in Europe. In this study, we evaluated the reliability of

genotype imputation for the Russian cohort by testing several commonly used imputation

reference panels (e.g. HRC, 1000G, HGDP). HRC, in comparison with two other panels,

showed the most accurate results based on both imputation accuracy and allele frequency

concordance between masked and imputed genotypes. We built polygenic score models

based on GWAS results from the UK biobank, measured the explained phenotypic variance

in the Russian cohort attributed to polygenic scores for 11 phenotypes, collected in the clinic

for each participant, and finally explored the role of allele frequency discordance between

the UK biobank and the study cohort in the resulting PGS performance.

Introduction

Over the last decade, genome-wide association studies (GWAS) have discovered a substantial

number of associated variants for many complex traits. Yet, the non-uniform representation of

populations in genetic studies considerably limits the applicability of GWAS-based resources for

individual risk prediction [1–4]. For example, Martin et al. [1] showed that polygenic scores (PGS)

are far more accurate for European individuals than for non-Europeans. The lack of parity in PGS

accuracy occurs due to the overwhelming abundance of European-descent association studies.

However, even within European-centered GWAS data, there are significantly under-repre-

sented local populations. For example, Russians are one of the largest ethnic groups among the
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Europeans and, while there are numerous prior reports about genetic diversity in Russia [5–7],

GWAS efforts have been quite limited. Russian descent samples have mostly been used in con-

sortium studies as replication cohorts [8, 9] and no large-scale population-specific GWASs

have been presented. Therefore, PGS models based on ancestry-specific GWAS results are yet

to be defined and explored in Russian populations.

Given the absence of ancestry-matched supporting resources, other common publicly avail-

able databases (e.g. 1000G [10], HGDP [11], UKBB [12]) should be used for data preparation

procedures preceding PGS calculation, such as genotype imputation and selection of appropri-

ate GWAS summary statistics. However, the utility of reference databases has never been

tested in application to the Russian population. However, understanding the power and limita-

tions of such resources is essential for the translation of global GWAS discoveries (PGS mod-

els, risk variants, etc.) into efficient individual risk prediction for local cohorts.

Here, we present an analysis of the array-based genotyping data obtained from Russian-

descent individuals. We selected an optimal genotype imputation panel based on the accuracy

metrics calculated for masked genotypes and evaluated the concordance of polygenic score

estimates based on UK-biobank GWAS results with clinically measured phenotypes.

Materials and methods

An extended description of the technical pipeline and parameters used for data processing is

available in the S1 Appendix.

Dataset

239 DNA samples were collected from the elderly population at the Almazov National Medical

Research Centre (St. Petersburg, Russia). All participants were Russians from Saint-Peters-

burg. Clinical information was obtained by physician specialists during the ambulatory patient

visit (S1 Table in S1 Appendix). All participants provided their written informed consent

[13].

DNA samples were genotyped using the GSA Illumina v2.0 array at Broad Institute and

subjected to the quality filtering pipeline (see S1 Appendix, Study Data Processing). The final

dataset consisted of 230 samples and 501,100 directly genotyped variants.

Reference panels for genotype imputation

Genotype imputation in the Russian population was carried out using three reference panels:

the Haplotype Reference Consortium (HRC) [14], 1000 Genome Project (1000G; Phase 3, Ver-

sion 5) [10] and Human Genome Diversity Project (HGDP) [11]. The HRC, 1000G and

HGDP panels included 27,165, 2,504, and 929 individuals, respectively. All three were prepro-

cessed and filtered to meet the data formatting requirements for further imputation procedure.

HGDP was additionally lifted over to GRCh37 (UCSC hg19). After the filtering there were

37,620,211 variants left for HRC, 37,522,002 for 1000G and 26,678,803 for HGDP (see S1

Appendix, Reference Panel Processing).

Genotype imputation

Before the imputation, genotypes were pre-phased, strand-checked, and split into individual

chromosomes (see S1 Appendix, Pre-imputation Study Data Processing). All imputations

were performed with Beagle 5.2 [15] with the default parameters (burnin = 6, iterations = 12,

imp-segment = 6, ne = 1000000). The imputation quality for each variant was measured using

R2 (Dosage-R2; DR2), as given in Beagle output [15]. All variants with DR2 > = 0.8 were
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considered well-imputed and kept for further analysis. The threshold was chosen based on the

results of testing of imputation accuracy (see S1 Appendix, Genotype Imputation Accuracy).

Imputation accuracy

We tested three common measures of accuracy of imputation: concordance rate, squared cor-

relation, and imputation quality score (IQS) [16–18].

Concordance rate (CR) was estimated as the sum of genotype probabilities for each match-

ing genotypic class divided by the total number of genotypes [17]. Thus, the probabilistic

nature of the imputation was taken into account.

The squared correlation coefficient (r2) was measured as the squared Pearson correlation

between the directly measured genotypes and the imputed dosages. Directly measured geno-

types were encoded according to the minor allele occurrence. Thus, major homozygote was

encoded as 0, the minor homozygote as 2, and both heterozygotes (0|1 or 1|0) as 1. Allele dos-

ages, taking values in the range from 0 to 2, were extracted from Beagle 5.2 output.

As an alternative to the previous two methods, we used the imputation quality score (IQS).

It measures the agreement between two genotype sets using the concordance rate (Po), but in

this case adjusted for the chance agreement (Pc). The IQS calculation was performed using the

following equation:

IQS ¼
Po � Pc

1 � Pc

where Po is the concordance rate and Pc is the chance agreement.

Chance agreement (Pc) is the sum of the products of marginal frequencies that would occur

if genotypes were called at random using the same marginal rates [17, 18].

Allele frequency concordance

In this study, we used allele frequency concordance between two sets of variants as an addi-

tional measure of imputation quality.

All variants with allele frequency values differing more than 0.1, between imputed and

masked dataset, or fall outside of +/- 5 log2 fold changes were considered discordant. All others

were classified as concordant variants. In that way, the percentage of discordant variants was

defined as the number of discordant variants divided by the total number of masked variants.

Additionally, to assess the discrepancy between the imputed and observed allele frequen-

cies, we used the Mean Absolute Error (MAE), defined as follows:

MAE ¼

Xn

i¼1
jOi � Iij
n

where n–is the total number of tested SNPs, Oi—is the observed allele frequency, Ii—is the

imputed allele frequency.

MAE is zero when imputed frequencies totally match the real ones and it is large when

there is a major discordance between two sets.

Polygenic scores

The phenotypic variance explained by polygenic scores was evaluated according to the proto-

col described in Martin et al. [1]. We used UK biobank summary statistics for 11 phenotypes

that were collected for the Russian cohort: body mass index (BMI), weight, height, waist cir-

cumferences, hip circumferences, diastolic blood pressure (DBP), systolic blood pressure
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(SBP), triglyceride (TG), total cholesterol (TC), glucose, high-density lipoprotein (HDL). PGS

was computed using PLINK 1.9 [19] (S1 Appendix, Dataset Quality Filtering for Polygenic

Score Estimation).

Results

The genotyping data analysis protocol for the estimation of polygenic scores involves several

steps that require reference data (Fig 1). The genotype imputation is used to increase the num-

ber of DNA variants available for analysis by using a reference whole genome sequencing

panel to predict the genotypes that were not a part of the genotyping array. In the absence of

population-specific resources, other common reference panels, such as HRC (Haplotype Ref-

erence Consortium), 1000G (1000 Genomes project) or HGDP (Human Genome Diversity

Project), are commonly used. However, their efficiency in predicting genotypes for individuals

of Russian ancestry has never been evaluated. Furthermore, the comprehensive evaluation of

the imputation results is greatly impeded due to the lack of sufficient population-specific

whole genome sequencing data, except several projects included a limited number of Russian-

descent individuals [11, 20, 21]. This challenge makes it impossible to directly compare allele

frequencies of imputed variants with unbiased whole genome sequencing data.

We overcome this issue by performing a masking experiment, where we created a study sam-

ple with a set of randomly masked variants to mimic the absence of these variants in the SNP

array. We evaluated the concordance of the genotypes observed in the masked variants obtained

by genotyping or imputation. Therefore, we comprehensively evaluated the reliability of the

imputation using each panel for the Russian population and selected the most effective one. The

latter was selected for genotype imputation in the original study data for further analysis.

Next, we calculated PGSs, tested UK-biobank GWAS utility in predicting individual poly-

genic scores in Russian individuals, compared explained phenotypic variance with other

Fig 1. Research design. Research design scheme. 230 individuals of Russian descent were genotyped and imputation

was performed using an optimal reference panel. Furthermore, UK biobank (UKBB) GWAS results were used as a

reference to build optimal polygenic risk models for 11 phenotypes. Explained phenotypic variance was compared with

other populations.

https://doi.org/10.1371/journal.pone.0269434.g001
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populations and explored the effect of allele frequency discordance between used summary

statistics and study data on resulting PGS predictive ability.

Finally, we compared the applicability of the UK-biobank GWAS summary statistics for

PGS estimation in central Europeans and northwestern Russians and discovered many vari-

ants whose allele frequencies in the Russian cohort considerably deviated from the UK-bio-

bank and were significantly associated with numerous traits from the GWAS catalog [22].

Imputation reliability for northwestern Russian cohort

We performed a validation study for imputed genotypes to evaluate the imputation accuracy

for three reference panels—HRC, 1000G, HGDP. This analysis was performed with “masking”

technique: before conducting the imputation, we randomly sampled 9% of variants from each

chromosome in the directly genotyped data and set them aside until completion of the imputa-

tion pipeline. All sampled variants (n = 47,209) had non-zero MAF in the Russian population

and were present in all used reference panels. Subsequently, we compared genotypes for these

variants in genotyped and imputed data sets to calculate the accuracy scores of the imputation

and the concordance of the produced allele frequencies.

First, we tested three commonly used imputation accuracy measures—concordance rate

(CR), squared Pearson correlation and imputation quality score (IQS)—to compare perfor-

mance of the proposed metrics (S1-S5 Figs in S1 Appendix). Our results provide further evi-

dence that the concordance rate, in comparison with IQS and other scores studied, inflates

accuracy estimates, particularly for low-frequency variants. The squared Pearson correlation

was immeasurable for variants with uniform dosages, making it difficult to reliably compare

accuracy for a fraction of rare variants. More specifically, some masked variants were imputed

with uniform dosages, thus having zero MAFs. As a result, there was zero variation in the

response variable, making the correlation coefficient between the masked and imputed dosage

immeasurable. IQS was not exposed to the above biases and avoided overly permissive quality

assessments for all of the frequency groups. Therefore, we used IQS as the main accuracy score

for further comparison of the imputation reference panels. The observed results fit well with

previous reports on other populations, suggesting that these accuracy measures perform the

same regardless of the choice of the reference panel or the population studied [16, 23].

Further, we compared imputation reference panels based on the resulting IQS values and the

concordance of imputed allele frequencies with the masked ones. HRC showed the highest IQS in

comparison with other panels across different minor allele frequency (MAF) groups, especially

for less common variants (Fig 2A, S2 Table in S1 Appendix). Also, the HRC reference panel

showed the lowest number of discordant imputed variants (n = 607, ~1%). In contrast, 1000G

had 1679 (~3%) and HGDP had 8494 (~17%) discordant variants (S6 Fig and S3 Table in S1

Appendix). Mean absolute error (MAE) between imputed and observed allele frequencies yielded

the same qualitative outcome—HRC had the lowest error (MAE = 0.007) in comparison with

1000G (MAE = 0.011) and HGDP (MAE = 0.021). Based on these results, we showed that the

HRC provides the most confident estimates of allele frequencies than 1000G and HGDP.

Taken together, we determined that, in the absence of a population-specific whole genome

sequencing panel, HRC is an optimal imputation reference panel for imputing genotypes from

a Russian cohort based on both imputation accuracy and allele frequency concordance

between masked and imputed variants.

Polygenic score estimation

After genotype imputation with the HRC reference panel, we estimated polygenic scores for

each of the 11 phenotypes in the Russian cohort.
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First, we determined variants that should be included in the PGS model using multiple p-

value thresholds imposed on the reference UK biobank GWAS summary statistics. The 95%

confidence intervals were calculated by bootstrapping with 1000 iterations. We used the nested

and full models as described in Martin et al. [1] to evaluate the concordance of the polygenic

score with actual phenotypes. The full linear model was given as: phenotype ~ PGS + age + age2

+ sex + sex�age + sex�age2 + PC(1–10) and the nested model contained all covariates as full,

excluding PGS. R2 attributed to PGS was estimated as the difference between R2 of the full and

the nested models. Optimal p-value threshold for inclusion of variants in the PGS model was

selected based on the highest incremental R2 (S7-S8 Figs in S1 Appendix).

Further, we compared the R2 estimates for polygenic scores in the Russian population with

the previously reported UK biobank GWAS-based R2 estimates for other populations [1] (Fig

2B). PGSs calculated based on UK biobank GWAS summary statistics resulted in the largest

phenotypic variance explained for UK biobank participants. The same weights used for Rus-

sian-descent individuals led to an intermediate place of the latter between the UKBB and

Fig 2. Experimental results. (A) Comparison of median imputation quality score for different minor allele frequency

groups for HRC, 1000 Genomes and HGDP reference panels; HRC—Haplotype Reference Consortium, 1000G - 1000

Genomes project, HGDP—Human Genome Diversity Project. (B) Phenotypic variance explained in Japanese (BBJ),

British (UKBB) and Russian (RUS) descent individuals using independent UK Biobank GWAS. (C) Principal

Component Analysis (PCA) of 1000G, combined with Russian individuals (D) Concordance of allele frequencies

between northwestern Russian (RUS), Central European from 1000G (CEU) and Great-Britain populations (UKBB).

AF—alternative allele frequency, Grey—concordant variants, Red—discordant variants for northwestern Russians,

Blue—discordant variants for Central Europeans, Dashed line—ideal concordance model, when allele frequencies of

the first population totally match allele frequencies of the second population.

https://doi.org/10.1371/journal.pone.0269434.g002
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Biobank Japan (BBJ) individuals. Remarkably, statistically significant differences between Rus-

sian and UK populations were not found for a number of phenotypes: DBP (p-value = 0.90, t-

test), SBP (p-value = 0.92, t-test), BMI (p-value = 0.41, t-test). This is expected given the rea-

sonable genetic similarity between Russians and the rest of Europe and the significant differ-

ence between the Russian and Japanese populations (Fig 2C, S9 Fig in S1 Appendix).

Finally, we calculated the mean absolute error (MAE) between the UKBB allele frequencies

and the study cohort for each PGS model. We explored the relationship between MAE and

phenotypic variance explained by the PGS (incremental R2) and they appeared negatively cor-

related (R2 = 0.51, p-value = 0.0119; S10 Fig in S1 Appendix). Thus, demonstrating that differ-

ences in allele frequencies between UK biobank and Russian cohort, contribute to systematic

bias in polygenic score estimates.

Allele frequency concordance between UKBB and Northwestern Russians

We used allele frequency concordance between the selected population and the UK biobank as

an additional measure of general resource applicability for individual risk prediction.

We compared the UK biobank participants with two populations: Central Europeans

(CEU) from 1000 Genomes (N = 99) and northwestern Russian individuals (RUS) from the

study dataset (N = 230). The allele frequencies for UKBB (N = 360,388) were extracted from

the variant annotation file (Data availability). Before the concordance analysis we tested all

possible sources of allele frequency discrepancies and applied different highly conservative QC

filtration thresholds to check the validity of observed allele frequencies in study data and to

keep only genotyped variants with confirmed frequencies (see S1 Appendix, Allele frequen-

cies validity check). Altogether, we kept 379,751 variants for further analysis. All of them were

presented with nonzero MAFs in all three data sources (1000G, UKBB, Study data). Variants

with discordant allele frequencies were identified in the same way as it was done previously

(Materials and Methods).

The CEU cohort showed high concordance with UKBB, demonstrating only 429 (0.11%)

discordant variants, whose allele frequencies considerably deviated from the UKBB values (Fig

2D). In contrast, for Russian individuals, we discovered 2,436 (0.66%) discordant variants. It is

noteworthy that 556 of them were significantly associated with 328 traits from the GWAS cata-

log (S5 Table in S1 Appendix). Interestingly, BMI, Hip/Waist and Blood protein level were

the most frequent phenotypes with which these discordant variants were significantly associ-

ated, in addition to such diseases as Venous thromboembolism (rs687289, p-value = 1x10-174),

Psoriasis (rs10484554, p-value = 4x10-214), Inflammatory bowel disease (rs7134599 p-

value = 9x10-32) and Keratinocyte cancer (rs2153271, p-value = 5x10-31).

As a result, we showed that UKBB summary statistics is more applicable for Central Euro-

peans than to Russian individuals. Demonstrated allele frequency discordance, potentially,

limits the extent to which European-centered genomic resources could be applied for poly-

genic risk estimation in northwestern Russian individuals.

Discussion

In this study, we systematically evaluated the utility of common genetic resources in applica-

tion to genotype imputation and polygenic score estimation for Russian-descent individuals.

We overcame the absence of ancestry-specific allele frequency reference databases needed

for imputation accuracy estimation by masking some of the genotyped variants from the initial

study data and, subsequently, using them as a ground truth for validation. Expectedly, imputa-

tion with HRC achieved the highest imputation accuracy and allele frequency concordance for

the entire minor allele frequency spectrum. Consistent with previous reports, the largest size of

PLOS ONE Genotype imputation and polygenic score estimation in northwestern Russian population

PLOS ONE | https://doi.org/10.1371/journal.pone.0269434 June 28, 2022 7 / 11

https://doi.org/10.1371/journal.pone.0269434


the HRC panel among the comparisons is one of the key factors leading to its higher perfor-

mance [24, 25]. The ethnic composition of the HRC panel could also affect the resulting impu-

tation quality. The samples in the study cohort aligned well with the European population,

therefore having a large set of individuals of European ancestry that added to an additional

diverse set of 1000G in the HRC panel could also have caused the increased imputation yield

[24]. Besides the discussed reasons, there are some minor factors, such as distribution and den-

sity of markers in the panel, sequencing coverage and age of the sequenced cohort, leading to a

shift in allele frequencies, which could also affect final imputation performance [24, 25].

The overall quality of the imputation achieved with HRC for common variation was consis-

tent with that observed for other ethnicities [24–27]. Imputation of low frequency variants

expectedly is less accurate, similarly to many other studies and can benefit from the yet to be

created population-specific Russian reference panel [27–31].

The availability of genetic data of Russian descent that would be useful for the creation of

the imputation panel is significantly limited. Several sequencing projects, such as Estonian Bio-

centre Human Genome Diversity Panel (EGDP) [20], Simons Genome Diversity Project

(SGDP) [21], and Human Genome Diversity Project (HGDP) [11], have a limited number of

samples representing several subpopulations from Russia available for merging in the com-

bined imputation platform (N = 231). However, technical differences in sequencing and data

processing between these projects could lead to multiple challenges in homogenizing the

whole genome sequencing data across the dataset.

Usage of the UK biobank summary statistics demonstrated that PGS for Russian-descent

individuals could be estimated with the quality slightly less than that of the UK Biobank partic-

ipants. However, due to the reasonably close haplotype structure, the transferability of the UK

biobank GWAS results to the northwestern Russian population is more appropriate than to

more distant populations (e.g. East Asian) or yet to be studied more eastern Russian ethnicities

[1].

There are some potential indirect effects that could influence the PGS estimates for the

study cohort. The older age of the Russian cohort to a limited extent might interfere with the

estimate of phenotypic variance explained by PGS—the elderly population will generally have

’healthier’ PGS (lower compared to random population snapshot in Russia).

Consistent with the certain lack of transferability of the GWAS results observed previously

between populations, the phenotypic variance explained by PGS depends on the allele fre-

quency concordance between UKBB and the study cohort for variants used in the PGS model

[4, 32–34].

After careful quality filtration, we found a set of variants with allele frequencies strongly dif-

fering between the northwestern Russian and British (UKBB) cohorts, demonstrating a poten-

tial source of a decrease in the quality of PGS or GWAS studies compared to the UKBB.

In conclusion, it is important to note that we considered only individuals from the Saint-

Petersburg area, yet there are more than 100 ethnic populations in Russia, some of which

belong to non-European continental ancestries; therefore, an inclusive approach to polygenic

trait studies is especially of great demand in Russia.
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