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a b s t r a c t   

Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as 
chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD 
remains extremely difficult. The rapid development of high-throughput sequencing technology with in-
tegrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining 
the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics 
unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map 
host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising 
biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with het-
erogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic 
profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in- 
depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and 
discussed the current research and limitations of multi-omics in CD. This review will update and deepen 
our understanding of CD from integration of broad omics spectra and will provide new evidence for tar-
geted individualized therapeutics. 
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1. Introduction 

Crohn’s disease (CD) is a kind of chronic inflammatory gastro-
intestinal disease with a world significant increasing incidence in 
recent years [1,2]. The main clinical manifestations include abdom-
inal pain, diarrhea and weight loss. Unlike ulcerative colitis (UC), the 
lesions of CD can involve the whole digestive tract, characterized by 
transmural and segmental inflammation, most commonly in the 
terminal ileum and colon [3]. The clinical diagnosis and cure of CD 
remain extremely difficult due to the unknown pathogenesis and the 
complex and variable clinical manifestations, along with a high in-
dividual heterogeneity [4]. With the recurrence and progression of 
the disease, patients with CD are prone to develop many complica-
tions such as fistula, intestinal stenosis and perianal abscess. Up to 
15 % patients suffer from inevitable surgical treatments with trauma 
and high postoperative recurrence rate [5]. Consequently, it is of 
vital importance to define the pathogenesis of CD, fully understand 
the relationship between possible molecular mechanisms and re-
levant disease characteristics, and identify biomarkers for prior di-
agnosis and prognosis as well as new effective therapeutics. 

There exists evidence that the pathogenesis of CD is a gut in-
flammation caused by the combined effects of host genetic factors 
and gut microbial factors leading to abnormal host immune reg-
ulation [4,6]. The emerging multi-omics analysis based on high- 
throughput sequencing technology gradually visualized the complex 
pathogenesis and corresponding disease characteristics of CD. 
Genome-wide association studies have shown that host genetics has 
a strong relationship with the pathogenesis of CD [7]. Only 13.1 % of 
the disease heritability is determined by genetic factors. Many sus-
ceptible genes have been identified and some of them are closely 
related to gut microbiota such as the intracellular pathogen mole-
cular sensor nucleotide binding oligomerization domain 2 (NOD2) 
and the autophagy gene recombinant autophagy related protein 16 
Like Protein 1 (ATG16L1) [8]. Epigenetic factors and intestinal mi-
crobial factors that can be affected by diet also play a crucial role in 
the pathogenesis of CD [9–11]. Microbial metagenomics and meta-
bolomics suggest that compared with healthy controls, there are 
lower microbial diversity, different intestinal flora and derivative 
metabolites in CD patients, defined as dysbiosis such as reduced 
representation of Bacillota and Bacteroidota [12–14]. This results in 
impaired intestinal barrier and activation of inflammatory immune- 
related pathways, eventually leading to the occurrence of CD. Pro-
teomic techniques help to discover protein biomarkers for pheno-
type identification and prognosis indication of CD [15,16]. 

In this review, we systematically summarize the host and mi-
crobial characteristics of CD and their possible mechanisms from a 
new perspective of multi-omics in CD. Additionally, we enumerate 
and discuss the possibility and limitations of multi-omics analysis to 
specify the complex pathogenesis of CD with corresponding sig-
naling pathways and disease phenotype. This review will provide 
new potential strategies on targeted and individualized treatments 
of CD through the integration of biomarker-targeted diagnosis, gene 
therapy and specific microbial or metabolite interventions. 

2. Host genomics in CD 

Previous studies have provided important information on CD 
genetic background [17–20]. Since from the use of non-parametric 
linkage analysis of IBD patients with gene-positive scanning to find 
candidate loci in CD patients and accurately identified NOD2 as an 
important susceptibility gene [21], genome-wide association ana-
lysis (GWAS) has brought CD susceptibility genes research to a new 
era with the development of high-throughput sequencing tech-
nology. By detecting the genetic marker polymorphism of multiple 
individuals in the whole genome, the genotype and the phenotype of 
CD were statistically analyzed at the population level and the genetic 

variation most likely to affect the trait was screened according to the 
statistics or significant p value, thus to explore the susceptibility 
genes related to the pathogenesis, progression and treatment of CD. 
The pivotal methodological progress in achieving GWAS is power-
fully driven by genome-wide single nucleotide polymorphism (SNP) 
chip which can classify a relatively limited number of selected 
polymorphisms to comprehensively analyze common genetic var-
iations across the genome [22]. 

2.1. Host genomics indicate susceptible genes and pathogenesis of CD 

The polymorphisms of substantial genes such as ATG16L1, IL-23R 
gene and fucosyltransferase 2 gene are identified to be relevant to 
the susceptibility to CD, attributing the success to the massive meta- 
analyses of CD genome-wide association studies [23–31]. Several 
GWAS studies have demonstrated that SNPs in the immunity-related 
GTPase family M (IRGM) and the deletion polymorphism of the IRGM 
promoter region are closely related to CD. Extensive researches have 
shown that SiRNA-mediated IRGM knockout significantly reduces 
the proportion of bacteria in autophagosome including CD-asso-
ciated adhesive invasive Escherichia coli [32,33], while over-expres-
sion of IRGM can lead to plasmid dose-dependent increase of 
autophagy response [34]. Using a mouse model of CD, Subhash 
Mehto et al. demonstrated that human IRGM and its mouse homo-
logue Irgm1 controlled inflammation by inhibiting the activation of 
NLRP3 inflammasome, revealing the direct mechanism by which 
IRGM plays a protective role in CD [32,35]. 

A GWAS study in the Korean population identified three new 
susceptibility loci suggesting that ATG16L2 and FCHSD2 may be new 
susceptibility genes for CD in addition to the previously reported 
four susceptibility loci including TNFSF15 and IL23R [36]. Cross-an-
cestor association study of IBD, including immunochip genotype 
data or genome-wide data from a cohort of European individuals 
and non-European individuals observed that previously reported 
European CD risk variation in ATG16L1 did not show evidence of 
association in East Asians [3,37]. Beyond the leading susceptibility 
genes, a considerable amount of literature especially the GWAS 
meta-analysis has been published to expand our knowledge of new 
candidate genes such as the NCF4 locus [38–42]. GWAS meta-ana-
lysis of CD conducted by Franke A et al. found 30 new susceptibility 
loci (P  <  5 ×10−8) in accordance with genome-wide significance 
including SMAD3, IL2RA, DNMT3A, ERAP2, TYK2, IL10, FUT2, BACH2, 
DENND1B, and TAGAP [43]. Based on the GWAS data, further attempts 
have been made to speculate that ATG16L1 and NOD2 risk variants 
may be related to autophagy pathways. By promoting imbalance of 
gut microbiota, these immune mechanisms lead to impaired mu-
cosal barrier function and further participate in the pathogenesis of 
CD in a cell specific and functional specific manner [22,44–47]. With 
the deep look into genomics, investigators found that the mucosal 
inflammation observed in CD patients with NOD2 mutation might 
result from the increased transport of IgA-pathogen complex from 
lumen to PP immune cells through M cells, suggesting that the 
disease susceptibility of CD plays a pathogenic role through chan-
ging the signal interaction between intestinal microbiota and mu-
cosal innate immunity [48]. 

2.2. Genomics indicate disease progression and prognosis of CD 

Previous research has established that the variations of CLCA2, 
MAGI1, LY75 loci and 2q24.1 were associated with disease location, 
complex stenosis course, erythema nodosum, and mild course re-
spectively [49]. Additionally, host genomics have also been applied 
to identifying individuals at higher risk of drug resistance to guide 
the clinical individualized therapeutic of CD. Retrospective studies 
have shown that drugs supported by GWAS evidence are more likely 
to receive clinical approval [50]. A large GWAS study included 1240 

C. Mu, Q. Zhao, Q. Zhao et al. Computational and Structural Biotechnology Journal 21 (2023) 3054–3072 

3055 



patients with CD monitored for anti-drug antibodies to reflect the 
patient ’s immunogenicity found that HLA-DQA1 * 05 allele had a 
genome-wide significant correlation with the immunogenicity of 
anti-tumor necrosis factor therapy [51]. Lee JC et al. indicated that 
some SNPs in four risk genes XACT, MHC, FOXO3, IGFBP1/IGFBP3 were 
associated with the prognosis of CD, distinguished from those 
driving disease susceptibility, which provided new possibilities for 
CD treatment [52]. Retrospective study conducted by O ’Donnell S 
et al. focused on information of disease progression. It was reported 
that eight known IBD susceptibility SNPs were associated with ab-
dominal surgery time, but none of the variations reached genome- 
wide significance. This is an attempt to apply GWAS to examining 
the relationship between inheritance and disease progression, sug-
gesting that the impact of genetic factors in CD progression may be 
relatively small [53]. Moreover, cross-disease genome-wide asso-
ciation studies can also reveal pleiotropic genetic variations between 
CD and other immune-mediated diseases such as multiple sclerosis 
and systemic sclerosis [54,55]. For instance, STAT3 has been con-
firmed as shared locus between systemic sclerosis and CD by re-
levant meta-analysis [54,56,57], which generates new insight into 
dealing with complicated case. 

2.3. Limitations and future potential of genomics in CD 

Most located in non-coding regions, GWAS trait-related SNPs can 
affect multiple genes over long distances, thus more potential can-
didate genes are usually only identified as low risk. Linkage dis-
equilibrium (LD), meanwhile, leads to a complex and challenging 
identification of functional SNPs as well as specific pathways that 
mediate their action [58,59]. As a consequence, host genomics alone 
cannot thoroughly explain the variation and phenotype of compli-
cated genetic diseases leading that genetic assessment of CD hasn’t 
been confirmed in clinical practice so far [60–62]. Computer biotech 
researchers still need to continually develop the complex and reli-
able algorithms to identify risk mutations and pathogenic genes  
[59,63]. The latest research published on Nature Genetics developed 
a systematic and comprehensive analysis pipeline to prioritize 
causal genes for each published GWAS trait-related locus through 
fine mapping and co-localization analysis of systemic diseases and 
disease molecular characteristics [59]. Watanabe K et al. developed 
an interaction map to provide enrichment results based on gene, 
pathway and tissue, thereby promoting functional annotation, gene 
prioritization and interactive visualization of GWAS results [64]. 
Recently investigators from Massachusetts Institute of Technology 
and Harvard University demonstrated that large-scale exome se-
quencing can complement GWAS by pinpointing specific genes in-
directly associated with GWAS, as well as genes that have not been 
observed in GWAS to fill in the low-frequency and rare variants of CD 
genetic profile [65]. These developments will provide a statistically 
convincing causal variation explanation for the results of GWAS 
which will contribute greater potential to the prediction, diagnosis 
and treatment of CD in the future. It is worth noting that the rise of 
genome-wide research joint with microbiome and metabolome also 
brings new insights into the pathogenesis and specific character-
izations of CD. 

3. Epigenomics in CD 

Host genomics still have inevitable limitations while the rise of 
epigenomics in recent years seems to represent another dimension 
of host-environment interaction in the pathogenesis of CD. 
Epigenetic changes usually refer to heritable changes in gene 
structure such as histone modification, DNA methylation, and non- 
coding RNA, while the host gene sequence remains unchanged [66]. 
Previous research has established that epithelial DNA methylation is 
associated with inflammation and microbiota composition [67,68] 

and microRNAs (miRNAs) can affect IBD by interfering with T cell 
differentiation, TH17 signaling pathway and autophagy-related 
pathways. Using transposase-accessible chromatin sequencing ana-
lysis with differentially expressed genes (DEGs) in CD-associated 
CD4+ lymphocytes, Gonzalez MM et al. demonstrated that loss of 
Treg identity disrupted the epigenome through genetic or transient 
BMI1 depletion and transformed Tregs into Th1/Th17-like pro-in-
flammatory cells, a transformation in CD4+ T cells associated with 
human CD [69]. Epigenome-wide association studies (EWAS) make it 
possible to identify differential epigenetic modification sites at the 
genomic level, which is conducive to revealing relevant disease 
characteristics. A latest meta-analysis summarized the epigenomics 
methylation studies of IBD peripheral blood up to February 2022, 
involving 177 CD patients and 243 healthy individuals. It was found 
that compared with healthy controls, FKBP5, BCL3, NLCR5, TRAF1, 
CDC42BPB, BAHCC1, LYN, TOLLIP and KCNAB2 were the most sig-
nificantly different methylation sites in CD patients [70]. Other 
meta-analyses covering multiple epigenomic studies were also car-
ried out to find possible IBD biomarkers such as blood miR-21 and 
miR-192 [71,72], which might be promising in therapeutics. Serena C 
et al. used a methylation array (Illumina EPIC/850k array) to perform 
EWAS and gene expression analysis of peripheral blood mono-
nuclear cells and human adipose-derived stem cells (hASCs) isolated 
from subcutaneous adipose tissue of CD patients and healthy con-
trols. They found that hASCs in CD patients showed distinctive 
profiles of gene expression and DNA methylation, which helps to 
reveal the complex pathophysiological function of hASCs in CD [73]. 
These studies suggest that epigenomics may have important effects 
on the interaction between microbial and genetic factors involved in 
the development and progression of CD. 

4. Gut microbiome in CD 

Gut microbiota includes more than 10 billion microorganisms, 
whose genes are 100 times more than those in the host genome [74]. 
Symbiotic beneficial interactions between the microbiota and the 
host have received considerable critical attention, including nutrient 
metabolism, resistance to pathogens, and in particular, ensuring 
normal structure and function of the mucosal immune system [75]. 
The gut microbiome of IBD patients including CD differs significantly 
from that of healthy individuals, characterized by reduced abun-
dance of Bifidobacterium, Bacillota and Fecalibacterium species, along 
with a decreased aggregate diversity [76]. Reduced Parabacteroides 
was reported in patients with familial CD [77]. It is previously well 
established that germ-free (GF) mice are less susceptible to colitis 
while fecal microbiota transplantation (FMT) from IBD patients to GF 
mice can reproduce the disease. A randomized controlled trial of 
FMT in ileocolic CD patients showed that patients receiving FMT had 
a decrease in disease severity index evaluated by endoscope after six 
weeks (P = 0.03), which strongly proves that gut microbiota is at the 
heart of our understanding of CD [74,78,79]. Intestinal inflammatory 
infiltration in CD includes Th1 and Th17 cells, whose response to 
bacteria or fungi is linked to the pathogenesis of the disease [3]. 
Moreover, creeping fat has been considered an extra-intestinal 
manifestation of CD, partially responsible for stenosis. The passage 
of viable bacteria or their products such as lipopolysaccharide and 
outer membrane vesicles from the intestine across the mucosa to 
mesenteric lymph nodes (MLN) is defined as bacterial translocation 
(BT) [80]. Recent studies have suggested that transplanting the mi-
crobiota from mesenteric fat of CD patients to IL10-/- mice can cause 
colitis, indicating that gut microbiota may play a fundamental role in 
the pathogenesis of fibrostenosis in CD [81]. Significant develop-
ments in DNA sequencing technology and analysis lay the founda-
tion for CD microbiome research [82]. To date 16 S ribosomal RNA 
(16 S rRNA) sequencing and metagenomic sequencing are two of the 
most widely used high-throughput microbiome sequencing 
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technologies. Polymerase chain reaction (PCR) amplification is per-
formed on specific hypervariable regions of the DNA sequence en-
coding 16 S rRNA in prokaryotes to study the composition and the 
diversity of miacrobial community [83,84]. Nevertheless, due to the 
inadequate coverage of non-full-length variable region sequences, 
species level cannot be identified while metagenomics can annotate 
at the species level and analyze microbial genes, functions, and 
metabolic pathways by performing high-throughput sequencing of 
whole-genome DNA from samples [85]. These new microbiome 
technologies can help reveal the microbial differences between 
healthy people and CD patients and clarify the links between the gut 
microbiome and complex pathological behaviors, providing new 
insights and evidence in pathogenesis, effective diagnosis, prediction 
of disease progression and prognosis, as well as individualized 
treatments of CD. 

4.1. Alteration of microbiome characteristics in CD 

A large cohort study covering sequence data from four European 
countries established by Pascal, V. et al. performed 16 S rRNA se-
quencing on more than 2000 fecal samples to analyze their micro-
biome characteristics. It was found that the gut dysbiosis of CD 
patients was significantly more severe with decreased diversity and 
unstable microbial community comparing to that of UC patients. 
Decreased abundance of Anaerostipes, Faecalibacterium, 
Methanobrevibacter, an unknown Peptostreptococcaceae, Collinsella 
and an unknown Christensenellaceae with increased abundance of 
Escherichia and Fusobacterium were identified to be unique to CD  
[12]. Other investigators carried out similar consequence that de-
spite decreased abundance of most gut bacteria in CD patients, the 
abundance of Ruminococcus gnavus, Shigella spp. and Echerichia spp. 
increased conversely [86]. Existing research shows that children 
with CD are significantly different from adults in disease leisions  
[75]. Gevers D et al. conducted a large cohort study to explore the 
gut microbiome characteristics of children with newly diagnosed CD. 
Based on the 16 S rRNA sequencing of gut microbiome, MaAsLin 
pipeline was used to identify microbes that were statistically sig-
nificantly associated with disease phenotype. Results turned out that 
CD was positively correlated with the abundance of Neisseriaceae, 
Pasteurellaceae, Veillonellaceae, and Fusobacteriaceae. Compared with 
the control group, several genera such as Ruminococcus, Bacteroides, 
Roseburia, Faecalibacterium, Blautia, Coprococcus and a number of 
taxa within the families of Lachnospiraceae and Oscillospiraceae were 
demonstrated to be negatively correlated with CD [87]. Due to the 
wide heterogeneity of microbiome analysis methods or experi-
mental designs, meta-analysis of changes in gut microbiome helps to 
master comprehensive and critical information of CD [88]. Recent 
meta-analyses indicate that the abundance of beneficial micro-
organisms such as Lachnospiraceae, Ruminococcacae and F. prausnitzii 
are reduced, whereas some pathogens such as Fusobacterium, 
Streptococcus, Enterococcus, Blautia, Flavonifractor and Veilonella are 
increased in CD [88–90]. As the most consistent and particularly 
related genus in CD, Fusobacterium is identified as one of the most 
valuable biological diagnostic marker for CD [90]. Most studies to 
date have tended to focus on fecal microbiome rather than the mi-
crobiota that attach to the intestinal mucosa, but there is evidence 
that the mucosal microbiome is closer to immune cells which may 
cause a more robust immune response in gut [75]. A noteworthy 
phenomenon was reported through microbiome analysis that only 
the content of Bacteriaceae, Fusobacteriaceae and Neisseriaceae in the 
fecal microbiome decreased, while most of the microbial in-
flammatory markers significantly related to the disease suggested by 
the intestinal mucosal microbiome were lost in the fecal micro-
biome, indicating that the intestinal mucosal microbiome plays a key 
role in the pathogenesis and diagnosis of CD, distinguished from the 
fecal microbiome [87]. A systematic review indicated that for CD, 

stool samples might be more consistent than biopsy samples for 
associating taxa with disease [91]. 

Characterization of gut microbial flora is no longer content with 
changes at phylum level and genus level with the continuous de-
velopment of metagenomics technology and a growing number of 
specific strains are identified. Furthermore, researches on intestinal 
flora tend to focus not only on the composition but also on func-
tional changes, providing more in-depth insights into the patho-
genesis and treatment of Crohn’s disease. The strain abundance of 
Roseburia intestinalis, an acetate butyrate transformant present in 
the intestinal mucus layer, has been reported to decrease in stool 
samples from patients with Crohn’s disease [92]. It is reported that 
Enterobacteriaceae and in particular certain strains of adherent-in-
vasive E. coli (AIEC) have been associated with the ileal mucosa of 
patients with Crohn’s disease, which can enter the lamina propria 
and be engulfed by macrophages. These functions make it possible 
to replicate continuously with secretion of high levels of TNF, leading 
to intestinal inflammation [93,94]. On genetic levels, biosynthetic 
gene clusters (BGCs) are getting more and more attention. BGCs are 
the genes encoding secondary metabolites (SMs), a cluster of bac-
terium-originated chemical compounds with bioactivities and di-
verse structures. As the bridge between microbiome and host, BGCs 
have proven to be associated with diseases [95,96]. Jaeyun Sung 
et al. utilized TaxiBGC on gut microbiome samples from three pub-
lished case-control studies and found 5 BGCs elevated in CD patients, 
which encoded for gassericin E, gassericin S, gassericin T, acticin Q 
and ruminococcin A, respectively [95]. 

Role of intestinal fungal disorders in the pathogenesis of CD is 
increasingly concerned apart from bacteria. Several studies have 
confirmed that there are iconic anti- Saccharomyces cerevisiae anti-
bodies (ASCA) in the serum of patients with CD. The depletion of 
CX3XR1 gene in mouse macrophages, which is related to the sig-
nificant reduction of antifungal antibodies in CD patients, can ag-
gravate intestinal diseases after fungal colonization [97]. A study of 
Japanese IBD patients analyzed the fecal microbiome using 16 S 
rRNA sequencing and ITS sequencing and found a higher abundance 
of Candida in CD patients than that in UC patients or healthy in-
dividuals [14]. Five fungal communities were found to be positively 
associated with CD including Cyberlindnera jadinii, Saccharomyces 
cerevisiae, Kluyveromyces marxianus, Clavispora lusitaniae, and Can-
dida albicans. Among them, Clavispora lusitaniae was the most im-
portant fungi contributing to the disease prediction model [98]. 

4.2. Microbiome identifies distinctive status of CD 

The clinical phenotype of CD is complex with an extremely high 
heterogeneity of disease progression as well as terrible complica-
tions. Microbiome provides new basis for predicting disease pro-
gression and distinguishing complex phenotype. Gut microbiome 
analysis of patients with active CD revealed a significant increase in 
Enterobacteriaceae, Klebsiella, Pseudomonadota and Fusobacterium, 
etc. together with a decrease in Clostridia cluster IV of anaerobic 
bacteria compared to patients with inactive CD [99]. A systematic 
review focusing on the application of microbiome in IBD also con-
firmed a significant decrease in Bifidobacterium species in fecal 
samples during active CD compared to remission [91]. A prospective 
cohort study of 913 children with CD who had no complications 
within 90 days of diagnosis, published on Lancet, collected ileal and 
rectal stool samples for 16 S rRNA sequencing to analyze their gut 
microbiome. In addition to the aforementioned CD-related genera, 
Campylobacter, Akkermansia, Collinsella and Desulfovibrio species 
were also significantly associated with CD in children. Meanwhile, 
the study found that Ruminococcus and Rothia were associated with 
stenosis complications of CD. In penetrating CD, the abundance of 
Collinsella increased significantly whereas the abundance of Veillo-
nella increased specifically in the ileum [100]. Microbiome 
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technologies also set up new concern about the microbial mechan-
isms of creeping fat expansion in CD. Ha CWY et al. collected me-
senteric creeping fat from affected sites in CD patients with 
complications requiring surgical treatment and performed deep 
shotgun metagenomic sequencing. It was found that compared with 
the microbiome in mesenteric fat of the uninvolved intestinal seg-
ment and mucosa, the relative abundance of Erysipelotrichaceae in 
the creeping fat of the affected intestinal segment increased with a 
lower total diversity. By comparing the viable bacteria isolated from 
the mesenteric fat of UC patients and healthy controls, a subset of 
five bacteria unique to creeping fat in CD was identified including 
Clostridium symbiosum, Parabacteroides distasonis, Erysipelocridium 
ramosum, Clostridium innocuum, and Bifidobacterium pseudolongum  
[101]. Consistent with the results, Clostridium innocuum prefers 
lipid-derived metabolic substrates and has been shown to be a po-
tentially invasive pathogen with cytotoxicity that can cause severe 
colitis [102]. 

4.3. Microbiome influences therapeutic outcomes and prognosis of CD 

Gut microbiome characterization of CD correlated with response 
to multiple therapeutics [103]. A latest systematic review has shown 
a sustained increased abundance of short-chain fatty acid producing 
bacteria Blautia in fecal samples from CD patients treated with in-
fliximab [89]. A comparison of gut microbiome analysis between 
responsive and unresponsive CD patients to anti-TNF-α therapy 
found increase in Bifidobacterium, Roseburia, Collinsella, Lachnospir-
aceae, Eggerthella taxa and decrease in Phascolarctobacterium [77]. 
Bifidobacterium is a well-studied probiotic that can metabolize oli-
gosaccharides to resist IBD. Lachnospiraceae, Oscillospiraceae and 
Roseburia can produce short-chain fatty acids (SCFAs), a class of 
metabolites that have been widely shown to regulate intestinal 
immunity to produce anti-inflammatory effects. For example, bu-
tyric acid can inhibit lipopolysaccharide-induced nuclear factor 
kappa B activity and increase mucin and antimicrobial peptide 
production [75]. Disorders in the association network involving 
Lachnospiraceae and Oscillospiraceae have been reported to be asso-
ciated with frequent recurrence of Crohn’s disease and poor re-
sponse to against TNF-α treatment [77]. Owing to complications 
such as stenosis, obstruction and fistula accompanied with CD, more 
than 50 % of cases require surgery within 20 years after diagnosis. 
Surgical treatment has become a common method to alleviate CD  
[75]. Decrease in Parabacteroides and Clostridiales along with in-
crease in Enterobacteriaceae in the gut microbiome of post-operative 
CD patients have been reported, which almost inevitably lead to a 
relapse if left untreated [77]. 16 S rRNA sequencing revealed in-
creased abundance of Alistipes and decreased abundance of Actino-
mycetota and Bifidobacterium spp. in the gut microbiome of CD 
patients with endoscopic disease remission 1 year after surgery 
compared to patients with disease relapse [86]. 

Additionally, dietary regulation is considered to be a relatively 
safe and noninvasive treatment for CD without causing im-
munosuppression, primarily by altering the gut microbiota and 
mucosal integrity of CD patients. The application of high-throughput 
sequencing revealed the characteristics of gut microbiome changes 
in different dietary therapies and provides a reference for its effec-
tiveness. Shotgun metagenomic sequencing in a single-blind clinical 
controlled trial of dietary intervention in IBD patients found that 
compared with Sham diet, CD patients received diet low in fer-
mentable oligosaccharides, disaccharides, monosaccharides, and 
polyols (FODMAP) showed significant differences in gut microbiome 
including increased abundance of Bacteroides xylanisolvens, 
Enterocloster citroniae and decreased abundance of Anaerobutyricum 
hallii and Faecalibacterium prausnitzii. The study demonstrated that a 
low FODMAP 4-week diet was safe and effective for the treatment of 
persistent intestinal symptoms in patients with stationary IBD by 

comprehensive disease assessment and other data analysis [104]. 
These are effective attempts to provide possible evidence for ap-
propriate dietary treatment of CD through microbiome. 

4.4. Limitations and future potential of microbiome in CD 

Although microbiome analysis in CD has become a very active 
field with the development of high-throughput sequencing tech-
nologies, the results have not yet been translated into clinical 
practice, as most strategies to control the microbiome (probiotics or 
antibiotics) have failed [3]. Microbiome technology still needs to be 
improved in many aspects, such as the improvement of analysis 
pipeline and the development of analysis software [85,105,106]. 
Recent studies have reported that metagenomic next-generation- 
sequencing (mNGS) can improve the ratio of microbial readings and 
the ability to target and identify sample microorganisms [107]. 
Furthermore, this realistic result is more likely to be attributed to the 
fact that microbiome is influenced by many factors such as host 
genetics and diet, etc., among which there are indivisible interaction 
networks that affect host immunity and cause specific pathological 
behaviors and disease characteristics. Just as host genetics alone 
cannot explain CD, microbiome only provides the superficial mi-
crobiological characteristics of CD. 

5. Microbial metabolomics in CD 

As the intermediates of host-microbiota interplay, metabolites 
reflect the bacterial function directly, hence the combination of 
microbiome and metabolomics allows for a deeper understanding of 
disease process and the function of a specific metabolite, aiming in 
the detecting of new therapeutic targets [108]. Numerous metabo-
lites like amino acids and SCFAs influence the gut wellbeing by 
various ways like affecting the gut barrier and regulating the im-
mune system [109–113]. Up-down-regulation of metabolite levels 
can directly reflect the effects of various pathophysiological stimuli 
or even genetic modifications on human body under specific en-
vironments [114]. Metabolomics refers to the quantitatively and 
qualitatively analysis of small molecular metabolites in biological 
samples [115]. The commonly used analytical techniques for meta-
bolomics include liquid chromatography-mass spectrometry (LC- 
MS), gas chromatography-mass spectrometry (GC-MS) and nuclear 
magnetic resonance (NMR) spectroscopy [109]. With regard to their 
application, GC-MS is frequently used for the analysis of the fatty 
acids, amino acids and other small molecular weight, volatile non- 
polar substances, whereas LC-MS is widely applicable and sensitive, 
which is mostly used in clinical examination and non-targeted me-
tabolomics. Although NMR is less sensitive than MS, the relatively 
simple preparation and rapid sample detection as well as non-de-
structive property [116] make NMR a popular platform for meta-
bolomics. According to diverse research purpose and methods, 
metabolomics can be divided into targeted or untargeted metabo-
lomics. Targeted metabolomics focus on specific metabolites while 
untargeted metabolomics detect the dynamic changes of small 
molecule metabolites in samples without bias and screen differ-
ential metabolites through bio-informatics analysis. Several studies 
have been conducted to investigate the changes and fluctuation of 
multiple metabolites from urine, feces and serum samples of CD 
patients compared with the control group. In this part, we will 
briefly summary present metabonomics research of fatty acids, 
amino acids and secondary bile acids to trace and assess the sig-
nificance and application potential of microbial metabolism in CD. 

5.1. Fatty acids 

Fatty acids make up a great part of gut microbial metabolites and 
consist of SCFAs (< 6 carbons), medium-chain (7–12 carbons, MCFAs) 
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and long-chain fatty acids (more than 12 carbons, LCFAs) [108]. 
Among them, SCFAs mainly including acetate, butyrate and propio-
nate play an important part in gut hemostasis through various ways, 
positively correlated with the gut wellbeing [113]. As a kind of ty-
pical intermediate of host-microbiota interplay, SCFAs protect the 
gut barrier integrity through accelerating mucin and IgA production 
and facilitate to the expression of tight junction proteins [112,113]. 
Apart from the effects on the gut barrier, SCFAs also participate in 
regulating immune system through alleviating the pro-in-
flammatory factors production, regulating the differentiation and 
function of Treg cells and promoting the chemotaxis of neu-
trophils [113]. 

Gut inflammation leads to the disturbance of microbiota-host 
interplay, manifested as the alteration of the microbiome and me-
tabolome, hence it is possible that the level of metabolites may re-
flect the disease state in turn. Efforts into the confirmation of this 
concept promoted the rapid advancement of metabolomics. 
Researches have already been carried out to validate the diagnostic 
function of fatty acids using numerous metabolomics methods, 
where different levels of fatty acids were found in people with dif-
ferent status. For instance, De Preter V et al. identified MCFAs as one 
of differentiating metabolites in CD patients by detecting decreased 
levels of butyrate, pentanoate, hexanoate and heptanoate in CD, 
which indicated the potential diagnostic function of MCFAs [117]. 
Likewise, LCFAs including arachidic and oleic acid, etc and MCFAs 
such as sebacic acid and isocaproic acid were found to be decreased 
in IBD status [118,119]. A recent meta-analysis indicated a decrease 
in acetate, butyrate, and valerate levels in patients with CD com-
pared to healthy controls (HC). However, there was no significant 
difference in propionic acid between CD and HC. Due to the limited 
data of all included studies, subgroup analysis cannot be performed 
to explore the SCFA changes in different disease stages of CD [120]. 
Distinction of metabolites helps to diagnosis between diseases with 
similar phenotype. Butyrate, decreased in IBD patients, changed 
more significantly in CD compared to UC patients, serving as a 
candidate marker to distinguish between CD and UC [111,121]. 
Treatments may alter the level of metabolites through making a 
difference to gut microbiota, providing a potential to evaluate the 
prognosis in a noninvasive way. Increased level of butyrate after 
probiotic oligofructose-enriched inulin intervention pointed out the 
potential role of butyrate in evaluating disease prognosis [117]. 
Combining the curative effect with levels of metabolites at baseline 
proposed assumption about selecting markers predictive of treat-
ment effects. Based on this, fatty acids were found in association 
with CD exclusion diet plus partial enteral nutrition (CDED+PEN) and 
exclusive enteral nutrition (EEN) induced remission [122]. 

5.2. Secondary bile acids 

Bile acids are important components of bile that contribute to 
lipid digestion and absorption [110]. Previous studies have shown 
evidence that primary bile acids are converted to secondary bile 
acids including deoxycholic acid, lithocholic acid, and compounds 
they bind to glycine or taurine in intestine lumen, suggesting gut 
microbial metabolism plays a crucial role in determining bile salt 
intestinal pools [110]. Several attempts have been made to suggest a 
critical role for secondary bile acids in intestinal inflammation. 
Metabolomics research indicated that lithocholic acid salt，deox-
ycholate glycolate, taurocholate and chenodeoxycholate were sig-
nificantly reduced in feces of CD patients compared to healthy 
individuals [111,123]. It’s well established that conversion of primary 
bile acids to secondary bile acids is processed via deconjugation 
catalyzed by bile salt hydrolase (BSH) [124]. BSH producers such as 
Bifidobacterium and Clostridium are less abundant in CD patients, and 
infliximab can inhibit inflammation by enriching BSH producers in 
the treatment of CD [111]. Similarly, a prospective cohort study 

showed that the concentrations of fecal secondary bile acids were 
significantly increased in CD patients who received anti-TNF treat-
ment [125]. Metabolomics suggested higher deoxycholic acid levels 
in CD patients who were more likely to respond to anti-TNF therapy 
while CD patients who showed low response had higher circulating 
unconjugated bile acid levels consistent with the higher levels of 
conjugated bile acids in urine and feces [126]. Overall, secondary bile 
acids may serve as efficacy biomarkers in CD patients treated with 
infliximab and anti-TNF. In accordance with those results, in-
vestigators have found that specific derivatives of lithocholic acid 
(LCA) such as 3-oxoLCA and isoalloLCA can respectively inhibit the 
differentiation of Th17 cells along with promotion of RORγ-expres-
sing T regs to play an anti-inflammatory role [127,128]. This concept 
has recently been challenged by studies demonstrating that in-
creased deoxycholic acid causes Paneth cell dysfunction by over- 
activating the farnesoid X receptor (FXR) and type I interferon (IFN) 
signals in intestinal epithelial cells, which contributes to the pa-
thogenesis of CD [129]. Investigators have already drawn attention 
to the paradox in bile acids and proved the variable role in the 
regulation of intestinal barrier homeostasis [130]. These con-
troversial researches may rise from intricate physicochemical 
properties, different immune mechanisms and unclear interactions 
with gut microbes. 

5.3. Amino acids 

Gut homeostasis is correlated with amino acids from two op-
posite aspects. Amino acids can protect the gut barrier through 
promoting mucosal healing and serving as energy substrates and 
precursors of multifarious bio-active metabolites, thus leading to the 
alleviation of IBD. Nonetheless, some specific amino acids have ne-
gative correlation with gut homeostasis through the biosynthesis of 
some potentially harmful gut metabolites, contributing to the de-
velopment of IBD [126,131,132]. Offering the snapshot of the meta-
bolic states, metabolomics technologies are extensively used to 
assess the morbid state. Previous works shed light on the potential 
function of amino acids as instructors for clinical applications such 
as clinical assessment and treatment, the development of which 
relays largely on metabolomics. 

The level of amino acids may relate to IBD states to some extent, 
as Balasubramanian K et al. demonstrated previously [133]. Com-
bined with the assessment of CD treatment using clinical and ob-
jective markers, patterns of metabolome profiles at different times 
from the baseline were detected to find out the specific amino acids 
in association with the post-treatment response of CD. This paved 
the way for the search for metabolic biomarkers predictive of the 
curative effect. Consistent with the finding that amino acid profiles 
were different between pediatric CD patients with or without re-
mission after EEN [134], numerous amino acid biomarkers in variety 
of CD therapies such as biotherapy, surgery and nutritional therapy 
were reported in previous works. These include serum histidine and 
urine cysteine (for anti-TNF response) [126], serum tryptophan (for 
biotherapy or surgery) [135], serum L-promote acid (for pediatric IFX 
therapy) [111] and fecal kynurenine (for CDED+PEN and EEN) [122]. 
IBD influences the metabolism of gut microbes, leading to levels of 
specific amino acids captured by metabolomics change with IBD 
progression, which makes it possible to find metabolic biomarkers 
for disease status identification. Various findings coincident with 
this idea already validated numerous biomarkers for diagnosis, such 
as valine along with isoleucine for early CD diagnosis, a panel of 
amino acids including leucine and histidine for IBD diagnosis and 
glycine for the active IBD & IBD in remission differentiation  
[136,137]. 

As stated above, amino acids have dual effects on the gut 
homeostasis, thus showing contradictory effects on CD. Although the 
likelihood of amino acids supplement to treat IBD has been 
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confirmed in previous work [131,135], there exists controversial 
discovery showing that dietary amino acids supplementation ex-
acerbated colitis in DSS induced mice colitis model [134]. These 
conflicting discoveries enlightened us on the research for amino 
acids function of alleviation or exacerbation, for the sake of accurate 
treatment. More efforts need to be put in finding more targeted 
amino acids for nutritional therapy, following the discovery of Ni-
kolaus S et al. which showed the beneficial effect of tryptophan to 
alleviate colitis [135]. 

As the bridge between microbes and the host, metabolites are 
strongly related with the function of bacteria. It is of great sig-
nificance to analyze the microbiota and metabolites comprehen-
sively to understand the ongoing of diseases [111,134,135]. 

5.4. Proteomics in CD 

Proteomics, picturing the landscape of entire proteins of the 
whole organism [138], provides the insight into their interplay, 
abundance, amounts and modifications on a comprehensive and 
dynamic level [139,140], thus facilitating a deep understanding of 
the progression of a specific disease. As the result of interactions 
between genes and environmental factors, proteome can imply 
changes of proteins under disturbance, offering the direct informa-
tion of life status. Proteomic analysis favours the discovery of can-
didate biomarkers, exploration of disease pathogenesis and 
development of targeted medicine [141]. 

A large quantity of proteins alters in CD [142,143], making it 
possible to apply proteomics to seek out biomarkers of this disease. 
Fields in demand of comprehensive use of biomarkers encompass 
disease prediction, differential diagnosis, therapeutic evaluation and 
forecast of prognosis [144]. The combination of multiple biomarkers, 
especially the anti-Saccharomyces cerevisiae antibodies (ASCA)-IgA 
combination, can be used to sort out patients in preclinical phase of 
disease in IBD, contributing to the prediction and prevention of CD  
[145]. Furthermore, biomarkers identified through proteomics can 
also be utilized ulteriorly to predict the relapse risk for confirmed 
patients, other than predicting the risk of CD occurrence for un-
diagnosed subpopulation [146,147]. Changing in proteome with 
states makes sense to conjecture the course of disease using pro-
teomics [148]. In line with this view, Lehmann, T et al. regarded 
human sucrose-isomaltase as CD specific biomarker and transcrip-
tional regulatory protein RprY from Bacteroides fragilis as microbial 
candidate biomarkers for some gastrointestinal diseases [149]. 
Likewise, a set of serum proteome was validated for distinguishing 
CD from primary intestinal lymphoma and intestinal tuberculosis  
[150,151]; AKR1C3 was traced for potential differentiation of UC and 
CD [152]. Panels of blood protein markers were identified as bio-
markers indicating the complications risk in pediatric CD patients, 
among which ECM1 acted as the indicator of fibrostenotic [153,154]. 
Šimurina M et al. collected 3441 plasma samples from two in-
dependent cohorts (1265 CD patients, 1309 UC patients, and 867 
control subjects) to detect IgG Fc-glycosylation (tryptic glycopep-
tides) levels by LC-MS. Subsequently, a meta-analysis of the obtained 
results was conducted and found that IgG galactosylation levels in 
patients with IBD were lower than those in the control group. De-
creased galactosylation was associated with more severe IBD, in-
dicating the potential role of IgGFc-glycosylation as a diagnostic and 
prognostic tool. In addition, the fucosylation of IgG increased in CD 
patients while decreased in UC patients compared to HC, indicating 
that the fucosylation level of IgG could be used to distinguish CD and 
UC155]. Coupled with other methods, proteomics isextensively in-
volved in the illustrations of mechanisms hidden in a biological 
function. Proteomics is employed to find the differentially expressed 
proteins (DEPs) for the seeking of the upstream or downstream 
molecule, so as to find associated pathways. In extracellular vesicles 
(EVs), host defense proteins especially the reactive oxidant- 

producing enzymes were found present and elevated, indicating the 
mechanism of mucosal inflammation may lie in acceleration in-
testinal oxidative stress of proteins [156]. Sun, Xue-Liang et al. 
confirmed fibrinogen-like protein 1 could induce gut inflammation 
in CD by activating NF-κB signalling pathway [139]. Other in-
vestigators identified the role that AGR2 and epithelia ER stress may 
play in the process of CD fibrotic strictures [157]. In terms of prac-
tical application, the illustration of mechanism paves path for the 
selection of medicine target. Proteomics is often applied to identify 
the DEPs during treatment, providing potential targets such as an-
emoside B4 and elafin [158,159]. 

Despite all these strengths above, limitations remain. Acting in 
networks makes proteins vast in scale and complicated in function, 
adding difficulty in data processing. Proteome profiles are not always 
consistent when established through different methods or in dif-
ferent laboratories. Metaproteome can change with sampling posi-
tion, with disparities existing among metaproteome of serum, colon 
tissues, fecal materials and even formalin-fixed and paraffin-em-
bedded tissue specimens [143]. 

6. Multi-omics integration launches a new era of CD research 

Multi-omics integration that advanced the identification as well 
as linkage of key features in CD has taken CD research by storm. 
Through integrating and analyzing the collected data of different 
omics molecular characteristics, multi-omics provides information 
from the original etiological mechanism to the functional outcome 
of the disease, thus to build an important basis for finding targeted 
therapeutic sites for diseases [160,161]. Some significant findings 
have been achieved in the systematic study of Crohn ’s disease with 
the exploratory application of multi-omics techniques. Ling-Jie 
Huang et al. integrated single cell sequencing technology, tran-
scriptome sequencing analysis, and metabolomics sequencing to 
reveal that selenium can mediate cell reactive oxygen species 
clearance through selenoprotein W, and inhibit the differentiation of 
Th1 cells, thus to inhibit the pathogenesis of CD [162]. This sys-
tematic discovery of biological mechanism depends on the efficient 
and reliable immune-metabolites pathway research model formed 
under multi-omics technology. Compared with single analysis, the 
integrated analysis of microbiome and metabolite profiles in CD 
patients who received autologous hematopoietic stem cell trans-
plantation showed a more significant separation effect on disease 
activity. By integrating and summarizing the interactions between 
OTU and metabolites, the original key role of sulfur metabolism in 
linking disease activity to human microbiome was revealed [163]. In 
addition to the disease mechanism, large-scale multi-omics studies 
of Crohn ’s disease have enabled researchers to more accurately 
describe the characteristics of the location variation. By combining 
metaproteomics, shotgun metagenomics, 16 S rRNA sequencing, 
metabolomic profiling, and host genetics, great molecular and mi-
crobial features associated with CD locations were revealed, which 
helped to generate disease severity biomarkers at specific locations. 
The performance of these biomarkers even exceed Calprotectin  
[164], which means multi-omics have great prospects in the clinical 
classification and diagnosis of Crohn ’s disease. 

It is well established that almost all human cells have the same 
genome but their expression profiles are tissue specific. 
Development of epigenomics, metatranscriptomics and metapro-
teomics combined to provide critical supplement and extension for 
genomics and visualize the links between pathogenesis and disease 
features from gene post-transcriptional regulation to functional 
proteins [165,166]. On the basis of transcript abundance, transcrip-
tional Risk Scores (TRS) integrate GWAS and expression quantitative 
trait locus (eQTL) results to measure individual risk of CD suggested 
29 genes with the strongest co-evidence of association signals and 
demonstrating high confidence in distinguishing disease status and 
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progression [167]. Intestinal epithelial cells (IECs) in children with 
CD were analyzed for genome-wide DNA methylation patterns and 
transcriptomes. Results turned out that compared with control 
group, the DNA methylation and transcription patterns of ileum and 
colon epithelium in CD patients significantly changed, which pro-
posed that IECs represented promising potential in CD [168]. Due to 
the pivotal role of gut microbiota in the pathogenesis of CD, mi-
crobiome has been widely used in multi-omics studies of CD. 
Through comprehensive analysis of microbiome from CD patients 
with epigenomic data, Ryan FJ et al. identified a large number of CpG 
sites that are differentially methylated in clusters defined by the 
microbiome and demonstrated in vitro that pro-inflammatory bac-
teria are associated with immune-related epigenetic markers [68]. 
The Integrative Human Microbiome Project (HMP2 or iHMP) has 
greatly deepened our understanding of host-microbiome interac-
tions. A multi-omics IHMP study published in Nature in 2019 col-
lected blood, colonic biopsy, and fecal specimens from 132 subjects 
for one year to generate a comprehensive longitudinal molecular 
map of host and microbiome during IBD [169]. This study con-
structed a large-scale cross-measurement association network, 
including significant correlation analysis of 10 aspects of host-mi-
crobiome interactions and found interesting associations of multi- 
level host-microbiome interactions. By analyzing the ranscripts 
covaried with the microbiome, the authors found that indirect mi-
crobial modulators DUOX2 and its maturation factor DUOXA2 were 
negatively correlated with the abundance of Oscillospiraceae UCG 
005 (OTU 89) in the ileum. The abundance of Agathobacter rectalis 
(OTU 120) in ileum was negatively correlated with the expression of 
antimicrobial CXCL6 and chemokine CCL20, so was the abundance of 
Streptococcus (OTU 37) and Eikenella (OTU 39) in rectum. A recent 
host-centered study has identified microbiome-derived protein 
clusters with high sequence identity to human protein-protein in-
teractions (PPIs) by collecting existing interspecies PPIs data [170]. 
By combining PPIs with metagenome analysis, host functional an-
notations were added to microbiome-related diseases such as IBD, so 
as to provide a more reliable reference for the study of disease 
mechanism and promising therapeutic molecular targets. Un-
doubtedly, these high-throughput host-microbiome interaction 
networks still need to be continuously improved in the future. The 
main limitation of single metanolomics analysis lies in distin-
guishing whether the metabolites are host- or microbe-derived， 
which is compensated by the integration of microbiome and meta-
bolome. With the development of multi-omics technology, growing 
metabolomics and microbiome research are closely integrated, 
providing a qualitative leap for revealing the mechanism of disease. 
Common variations between species and metabolites are captured, 
leading fresh insight on specific metabolism pathway such as sulfur 
metabolism. Multi-omics in microbiome and metabolome showed 
operational taxonomic units (OTUs) corresponding to Desulfovibeio 
and Escherichia/Shigella were enriched in active CD, while OTUs 
corresponding to Bacteroides, Parabacteroides, Bilophila, Acid-
amicococcus and Odoribacter were enriched in inactive CD. Targeted 
and non-targeted metabolomics analysis of mice receiving fecal 
transplantation from patients was consistent with what was ob-
served in CD patients. Sulfur metabolism disorders, aurine binding 
bile acids and glycocholic acids were associated with the develop-
ment of inflammation in humanized mice, manifested as a relatively 
high number of sulfated compounds, including bile acids, poly-
phenols and biogenic amines [163]. Recently attention has been paid 
to mesenteric adipose tissue (mAT) in CD from the prospective of 
multi-omics. Four families of Alcaligenaceae, Brucellaceae, Pseudo-
monadaceae and Hyphomicrobiaceae in mAT showed significant 
covariation with the host transcriptome and metabolome, abun-
dance of which had positive correlation with endoscopic recurrence 
rate [81]. This provides help for people to deeply understand the 
pathological mechanism of mesenteric crawling fat in CD. Despite 

the proliferation of microbiome and metabolome studies, methods 
for integrating microbiome and metabolome data remain imperfect. 
Most studies usually focused on the superficial statistical association 
of two types of data rather than the complex interaction between 
the microbial genome and its corresponding metabolic functions, 
thus could not really systematically integrate these data [171,172]. In 
2016, researchers have tried to construct an analytical framework 
that can link species abundance to metabolite changes [173]. In 
short, this framework infers the metagenomic quantity of each 
sample based on microbial composition and available or inferred 
genome information. Metagenomic Universal Single-Copy Correc-
tion (MUSiCC) was then used to normalize the inferred metagen-
omes [174], followed by translating the enzymatic gene abundance 
estimates into community-based metabolite potential (CMP) scores 
through Predicted Reactive Metabolic Turnover (PRMT) approach. 
Finally, the consistency between the predicted changes in CMP score 
and the measured changes in metabolite was evaluated. This kind of 
computational framework can predict the changes of metabolites to 
a certain extent through the changes of microbial community 
composition and metabolic capacity of various member species, 
which provides precondition for the emergence of ’predictive me-
tabolomics’. Predictive metabolomics can break through the ob-
stacles that metabolomics data are expensive and difficult to obtain 
on a large scale. Using microbial sequencing data to quickly and 
easily predict microbial metabolite markers, predictive metabo-
lomics provide deeper insights into the pathogenesis of diseases and 
the possibility for microbial intervention treatment [175]. However, 
this model is hard to apply or verify in a data-driven manner or 
cannot be well extended to complex communities with partially 
referenced taxa or metabolites [176]. Due to the complexity and 
instability of the intestinal microbial environment, the prediction 
accuracy of similar models applied to IBD data is greatly reduced  
[173,177,178]. In order to improve the accuracy of metabolite pre-
diction in complex environments, researchers developed Model- 
based Genomically Informed High-dimensional Predictor of Com-
munity Metabolic Profiles (MelonnPan), an optimized computational 
framework to predict metabolomics from microbial community 
profiles. This model was validated by applying melonpan to two 
independent intestinal metagenomic datasets, including 200 parti-
cipants with CD, UC and healthy controls. The results showed that up 
to 50 % of the trend of intestinal metabolites can be successfully 
predicted by this framework [176], thus laying a foundation for the 
multi-omics comprehensive study of CD based on model. In order to 
address the poorly understood pathogenesis that how isolated CD 
phenotype influences molecular profiles, Gonzalez CG et al. in-
tegrated host genetics, microbiome, metabolomics and metapro-
teomics to analyze the location characteristics of CD patients [164]. 
They demonstrated that primary and secondary bile acid levels in 
ileal CD increased with Faecalibacterium prausnitzii and other species 
preferred to acid-rich environment compared to colonic CD. Mean-
while, metaproteomics indicated enrichments of neutrophil-related 
protein in colonic CD, whereas host genetics didn’t contribute to the 
distinction [164]. Last but not least, multi-omics generated unique 
profile for therapeutic including diet therapy and anti- cytokine 
treatment in CD associated with remission [179,180]. These profiles 
recognized by multi-omics may facilitate a prior determination of 
optimal and targeted therapeutic for patients with CD. Tables. 1 
and 2. 

Summary and outlook 

Host genomics, epigenomics, microbiome, metabolomics and 
metaproteomics reveal the disease characteristics of CD from dif-
ferent dimensions, which helps people further understand the var-
ious molecular mechanisms and predict disease progression. 
Nevertheless, there exists a long path to identify applicable markers 
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with clinical therapeutic value only based on the restricted features 
in complicated pathogenesis demonstrated by single omics. Multi- 
omics experimental design can better capture the dynamic changes 

and functional activities of microbes and their metabolites along 
with the causal relationship between host gene expressions and 
microbial interactions during disease progression. Rise of these 

Table 2 
Brief summary of the most common pipelines in omics.      

Omics Common pipelines Advantages Disadvantages  

Host-genomics Genome-wide association analysis (GWAS)  • Finds massive Crohn’s Disease (CD) susceptible 
loci[191,192];  

• Reveals molecular genetic relationships between 
CD and other diseases[54,55];  

• Discovers ethnic variation of complex traits[192];  

• Promotes the research of low- frequency and rare 
variants[192];  

• Contributes to gain new biological mechanisms 
[191–193];  

• GWAS data: easy to manage, analyze and 
share[192].  

• Differences in loci caused by different 
linkage disequilibrium (LD) in different 
ethnic groups[193];  

• Disease progression or severity variants are 
rarely identified by GWAS[62];  

• All of the heritability can’t be discovered by 
GWAS solely[192,193];  

• Important multiple testing burden[192];  

• Unable to necessarily pinpoint causal 
variants and genes[192]. 

Epigenomics Epigenome-wide association studies (EWAS)  • Finds novel methylation sites associated with 
diseases[194,195];  

• Evaluates the environmental impact on genetic 
regulation[194];  

• Explains part of the heritability missed out by 
GWAS[194].  

• Requires expansion of sample size and 
ethnic diversity[195,196];  

• Existence of the heterogeneity of sample 
materials[195,197];  

• Causal inference of the identified epigenetic 
changes is challenging[195,197]. 

Microbiome 16 S rRNA gene sequence (16 S rDNA 
sequence)  

• Easier to find new species missed out by shotgun 
metagenomics[198];  

• More suitable for samples with low bacterial 
biomass and high host contamination[198];  

• Low-cost analysis to screen large-size samples 
[198,199].  

• Primer selection affects analytical 
accuracy[198];  

• Identification at the species level is hard to 
achieve[200];  

• Only the composition and diversity of 
microbial communities are obtained[198]. 

Shotgun metagenomics  • No polymerase chain reaction (PCR) 
preference[198];  

• Identification at the strain level is available[199];  

• The genetic information of all microorganisms in 
the sample can be obtained[199];  

• Microbial community function is available[199].  

• Analytical accuracy depends on assembly 
quality[199];  

• Not suitable for low microbial 
samples[199];  

• High cost199 201；  
• Poor alignment uniqueness and accuracy to 

identify specific species for short-read 
sequencing[201]. 

Long-read metagenomics  • Higher accuracy because of increased read 
length[201];  

• More confident analysis to missing genes and 
pathways[201];  

• Large operons can be mined as a biosynthetic 
gene cluster[201].  

Metabolomics Nuclear magnetic resonance (NMR)  • Highly reproducible and quantitative[109];  

• Undamaged sample to multiple assays 
[109,116,202];  

• Low sample size is required[202];  

• The dynamics and sequestration of metabolites 
can be observed[116].  

• Low sensitivity[109,203]. 

Gas chromatography-mass spectrometry 
(GC-MS)  

• High sensitivity and specificity109；  
• Separation and detection of volatile 

metabolites[204];  

• Compounds can be searched according to existing 
libraries[109];  

• Qualitative accuracy[109].  

• Extensive sample preparation and 
extraction before analysis109；  

• Samples need to be thermally stable as well 
as volatile109；  

• Sample are easily lost[109]. 

Liquid chromatography-mass spectrometry 
(LC-MS)  

• High sensitivity and specificity204；  
• Underivatized samples[109,204];  

• Separation and detection of lipids and a range of 
polar molecules[109,204].  

• Lower resolution than GC-MS[109];  

• Qualitative inaccuracy[109]. 

Proteomics Data-independent acquisition (DIA)/ 
Sequential windowed acquisition of all 
theoretical fragment ions (SWATH)  

• Excellent robustness, reproducibility, quantitative 
accuracy, data comprehensiveness and 
completeness[205–207];  

• Low-cost[206];  

• Simple sample preparation methods[206];  

• Suitable for medium/large scale analyses 
[206,208].  

• High requirements for algorithms[206];  

• The mass spectrometry results of complex 
samples are difficult to analyze. 

Label-free quantification (LFQ)  • Simple experimental operation and low 
cost[209];  

• Fit for large number of samples[209];  

• Observes the differential abundance of proteins 
over a large dynamic range[210];  

• Advantages over protein coverage and increased 
protein identifications[209].  

• The stability of experimental operation is 
demanding;  

• Poor repeatability[209];  

• High requirements for instruments[209];  

• Less accurate than tandem mass tag (TMT) 
labeling[209]. 

CD, Crohn’s disease; DIA, data-independent acquisition; EWAS, epigenome-wide association studies; GWAS, genome-wide association analysis; GC-MS, gas chromatography-mass 
spectrometry; LC-MS, liquid chromatography-mass spectrometry; LD, linkage disequilibrium; LFQ, label-free quantification; NMR, nuclear magnetic resonance; PCR, polymerase 
chain reaction; SWATH, sequential windowed acquisition of all theoretical fragment ions; TMT, tandem mass tag.  
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studies accumulates database for the establishment of a multi-omics 
joint platform for CD. In reality, emerged multi-omics research have 
limitations of high cost and great technology challenges. In addition 
to the technical barriers of different omics, multi-omics integration 
requires higher accuracy and quality of clinical sample information  
[181]. Major technical challenge in integration of multi-omics data 
lies in high heterogeneity of clinical information and a large number 
of dimensional variables generated to satisfy unchanged biological 
sample size [182]. Due to the complexity and diversity of clinical 
manifestations, more multi-omics research models of CD specific to 
different characteristics demand to be established in the future. Only 
based on these accurate models can we generate better non-intuitive 
design predictions, promote more in depth multi-omics CD research, 
and establish sophisticated database [183]. With great vision, the 
perfection of complete CD multi-omics networks and bio-infor-
matics analysis tools are expected to provide the pivotal basis for 
comprehensive analysis of complex mechanisms of CD and targeted 
therapeutics. 
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