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Simple Summary: The sika deer (Cervus nippon) was introduced in South Korea from Japan and
Taiwan for commercial farming. They have become invasive to mainland South Korea and Jeju
Island due to escape from confinement and illegal release. Native species and ecosystems may be
threatened by the presence of non-native species. To deal with ecological risk and evolutionary
processes, information on the phylogeny of these non-native sika deer is necessary. Genetic studies
using mitochondrial DNA cytochrome B (CytB) gene sequences were conducted to determine the
subspecies of Jeju sika deer and their phylogenetic relationship. On Jeju Island, we confirmed the
presence of two distinct groups of CytB haplotypes: Cervus nippon yakushimae, native sika to Japan,
and Cervus nippon taiouanus, native to Taiwan.

Abstract: Non-native species threaten native ecosystems and species, particularly on islands where
rates of endemism and vulnerability to threats are high. Understanding species invasion will aid
in providing insights into ecological and evolutionary processes. To identify the non-native sika
deer (Cervus nippon) population in Jeju, South Korea, and their phylogenetic affinities, we collected
tissue samples from roadkill and the World Natural Heritage Headquarters in Jeju. Mitochondrial
DNA cytochrome B (CytB) gene sequences were analyzed to determine two distinct CytB haplotypes.
Phylogenetic analysis using maximum likelihood tree revealed two haplotypes of CytB clustered
into two different groups representing two subspecies: C. n. yakushimae, native to Japan, and C. n.
taiouanus, native to Taiwan. The tentative divergence time between the two subspecies was estimated
at 1.81 million years. Our study confirmed that the two subspecies of sika deer are sympatric in the
natural ecosystem of Jeju Island. This study provides valuable information to help government and
conservation agencies understand alien species and determine control policies for conserving native
biodiversity in South Korea.

Keywords: CytB; Jeju Island; phylogenetic study; sika deer; non-native species

1. Introduction

Native biodiversity, agriculture, and ecosystem services are all threatened by the
introduction of non-native species [1–3]. Introduced alien plants and animals such as birds,
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reptiles, and mammals can alter the structure and function of the ecosystem, resulting
in a decline in the population of native species [4,5]. The impacts of non-native species
have typically been evaluated as more severe on islands than on continents [5]. Recently,
40% of the native species present on islands are at high extinction risk [6]. Therefore, the
introduction of species into small islands and consequent problems caused by non-native
species in natural ecosystems worldwide is concerning [7,8]. Herbivores such as deer,
rabbits, and cattle can influence native island vegetation and cause various ecological
impacts, including habitat loss and changing ecosystem dynamics [9].

Mammalian species are introduced accidentally [10,11] or intentionally [12] outside
their native region. Following global practice, after the end of the Korean War, South Korea
allowed the introduction of commercial farming of mammalian species such as sika deer,
red deer, wild boar, and nutria [13,14]. The sika deer, native to East Asia, was introduced to
South Korea from Taiwan and Japan [15]. Because of the escape from farmland and illegal
release by farmers, the sika deer has been established as a wild population on Jeju Island, the
largest southernmost island of the Korean Peninsula. Currently, the population of sika deer
is rapidly growing and invading livestock farmlands and wild ecosystems. Therefore, the
Ministry of Environment and the Jeju Especial Self-governing Province began controlling
alien species population to limit their existence in the wild [16]. To control the population of
non-native species efficiently, collecting basic biological information, including taxonomy
and population distribution, is necessary. Therefore, the precise identification of non-native
species and their origin is essential for determining control policies [17,18].

Mitochondrial DNA (mtDNA), because of its maternal inheritance, absence of recombi-
nant events, and high mutation rate, has been used for studying genetic divergence among
or within species [19,20]. In particular, the mtDNA of the cytochrome B gene (CytB), one of
the most widely used molecular marker in animals [21], is used in resolving evolutionary
relationships and taxonomic status of sympatric mammals globally [22–24]. In addition,
the CytB gene sequences are widely used to identify non-native species and their source
population in the native region [25,26].

mtDNA phylogenetic analysis of sika deer in mainland South Korea identified two
subspecies of alien sika deer, Cervus nippon taiouanus and Cervus nippon yesoensis [15,27].
To the best of our knowledge, no molecular research has been performed concerning the
taxonomic studies, evolutionary relationship of introduced sika deer, and their native
geographical range in Jeju. Therefore, the maternal origin of the sika deer on Jeju Island
remains unknown. Hence, this study aimed to determine the taxonomic and phylogenetic
relationships of sika deer introduced to Jeju Island using mtDNA CytB gene sequences.
This study aimed to resolve the taxonomic status of sika deer to understand their invasion
of Jeju Island, South Korea, to support management strategies, including controlling and
limiting their population in the wild.

2. Materials and Methods
2.1. Samples Collection and Laboratory Procedure

Nine sika deer tissue samples were obtained from roadkill (two samples) and the
World Natural Heritage Headquarters (WNHH) in Jeju (seven samples), collected under the
invasive deer population control program of the local government. Samples were collected
from various locations on Jeju Island (Figure 1) and stored in centrifuge tubes containing
30 mL 95% ethanol. Total DNA was extracted using the DNeasy Blood and Tissue Kit
(Qiagen, Germany) to a final volume of 80 µL and stored at 4 ◦C until further analysis.
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mtDNA CytB marker was selected for molecular identification of sika deer. CytB se-
quences were amplified using newly designed primers: forward (5′-CAAGAACACTAATG
ACCAATATCC-3′) and reverse (5′-TACAAGACCAGTGT ATTGAG TAT-3′). Polymerase
chain reactions (PCR) amplifications were performed using a MiniAmp Plus Thermal
Cycler (Thermo Fisher Scientific, Waltham, MA, USA). A total volume of 20 µL contained
17 µL distilled water, 1 µL (10 pmol) forward and reverse primers each, and 1 µL template
DNA in a premixed ready strip (FastMix Frenche™ PCR i-Taq, iNtRon Biotechnology,
Seoul, Korea). The thermal cycling conditions consisted of an initial pre-denaturation for
3 min at 95 ◦C, followed by 35 cycles of denaturation for 30 s at 95 ◦C, annealing for 1 min
at 50 ◦C, and elongation for 1 min at 72 ◦C, with a final extension for 5 min at 72 ◦C. The
amplified results were visualized on 1% agarose gels to verify the PCR quality. QIAquick
purification kit (Qiagen, Valencia, CA, USA) was used to purify PCR products, which
were then sequenced on an ABI 3130xl Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA).

2.2. DNA Sequencing and Phylogeny

All DNA sequences were assessed by a similarity search using the National Center
for Biotechnology Information (NCBI) databases and the basic local alignment search tool
(BLAST); the most identical putative species were listed. Using the ClustalW program,
multiple sequence alignments were performed using the CytB sequences generated in this
study and reference sequences collected from the NCBI database [28]. Haplotype analysis
of CytB gene sequences of sika deer was performed using DnaSP v5 [29]. A maximum
likelihood (ML) phylogenetic tree was produced using the Mega-X program [30], and the
Tamura–Nei model [31] with gamma distribution (T93+G) was selected. The Hasegawa–
Kishino–Yano (HYK) model [32] was chosen as the best-fit nucleotide substitution model
using the Akaike information criterion [33] applied in MrModeltest v2.3 (Uppsala Univer-
sity, Uppsala, Sweden) [34]. The tree reliability of the ML method was estimated using
the bootstrap percentage after 10,000 replications. Two independent runs were used to
assess convergence, and the first 25% of sampled trees were removed as ‘burn-in’. A 50%
majority rule consensus tree was generated by running 100,000 generations of Markov
chain Monte Carlo (MCMC) chains and sampling every 100 generations. The reliability
of the inferred nodes was tested using posterior probabilities. Sequences of the Siberian
roe deer (Capreolus capreolus) were used as an outgroup to root the phylogenetic tree. The
average genetic distance between determined haplotypes and reference sequence from the
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NCBI was calculated using the Kimura-2-parameters model with Mega-X version. The
time of divergence (t) was computed using a constant molecular clock as t = K/2µ, where
‘K’ is the proportion of nucleotide differences between two sequences and ‘µ’ is the rate of
nucleotide substitution [35]. For the control region of the deer mtDNA, a divergence rate
of 1.11–1.31% per million year (Myr) was used [36]. The complete mtDNA sequences of
CytB were submitted to the NCBI database using the submission tool, and their accession
numbers are listed in Table 1.

Table 1. Accession numbers of CytB gene sequence and corresponding haplotypes of C. nippon used
in this study.

Haplotype Accession No. Species Origin Country References

CytBG1 MW169432 Cervus nippon yakushimae South Korea This study
MW169440 Cervus nippon yakushimae South Korea This study
MW169449 Cervus nippon yakushimae South Korea This study
MW169451 Cervus nippon yakushimae South Korea This study
MW169452 Cervus nippon yakushimae South Korea This study

CytBG2 MW169437 Cervus nippon taiouanus South Korea This study
MW169438 Cervus nippon taiouanus South Korea This study
MW169444 Cervus nippon taiouanus South Korea This study
MW169445 Cervus nippon taiouanus South Korea This study
AB021094 Cervus nippon centralis Japan [35]
AB002476 Cervus nippon yakushimae Japan [37]
L15083 Cervus nippon taiouanus UK [38]
AB021093 Cervus nippon nippon Japan [35]
AB218689 Cervus nippon yakushimae Japan [39]
DQ985076 Cervus nippon taiouanus Taiwan [40]
GU377259 Cervus nippon taiouanus South Korea [41]
GU377266 Cervus nippon hortulorum South Korea [42]
JN389443 Cervus nippon sichuanicus China [43]
MH746800 Cervus nippon kopschi China [44]
AB021094 Cervus nippon centralis Japan [35]

Note: Species name of the CytB gene sequences used in this study were determined from a BLAST search of the
NCBI database.

3. Results

Nine samples were collected from sika deer (C. n. yakushimae, n = 5; C. n. taiouanus,
n = 4) on Jeju Island. All collected tissue samples were successfully amplified and se-
quenced to evaluate their phylogenetic relationships. Two distinct CytB haplotypes of
sika deer were found in the nine CytB sequences obtained in this study, reflecting the two
previously introduced populations of sika deer on Jeju Island. One haplotype (CytBG1) was
found in five sequences identical to that in C. n. yakushimae reported from Japan (AB218689).
The remaining four sequences were obtained as a single haplotype (CytBG2) identical to
that of C. n. taiouanus reported in Taiwan (DQ985076) (Table 1). We estimated the genetic
distance between the two haplotypes (CytBG1 and CytBG2) and the reference sequences ob-
tained from the NCBI database. The lowest genetic distance (0.000) was obtained between
CytBG1 and sequence AB218689 reported in Japan, strongly suggesting that the CytBG1
haplotype is C. n. yakushimae. Similarly, the haplotype CytBG2 and sequences DQ985076
from Taiwan showed the lowest genetic distance (0.000), indicating that the haplotype
CytBG2 is C. n. taiouanus (Table 2).

To resolve the phylogenetic position of the two haplotypes, ML tree based on Tamura–
Nei model were constructed, which produced a robust phylogenetic tree distinctly clustered
into two clades (Figure 2). Among these clades, the haplotype of C. n. yakushimae clusters
in C. n. yakushimae (AB218689) clade has been reported from Southern Japan. However,
another haplotype of the C. n. taiouanus cluster in C. n. taiouanus clade was reported from
Taiwan (DQ985076), the United Kingdom (L15083), and South Korea (GU377259). The
lowest genetic distance from the Taiwan lineage indicated that the species was introduced
from Taiwan.
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Table 2. Pairwise genetic distance between the haplotypes of C. nippon.

Haplotype/Accession No. 1 2 3 4 5 6 7 8 9 10 11 12

1. CytBG1—Jeju
2. CytBG2—Jeju 0.0481
3. L15083—UK 0.0499 0.0018
4. AB218689—Japan 0.0000 0.0481 0.0499
5. AB002476—Japan 0.0093 0.0500 0.0517 0.0093
6. GU377259—Korea 0.0490 0.0010 0.0028 0.0491 0.0509
7. DQ985076—Taiwan 0.0481 0.0000 0.0018 0.0481 0.0500 0.0010
8. MH746800—China 0.0463 0.0178 0.0196 0.0463 0.0482 0.0187 0.0178
9. AB021094—Japan 0.0334 0.0346 0.0364 0.0334 0.0352 0.0356 0.0346 0.0329
10. GU377266—Korea 0.0432 0.0253 0.0271 0.0432 0.0451 0.0263 0.0253 0.0236 0.0298
11. JN389443—China 0.0437 0.0152 0.0170 0.0437 0.0456 0.0162 0.0152 0.0134 0.0303 0.0118
12. AB021093—Japan 0.0046 0.0384 0.0457 0.0053 0.0028 0.0373 0.0363 0.0405 0.0385 0.0315 0.0046

Note: CytBG, Cytochrome B Group; UK, United Kingdom. Values in bold represent lowest genetic distance
between pairs.
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Figure 2. Maximum likelihood (ML) phylogenetic tree based on the mtDNA CytB gene sequences for
two haplotypes of C. nippon collected from Jeju Island and reference sequences of various Cervids
collected from the NCBI database. The numbers at each node represent bootstrap value and tentative
divergence time, respectively. The tentative divergence time was estimated in million years. CytB
gene sequences of 10 Cervid species were used as reference sequences and Capreolus capreolus was
used as an outgroup. Detailed information of haplotypes and sequences determined in this study are
presented in Table 1.

Furthermore, tentative divergence times between the two haplotypes determined in
this study (CytBG1 and CytBG2) were at least 1.81 Myr (Figure 2). However, the divergence
time between CytBG1 and C. n. yakushimae (Japan) and CytBG2 and C. n. taiouanus (Taiwan)
were less than 0.17 Myr, indicating recent divergence.
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4. Discussion

This study was designed to identify the sika deer present on Jeju Island. This study
determined some salient results as follows: (1) molecular identification, phylogenetic
relationship, and tentative divergence time of sika deer; (2) sympatric distribution of two
subspecies of sika deer, C. n. yakushimae and C. n. taiouanus, are present on Jeju Island; (3)
both C. n. yakushimae and C. n. taiouanus are alien species to Jeju Island introduced from
Japan and Taiwan, respectively.

Molecular identification and phylogenetic analysis of non-native populations can
provide precise information about their source population. The sika deer, a non-native
species on Jeju Island, shows an increasing demographic trend [45]. Furthermore, the
genetic validity of its subspecies and the true range of its geographical origin have yet to be
determined. This study focused on the initial investigation to provide correct information
on the classification of non-native sika deer species and their native geographical origin
on Jeju Island. Our study revealed the presence of two highly distinct sub-species of sika
deer, C. n. yakushimae and C. n. taiouanus, which are the same as those in Japan and Taiwan,
respectively. To the best of our knowledge, this study is the first molecular phylogeographic
study of non-native sika deer that sheds light on the evolutionary history of the species.

Morphologically, the two subspecies, C. n. yakushimae and C. n. taiouanus, are indistin-
guishable because of their similar body coloration, antler and body shape, and size [46,47].
The pelage of both sika deer ranged from reddish-brown in summer to dark brown or
black in winter. In summer, they have white spots and a dark dorsal stripe terminating in a
large rump patch, which is used as a distinguishing characteristic. Males have strong and
erect antlers, with an additional buttress protruding from the brow tine. Females carry two
prominent black bumps on their forehead. Males have a dark, shaggy mane on their necks
during the mating season. Because of the difficulty in distinguishing the two subspecies
based on their morphological characteristics, molecular datasets were used to identify such
sympatric species. Therefore, we confirmed both species are sympatrically distributed in
the natural ecosystems of Jeju Island.

Our study determined two distinct CytB haplotypes (CytBG1 and CytBG2) that were
used to compute the phylogeny of sika deer using ML tree (Figure 2). The phylogenetic tree
clearly shows that the two haplotypes clustered into two different groups representing C. n.
yakushimae and C. n. taiouanus. The zero genetic distance between the haplotypes CytBG1
and C. n. yakushimae and CytBG2 and C. n. taiouanus indicated no difference between each
haplotype and the underlying gene sequence. The identical sequence present in each group
indicated an exact match between the species [22,23,48]. In addition, genetic differences
between closely related species typically result in minimal DNA sequence divergences [49].
Based on this evidence, we concluded that the haplotypes CytBG1 and CytBG2 identified on
Jeju Island were C. n. yakushimae and C. n. taiouanus, respectively, and the source population
might be from Japan and Taiwan.

In this study, we used tissue samples to obtain more qualitative DNA; however, the
sample size was limited because all samples were obtained from roadkill and the WNHH
under the deer management plan. However, we believe that this sample size is sufficient
for the molecular identification of the species, following earlier studies [50,51].

The subspecies C. n. yakushimae is the most common and smallest subspecies of sika
deer native on two small islands in the southeastern portion of Japan [39,52], and has also
been documented in non-native areas in the United States and the United Kingdom [53,54].
The population of C. n. yakushimae in Japan has increased since the 1970s [55,56], and deer
herbivory has caused severe damage to agricultural and forested lands owing to grazing
and browsing pressure [52,57]. To mitigate further damage, the expanding population has
been culled or translocated to other countries [47,58], as was the case with the sika deer
introduction in South Korea. The sequences GU377259 from South Korea and DQ985076
from Taiwan showed higher similarity in BLAST search results, which was the CytB gene
sequences of C. n. taiouanus living in Songnisan National Park, mainland South Korea. This
result indicates that C. n. taiouanus from the same origin group in Taiwan was introduced
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to Songnisan National Park and Jeju Island. Another possibility is that sika deer were
re-introduced to Jeju Island shortly after being introduced into Songnisan National Park,
not having been inhabited long enough to have gone through the evolutionary process.
Our study revealed that two subspecies of sika deer were re-introduced into Jeju Island
from Taiwan and Japan to restore the sika deer population after the extinction of native
species from Jeju Island.

The molecular date for the sika deer lineage was determined based on the divergence
rate of 1.11–1.31% per Myr for the deer mtDNA regulatory region [36]. Our results showed
that the common ancestor of these two clades diverged in Northeast mainland Asia during
the early Pleistocene epoch (1.81 Myr), which corresponds approximately with the findings
of Ba et al. [59] and Guo et al. [60]. Pleistocene sika deer expanded their range southward
and eastward in two ways: one crossed the Korean Peninsula and migrated to the Japanese
island via a land bridge at least twice [61] between the southern section of the Japanese
island and the Korean Peninsula during the middle Pleistocene period. Similarly, the other
way followed the mainland’s east coast, leading to Vietnam and Taiwan. Several earlier
investigations have supported these scenarios [38,59,62].

The Dybowski sika deer (C. n. hortulorum) was once found throughout most far
eastern Russia, north-eastern China, and the Korean Peninsula [63–65]. In South Korea,
C. n. hortulorum is considered the largest native deer subspecies [66]; however, our study
samples could not detect this species on Jeju Island. In addition, an earlier study could
not report C. n. hortulorum in the deer farms of mainland Korea and Jeju Island [15]. This
species seems to be either extinct in the wild due to poaching and overhunting or lack
relevant information [27,67]. Hence, surveillance studies based on large sample sizes are
necessary to confirm the status of the species.

Members of the genus Cervus often hybridize and produce fertile offspring in the
regions where they were introduced [68–70]. Sika deer in Northeast Asia have experienced
various gene flows such as migration, wild population introduction, and exchange between
farms and conservation parks since the early 1900s [65,66]. However, no sequence variation
was observed among sika subspecies in this study, and the chance of interbreeding in the
near future cannot be neglected. Many groups of sika deer in Japan [71,72], the Czech
Republic [64], Europe [73,74], and New Zealand [75] have experienced significant genetic
pollution. The ecological consequences of this hybrid phenomenon cannot be anticipated.
Intervening hybrids facilitate gene flow, resulting in positive feedback that eventually
blends the two populations [76]. We plan to study the genetic hybridization of this species
in the near future.

There are no natural predators, such as tigers, leopards, and jackals, on Jeju Island as
in other countries; therefore, the deer population has increased on a large scale compared to
previous reports [45]. However, there could be intra-competition among the sika deer and
inter-competition with roe deer for forage and natural habitats [77]. The rapidly increasing
sika deer population in Jeju has reduced the number of dietary plants of native roe deer,
particularly in the winter season [77]. The government has started to control the sika deer
population in Songnisan National Park (mainland South Korea) to reduce human conflict
and long-term conservation [41]. On Jeju Island, sika deer have not yet impacted the
environment seriously; however, some cases of road accidents and human conflicts have
been recorded [78]. Therefore, regularly monitoring the deer population is required to study
the behavioral patterns and habitat management of sika deer and other native species.

5. Conclusions

The phylogenetic analysis of non-native populations using molecular genetic methods
can provide information on the exact species identification and source population. This
first phylogeographic survey of sika deer on Jeju Island suggested the presence of two
distinct subspecies (C. n. yakushimae and C. n. taiouanus) introduced from Japan and Taiwan.
Although the sample size was small, we extracted valuable information regarding the
taxonomy and phylogeny of the sika deer currently present on Jeju Island. Our study
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provides valuable data for identifying sika deer and their alien status. Our findings could
be a reference for the government and conservation agencies for the long-term conservation
of biodiversity on Jeju Island.
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64. Krojerová-Prokešová, J.; Barančeková, M.; Voloshina, I.; Myslenkov, A.; Lamka, J.; Koubek, P. Dybowski’s Sika Deer (Cervus

nippon hortulorum): Genetic Divergence between Natural Primorian and Introduced Czech Populations. J. Heridity 2013, 104,
312–326. [CrossRef]

65. Aramilev, V.V. Sika Deer in Russia. In Sika Deer: Biology and Management of Native and Introduced Populations; McCullough, D.R.,
Takatsuki, S., Kaji, K., Eds.; Springer: Tokyo, Japan, 2009; pp. 475–499.

66. McCullough, D.R. Sika deer in Korea and Vietnam. In Sika Deer. Biology and Management of Native and Introduced Populations;
McCullough, D.R., Kaji, K., Takatsuki, S., Eds.; Springer: Tokyo, Japan, 2009; pp. 541–548.

67. Harris, R. Cervus Nippon. IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. 2015. Available online:
www.iucnredlist.org (accessed on 4 March 2021).

68. Goodman, S.J.; Barton, N.H.; Swanson, G.; Abernethy, K.; Pemberton, J.M. Introgression Through Rare Hybridization: A Genetic
Study of a Hybrid Zone Between Red and Sika Deer (Genus Cervus) in Argyll, Scotland. Genetics 1999, 152, 355–371. [CrossRef]

69. Senn, H.V.; Pemberton, J.M. Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus)
in a small geographical area. Mol. Ecol. 2009, 18, 862–876. [CrossRef]

70. Smith, S.L.; Carden, R.F.; Coad, B.; Birkitt, T.; Pemberton, M. A survey of the hybridisation status of Cervus deer species on the
island of Ireland. Conserv. Genet. 2014, 15, 823–835. [CrossRef]

71. Ohmura, Y.; Fukumoto, Y.; Ohtaki, K. Chromosome polymorphism in Japanese sika, Cervus nippon. Japan J. Vet. Sci. 1983, 45,
23–30. [CrossRef]

72. Tamate, H.B. Evolutionary Significance of Admixture and Fragmentation of Sika Deer Populations in Japan. In Sika Deer. Biology
and Management of Native and Introduced Populations; McCullough, D.R., Kaji, K., Takatsuki, S., Eds.; Springer: Tokyo, Japan, 2009;
pp. 43–54.

73. Gelin, U.; Keller, M.; De Beaupuis, V.; Nowak, R. Impact of hybridization between sika and red deer on phenotypic traits of the
newborn and mother—Young relationships. Anim. Behav. 2019, 158, 65–75. [CrossRef]

74. Senn, H.V.; Swanson, G.M.; Goodman, S.J.; Barton, N.H.; Pemberton, J.M. Phenotypic correlates of hybridisation between red and
sika deer (genus Cervus). J. Anim. Ecol. 2010, 79, 414–425. [CrossRef] [PubMed]

75. Ramon-Laca, A.; Gleeson, D.; Yockney, I.; Perry, M.; Nugent, G.; Forsyth, D. Reliable Discrimination of 10 Ungulate Species Using
High Resolution Melting Analysis of Faecal DNA. PLoS ONE 2014, 9, e92043. [CrossRef] [PubMed]

http://doi.org/10.1007/s11692-015-9303-1
http://doi.org/10.1086/282771
http://doi.org/10.1002/ece3.5677
http://doi.org/10.3390/insects11050290
http://www.ncbi.nlm.nih.gov/pubmed/32397374
http://doi.org/10.1016/j.foreco.2008.04.044
http://doi.org/10.7589/0090-3558-46.1.287
http://doi.org/10.1002/ece3.5655
http://doi.org/10.1016/j.mambio.2010.04.002
http://doi.org/10.1016/j.biocon.2009.02.011
http://doi.org/10.3109/19401736.2013.836509
http://www.ncbi.nlm.nih.gov/pubmed/24063645
http://doi.org/10.4116/jaqua.29.193
http://doi.org/10.1007/s11434-006-0433-9
http://doi.org/10.1093/jhered/est006
www.iucnredlist.org
http://doi.org/10.1093/genetics/152.1.355
http://doi.org/10.1111/j.1365-294X.2008.04051.x
http://doi.org/10.1007/s10592-014-0582-3
http://doi.org/10.1292/jvms1939.45.23
http://doi.org/10.1016/j.anbehav.2019.09.016
http://doi.org/10.1111/j.1365-2656.2009.01633.x
http://www.ncbi.nlm.nih.gov/pubmed/20002231
http://doi.org/10.1371/journal.pone.0092043
http://www.ncbi.nlm.nih.gov/pubmed/24637802


Animals 2022, 12, 998 11 of 11

76. Pinto, M.A.; Rubink, W.L.; Patton, J.C.; Coulson, R.N.; Johnston, J.S. Africanization in the United States: Replacement of Feral
European Honeybees (Apis mellifera L.) by an African Hybrid Swarm. Genetics 2005, 170, 1653–1665. [CrossRef] [PubMed]

77. Adhikari, P.; Park, S.M.; Kim, T.W.; Lee, J.W.; Kim, G.R.; Han, S.H.; Oh, H.S. Seasonal and altitudinal variation in roe deer
(Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. J. Asia-Pacific Biodivers. 2016, 9, 422–428. [CrossRef]

78. Oh, J.G.; Hwan, J.S.; Lee, G.J. Jeju Roe Deer Behavioral Ecology and Management; National Park Research Institute: Jeju-si, South
Korea, 2019; p. 375.

http://doi.org/10.1534/genetics.104.035030
http://www.ncbi.nlm.nih.gov/pubmed/15937139
http://doi.org/10.1016/j.japb.2016.09.001

	Introduction 
	Materials and Methods 
	Samples Collection and Laboratory Procedure 
	DNA Sequencing and Phylogeny 

	Results 
	Discussion 
	Conclusions 
	References

