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Topological invariant and anomalous edge modes
of strongly nonlinear systems
Di Zhou 1✉, D. Zeb Rocklin2, Michael Leamy 3 & Yugui Yao 1✉

Despite the extensive studies of topological states, their characterization in strongly nonlinear

classical systems has been lacking. In this work, we identify the proper definition of Berry

phase for nonlinear bulk waves and characterize topological phases in one-dimensional (1D)

generalized nonlinear Schrödinger equations in the strongly nonlinear regime, where the

general nonlinearities are beyond Kerr-like interactions. Without utilizing linear analysis, we

develop an analytic strategy to demonstrate the quantization of nonlinear Berry phase due to

reflection symmetry. Mode amplitude itself plays a key role in nonlinear modes and controls

topological phase transitions. We then show bulk-boundary correspondence by identifying

the associated nonlinear topological edge modes. Interestingly, anomalous topological modes

decay away from lattice boundaries to plateaus governed by fixed points of nonlinearities.

Our work opens the door to the rich physics between topological phases of matter and

nonlinear dynamics.
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The advent of topological band theory has led to the bur-
geoning field of “topological phases of matter” which
manifest exotic properties, such as surface conduction of

electronic states, and wave propagation insensitive to back-
scattering and disorder1–4. In classical structures5–12, enormous
efforts have been devoted to topological states that emulate their
quantum analogs and enable many pioneering applications7,13–28.
However, most studies of classical structures are limited to linear
topological band theory, whereas nonlinear topological systems
are not fully understood yet.

Nonlinear dynamics are more ubiquitous in nature, such as
electrical circuits composed of nonlinear elements7,29, nonlinear
elastic and mechanical structures25,30–34, nonlinear origami
systems35, evolutionary dynamics of biological cycles36,37,
second-harmonic generation of optic materials38,39, and cold
atoms in optical lattices40,41. To date, few studies are addressed in
nonlinear topological photonics14,42–45 and Bose-Einstein
condensates46,47, but the interactions are limited to Kerr-like
nonlinearities controlled by field intensities. These Kerr-like
nonlinearities are the simplest ones that grant sinusoidal non-
linear bulk waves and thus the topological invariants45,48 are the
same as those in linear theories.

However, the majority of classical structures are beyond Kerr-
like nonlinearities, such as the aforementioned electrical,
mechanical, biological, and optic systems. Nonlinear bulk modes
cannot be solved analytically37,49, leading to topological invar-
iants in these strongly nonlinear systems undefined. Though
boundary modes remain topologically protected in the weakly
nonlinear regime7,26,34, strong nonlinearities may destroy their
topological nature by breaking the intrinsic symmetries46,47, and
existing linear and weakly nonlinear topological theories are not
always correct to predict their strongly nonlinear topological
properties35. Moreover, it is intriguing to ask what exotic physics
and unconventional attributes arise when topology meets uni-
versal strong nonlinearities. Thus, it is demanding to invoke the
topological number that precisely describes the topological attri-
butes of “beyond-Kerr” strongly nonlinear systems.

This work investigates the topological invariant and properties
of 1D generalized nonlinear Schrödinger equations beyond Kerr-
like nonlinearities. In spite of the remarkable different physical
origins of mechanical isostatic structures35, electrical circuits7,29,
deep water waves50, and bio-physical cycles36,51–53, their
dynamics are commonly described by generalized nonlinear
Schrödinger equations, which we adopt to study theoretically, for
future nonlinear topological experiments. The nonlinear parts of
interactions are comparable to the linear ones and perturbation
theory breaks down, which we designate the “strongly nonlinear
regime”. We limit our considerations within the amplitude
range32,33 that chaos does not occur. Consequently, nonlinear
bulk modes31,54 are remarkably distinct from sinusoidal waves
(e.g., Fig. 1b and SI. Fig. 11c). We develop the proper definition of
Berry phase of nonlinear bulk modes. By adopting a symmetry-
based analytic treatment, we demonstrate the quantization of
Berry phase in reflection-symmetric systems, regardless of the
availability of linear analysis. The emergence of nonlinear topo-
logical edge modes is associated with a quantized Berry phase that
protects them from disorders. Interestingly, exotic boundary
responses arise when topology meets nonlinearity. Instead of
exponentially localizing on lattice boundaries, topological edge
modes exhibit anomalous behaviors that decay to a plateau
governed by the stable fixed points of nonlinearities.

Results
Quantized Berry phase of nonlinear bulk modes: Generalized
nonlinear Schrödinger equations are widely studied in classical

systems like mechanically isostatic lattices35, electrical circuits7,29,
deep water waves50, and nonlinear Markov networks of bio-
chemical dynamics36,51–53. Their equations of motion are sum-
marized as the general form in Eq. (1) below. We study nonlinear
bulk modes, from which we define Berry phase and demonstrate
its quantization in reflection-symmetric models. In Sec.IV, we
propose an electrical circuit as one of the classical systems that
yield Eq. (1).

The considered model is a nonlinear SSH55 chain composed of
N classical dimer fields Ψn ¼ ðΨð1Þ

n ;Ψð2Þ
n Þ> (⊤ is matrix transpose)

coupled by nonlinear interactions, as represented pictorially in
Fig. 1a. The chain dynamics is governed by the 1D generalized
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Fig. 1 The minimal model of nonlinear SSH chain. a Schematic illustration
of the lattice subjected to PBC. Unit cell is enclosed by black dashed box.
Red and blue bonds represent intra-cell and inter-cell couplings. b A
nonlinear bulk mode computed by shooting method62–64 with amplitude
A = 1.5 and wave number q = 4π/5. Red and blue curves are the wave
functions of n = 1 and 3 sites, respectively. Orange curve shows the
noticeable difference between nonlinear mode and sinusoidal function.
c Frequency profile of nonlinear bulk mode in (b). d Numerical computation
of the amplitude dependence of nonlinear Berry phase in Eq. (3). The
algorithmic details are elaborated in SI. II.C. (e), nonlinear band structures
ω = ω(q, A) plotted for bulk mode amplitudes from A = 0 to 1.1. The
red curves touch for the topological transition amplitude Ac = 0.8944 at
ω = ϵ0 = 1.5. The inset elaborates on the gap-closing transition amplitude
Ac at which band inversion occurs.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31084-y

2 NATURE COMMUNICATIONS |         (2022) 13:3379 | https://doi.org/10.1038/s41467-022-31084-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


nonlinear Schrödinger equations,

i∂tΨ
ð1Þ
n ¼ ϵ0Ψ

ð1Þ
n þ f 1

�
Ψð1Þ

n ;Ψð2Þ
n

�þ f 2
�
Ψð1Þ

n ;Ψð2Þ
n�1

�
;

i∂tΨ
ð2Þ
n ¼ ϵ0Ψ

ð2Þ
n þ f 1

�
Ψð2Þ

n ;Ψð1Þ
n

�þ f 2
�
Ψð2Þ

n ;Ψð1Þ
nþ1

�
;

ð1Þ

subjected to periodic boundary condition (PBC), where ϵ0 ≥ 0 is
the on-site potential, and fi (x, y) for i = 1 and i = 2 stand for
intracell and intercell nonlinear couplings, respectively. fi (x, y)
are real-coefficient general polynomials of x, x*, y, and y* (*
represents complex conjugate), which offer time-reversal
symmetry3. Given a nonlinear solution Ψn (t), time-reversal
symmetry demands a partner solution Ψ�

nð�tÞ, as demonstrated
in SI. II.A. For systems such as those with Bose-Einstein
condensates56, jΨð~r; tÞj2 corresponds to a particle number den-
sity and third-order nonlinearities are thus limited to Kerr
interactions |Ψ|2 Ψ to enforce particle number conservation; in
our case the fields do not correspond to particle densities and
more general nonlinearities beyond Kerr-like interactions are
thus permitted.

In linear regime, the polynomials are approximated as fi (x, y)
≈ ci y (ci = 1,2 > 0) to have “gapped” two-band models when c1 ≠
c2. The bulk mode eigenfunctions are sinusoidal in time, and
Berry phase is quantized by reflection symmetry. In the “strongly
nonlinear regime” where nonlinear interactions become com-
parable to the linear ones, nonlinear bulk modes are significantly
different from sinusoidal waves (e.g. Fig. 1b, SI. Fig. 11c), and the
frequencies naturally deviate from their linear counterparts. The
nonlinearities become increasingly important as the bulk mode
amplitude rises. Hence, the frequency of a nonlinear bulk mode is
controlled both by wave number and amplitude. We thus define
nonlinear band structure7,48 ω = ω(q ∈ [−π, π], A) as the fre-
quencies of nonlinear bulk modes for given amplitude A. We
consider the simple case that nonlinear bulk modes are always
non-degenerate (i.e., different modes at the same wave number
have different frequencies) unless they reach the topological
transition amplitude when the nonlinear bands merge at the
band-touching frequency. Hence, given the amplitude, frequency,
and wave number, a nonlinear bulk mode is uniquely defined.
Extended from gapped linear models, the lattice is a “gapped two-
band nonlinear model”. In what follows, we define Berry phase
for nonlinear bulk modes of the upper-band by adiabatically
evolving the wave number across the Brillouin zone.

The considered nonlinear bulk mode is spatial-temporal peri-
odic. It takes the plane-wave nonlinear normal modes in trans-
lationally invariant systems31,57–61 (also dubbed as “nonlinear
plane waves”),

Ψq ¼
�
Ψð1Þ

q ðωt � qnÞ;Ψð2Þ
q ðωt � qnþ ϕqÞ

�>
; ð2Þ

where ω and q are the frequency and wave number, respectively.
Ψðj¼1;2Þ

q ðθÞ are 2π-periodic wave components, where the phase
conditions are chosen by asking ReΨðjÞ

q ðθ ¼ 0Þ ¼ A, and

A ¼def maxðReΨðjÞ
q Þ is the amplitude. This is analogous to the phase

condition ReΨ(t = 0) = max(ReΨ(t)) adopted in Schrödinger
equation in order to have the eigenfunctions Ψ(t) = |Ψ|e−iϵt/ℏ.
Following this condition, ϕq in Eq. (2) characterizes the relative
phase between the two wave components. Nonlinear bulk modes
are not sinusoidal. They fulfill i∂t Ψq = H(Ψq), where H (Ψq) is
the nonlinear function determined by Eq. (1) and is elaborated in
SI. I. Given the band index and the amplitude A of a nonlinear
bulk mode, we find that ω, ϕq, and the waveform are determined
by the wave number q. Equation (2) is solved by the numerical
shooting method62–64 that applies for general nonlinearities, as
detailed in SI. III.B.

The ansatz in Eq. (2) correctly states the periodicity of non-
linear bulk modes based on the following reasons. First, existing

works58 manifest this form of nonlinear plane waves, such as
classical Minkowskian Yang-Mills theory59, compressible
atmosphere60, porous media61, and mechanical lattices32,54. Sec-
ond, typical studies on weakly nonlinear bulk
modes11,25,31–33,54,65 reveal that the dynamics of all high-order
harmonics are controlled by the single variable θ = ωt – qn:
ΨðjÞ

q ¼ ∑lψ
ð jÞ
l;qe

�ilðωt�qnÞ, where ψðjÞ
l;q ¼ ð2πÞ�1R 2π

0 eilθΨ
ðjÞ
q dθ is the l-

th Fourier component of ΨðjÞ
q . Third, numerical experiments such

as shooting method (see Fig. 1b, SI. Fig. 11a, c, and Refs. 62–64)
manifest non-dispersive, plane-wave like bulk modes in the
strongly nonlinear regime. Finally, it is demonstrated in SI. III.C
that the analytic solutions of nonlinear bulk modes at high-
symmetry wave numbers are in perfect agreement with Eq. (2).
Consequently, the frequencies and band structure of temporal-
periodic nonlinear bulk waves32,54,58–61 are characterized by the
wave number q as well, as pictorially indicated in Fig. 1e.

While the ansatz in Eq. (2) captures the periodicity of non-
linear bulk states, it cannot describe temporal-periodic nonlinear
modes with spatially inhomogeneous amplitudes, such as soliton
excitations32,63 and nonlinear localized modes31. Corresponding
detailed discussions are addressed in SI. I.

We realize the adiabatic evolution of wave number q(t’) tra-
versing the Brillouin zone from q(0) = q to q(t) = q + 2π, while
the amplitude A remains unchanged during this process.
According to the nonlinear extension of the adiabatic
theorem23,24,66,67, a system H(Ψq) initially in one of the nonlinear
modes Ψq will stay as an instantaneous nonlinear mode of
H(Ψq(t)) throughout this procedure, provided that the nonlinear
mode Ψq is stable67 within the amplitude scope of this paper.
Due to the symmetry constraints of the nonlinear motion
equations, we demonstrate that all nonlinear bulk states are
marginally stable within Floquet analysis64,68,69 (see SI. II.E for
details). Mode stability is further confirmed in SI. III.B via the
algorithm of self-oscillation11,25,54. Therefore, the only degree
of freedom is the phase of mode. At time t, the mode is
ΨqðtÞð

R t
0ωðt0; qðt0ÞÞdt0 � γðtÞÞ, where γ(t) defines the phase shift of

the nonlinear bulk mode in the adiabatic evolution. The dynamics
of γ is depicted by (dγ/dt)(∂Ψq/∂θ) = (dq/dt)(∂Ψq/∂q). After q
traverses the Brillouin zone, the wave function acquires an extra
phase γ dubbed Berry phase of nonlinear bulk modes,

γ ¼ H
BZdq

∑
l2Z

l
��ψð2Þ

l;q

��2∂ϕq
∂q þi∑

j
ψð jÞ�
l;q

∂ψ
ð jÞ
l;q
∂q

� �

∑
l02Z

l0 ∑
j0

��ψðj0 Þ
l0 ;q

��2
� � ; ð3Þ

where j, j′ = 1, 2 denote the two wave components, and the
mathematical derivations are displayed in SI. I. In general, γ is not
quantized unless additional symmetry properties are imposed on
the model, which we will discuss below. We note that the
eigenmodes of linear problems as well as Kerr-like nonlinear
systems45,48 are sinusoidal in time, which reduces Eq. (3) to the
conventional form66 γlinear ¼

H
BZdq ihΨqj∂qjΨqi.

Now we demonstrate that Berry phase defined in Eq. (3) is
quantized by reflection symmetry. The model in Eq. (1) respects
reflection symmetry, which means that the nonlinear equations of
motion are invariant under reflection transformation,

�
Ψð1Þ

n ;Ψð2Þ
n

� ! �
Ψð2Þ

�n;Ψ
ð1Þ
�n

�
: ð4Þ

Given a nonlinear bulk mode Ψq in Eq. (2), reflection transfor-
mation demands a partner solution Ψ0

�q ¼ ðΨð2Þ
q ðωt þ

qnÞ;Ψð1Þ
q ðωt þ qn� ϕqÞÞ> that also satisfies the model. On the other

hand, a nonlinear bulk mode of wave number −q is by definition
denoted as Ψ�q ¼ ðΨð1Þ

�qðωt þ qnÞ;Ψð2Þ
�qðωt þ qnþ ϕ�qÞÞ>. Since

there is no degeneracy of nonlinear bulk modes, Ψ′−q and Ψ−q have
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to be identical, which imposes the constraints

ϕ�q ¼ �ϕqmod 2π; and Ψð2Þ
q ¼ Ψð1Þ

�q: ð5Þ
Thus, the Fourier components of nonlinear bulk modes satisfy

ψð2Þ
l;q ¼ ψð1Þ

l;�q. This relationship, together with Eq. (5), is the key to
quantize the Berry phase in Eq. (3) (details in SI. II.B),

γ ¼ 1
2

H
BZ

dϕq
dq dq ¼ ϕπ � ϕ0 ¼ 0 or π mod 2π; ð6Þ

where ϕq = 0,π are the relative phases of the upper-band nonlinear
modes at high-symmetry points. They are determined by com-
paring the frequencies ω(ϕq = 0) and ω(ϕq = π) for q = 0 and π. γ
= π if ω(ϕ0 = 0) and ω(ϕπ = π) belong to the same band, whereas
γ = 0 if ω(ϕ0 = 0) and ω(ϕπ = 0) are in the same band. Inter-
estingly, γ encounters a topological transition induced by the
critical amplitude A = Ac if the frequencies merge at ω(ϕπ = 0,
Ac) = ω(ϕπ = π, Ac). This transition is exemplified by the
minimal model of nonlinear topological lattice in Sec.III. It is
worth emphasizing that despite all the discussions of nonlinear
Schrödinger equations and the quantization of Berry phase, the
model is purely classical in the sense of ℏ being zero.

An intuitive way to understand the quantization of nonlinear
Berry phase is to compare with Berry phase in linear systems,
γlinear ¼

H
BZdqðjΨð2Þ

q j2∂qϕq þ iðΨð1Þ
q ;Ψð2Þ

q Þ�∂qðΨð1Þ
q ;Ψð2Þ

q Þ>Þ. Under
reflection symmetry, the second term in γlinear vanishes, and the
eigenmode components yield jΨð1Þ

q j ¼ jΨð2Þ
q j to quantize the first

term in γlinear. Likewise, in nonlinear Berry phase of Eq. (3), the
second term in the numerator is vanished by reflection symmetry,
and the first term picks the quantized integer value due to
reflection symmetry constraints in Eq. (5).

Based on the quantized nature of the topological number, it is
natural to expect that γ is invariant under weak nonlinearity. This
is demonstrated in SI. III.A using the perturbation theory called
method of multiple-scale32,33,54,70. In the strongly nonlinear
regime, γ still manifests stability against mode disturbances by
staying as the integer. Corresponding demonstrations are carried
out in SI. II.B.

Having established quantized Berry phase, we now search addi-
tional properties for vanishing on-site potential, ϵ0 = 0. In the linear
limit, the model respects chiral symmetry4,5, which demands that the
eigenstates appear in ±ω pairs, and the topological mode have zero-
energy. To have ±ω pairs of nonlinear modes, we require the parity of
the interactions to satisfy f iðx; yÞ ¼ f ið�x; yÞ ¼ �f iðx;�yÞ. Con-
sequently, the system is invariant under the transformation
ðΨð1Þ

n ðωtÞ;Ψð2Þ
n ðωtÞÞ ! ð�Ψð1Þ

n ð�ωtÞ;Ψð2Þ
n ð�ωtÞÞ. Given a nonlinear

mode Ψω defined in Eq. (2), this transformation demands a partner
solution Ψ�ω ¼ ð�Ψð1Þ

q ð�ωt � qnÞ;Ψð2Þ
q ð�ωt � qnþ ϕqÞÞ>.

Therefore, the frequencies of nonlinear bulk modes appear in ±ω
pairs. As shown in SI. IV.D, the frequencies of nonlinear topological
modes are guaranteed to be zero, which is the nonlinear extension of
static topological edge modes in chiral-symmetric systems4,5.

Topological transition and bulk-boundary correspondence in
the minimal model: We now clarify the nonlinear extension of
bulk-boundary correspondence26,71 by demonstrating topological
edge modes in the minimal model that respects time-reversal
symmetry, where the couplings are specified as

f iðx; yÞ ¼ ciy þ di½ðReyÞ3 þ iðImyÞ3�; ð7Þ
with ci, di > 0 for i = 1, 2. This interaction offers numerically
stable nonlinear bulk and topological edge modes, and it can be
realized in active electrical circuits (Sec. IV and SI. V).

We are interested in attributes unique to nonlinear systems, in
particular the topological phase transition induced by bulk mode
amplitudes. Thus, the parameters yield c1 < c2 and d1 > d2 (c1 > c2
and d1 < d2) to induce topological-to-non-topological phase

transition (non-topological-to-topological transition) as ampli-
tudes increase. We abbreviate them as “T-to-N” and “N-to-T”
transitions, and they are converted to one another by simply
flipping intracell and intercell couplings. In the remainder of this
paper, a semi-infinite lattice subjected to open boundary condi-
tion (OBC) is always considered whenever we refer to topological
edge modes.

We first study the case c1 < c2 and d1 > d2, in which a T-to-N
transition occurs. Figure 1e numerically illustrates nonlinear band
structures and topological transition by considering ϵ0 = 1.5, c1 =
0.25, c2 = 0.37, d1 = 0.22, and d2 = 0.02. Given that Berry phase
γ(A = 0) = π, the lattice is topologically nontrivial in the linear
limit. As amplitudes rise, the topological invariant γ(A < Ac) = π
cannot change until it becomes ill-defined when the nonlinear
band gap closes at the transition amplitude Ac. The band gap
reopens above Ac, allowing the well-defined Berry phase to take
the trivial value γ(A > Ac) = 0, as depicted in the inset of Fig. 1e.
Ac is numerically computed by solving the band gap-closing
equation ω(ϕπ = 0, Ac) = ω(ϕπ = π, Ac). We propose a con-
venient approximation72 f ðΨðj0Þ

n0 ;ΨðjÞ
n Þ � ðci þ 3

4 diA
2ÞΨðjÞ

n to esti-
mate the transition amplitude Ac �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ðc2 � c1Þ=3ðd2 � d1Þ

p
.

The good agreement between this approximation and the
numerical solutions is shown in SI. Fig. 6c. We highlight that
A2
cmaxðd1; d2Þ=maxðc1; c2Þ � 0:5, which demonstrates the com-

parable nonlinear and linear interactions in the strongly non-
linear regime.

Bulk-boundary correspondence has been extended to weakly
nonlinear Newtonian26 and Schrödinger71 systems by showing
topological boundary modes guaranteed by topologically non-
trivial Berry phase. In the strongly nonlinear problem, we utilize
analytic approximation and numerical experiment, to doubly
confirm this correspondence by identifying nonlinear topological
edge modes. In the former, the lattice is composed of N = 45 unit
cells with OBCs on both ends to mimic semi-infinite lattice, and
the parameters are carried over from Fig. 1. The topological mode
and frequency are denoted as Ψn ¼ ðΨð1Þ

n ;Ψð2Þ
n Þ> and ωT,

respectively. Analogous to linear SSH chain55, the analytic
scheme is to approximate Ψð1Þ

n � Ψð2Þ
n , which is numerically

verified in Fig. 2d. We make one further approximation to
truncate the equations of motion to fundamental harmonics.
Therefore, the nonlinear topological edge mode is approximated

as Ψn � ðψð1Þ
1;n; 0Þ

>
e�iϵ0t , where ψð1Þ

1;n are the fundamental harmo-
nic components. By doing so, we find ωT = ϵ0, and

c1 þ 3
4 d1

��ψð1Þ
1;n

��2
� ���ψð1Þ

1;n

�� ¼ c2 þ 3
4 d2

��ψð1Þ
1;nþ1

��2
� ���ψð1Þ

1;nþ1

��: ð8Þ

From Eq. (8), the semi-infinite lattice hosts topological evanescent
modes when jΨð1Þ

1 j<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ðc2 � c1Þ=3ðd2 � d1Þ

p
� Ac, whereas no

such mode exists for jΨð1Þ
1 j>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ðc2 � c1Þ=3ðd2 � d1Þ

p
� Ac. The

frequency and analytic expression are applied in weakly nonlinear
regime (see SI. IV.B), and they are perfectly in line with method of
multiple-scale32,33,54,70. The numerical scenario is accomplished by
applying a Gaussian profile signal Sn ¼ δn1Se

�iωext t�ðt�t0Þ2=τ2 ð1; 0Þ>
on the first site, where the carrier frequency ωext = ϵ0 = 1.5, T =
2π/ωext, τ = 3T controls Gaussian spread, and t0 = 15T denotes
trigger time. Figure 2b and f together verify bulk-boundary
correspondence26,71 by identifying the presence and absence of
topological boundary excitations below and above the critical
amplitude Ac, respectively. In Fig. 2(d), the flattened part near the
lattice boundary is the manifestation of nonlinearities. These non-
linear topological states are stable against mode disturbances, which
is mathematically demonstrated in SI. IV.A.

One may find it unusual that the frequencies of topological
modes ωT = ϵ0 are independent of amplitudes, although this
result is in agreement with Refs. 7,26,48 in weakly nonlinear regime
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and is proved in SI. IV.A. Here we propose an explanation for this
intriguing result. Because the evanescent mode fades to zero in
the bulk, the “tail” of this mode eventually enters into the small-
amplitude regime where nonlinearities are negligible and linear
analysis becomes effective. Linear topological theory55 demands
the tail of the mode to be ωT = ϵ0, which in turn requires the
frequency of the nonlinear topological mode to be independent of
the amplitude.

Topological protection is featured in multiple aspects. As
visualized in Fig. 1e, the frequencies of topological modes stay in
the band gap and are distinct from nonlinear bulk modes. The
appearance and absence of these modes are captured by the
topological invariant that cannot change continuously upon the
variation of system parameters. Lastly, topological modes are
insensitive to defects, which is numerically verified in SI. IV.B.

In the second case of c1 > c2 and d1 < d2, N-to-T (non-topo-
logical-to-topological) transition occurs as amplitudes rise. We
exemplify boundary excitations in Fig. 3 by letting ϵ0 = 8, c1 =
0.37, c2 = 0.25, d1 = 0.02, and d2 = 0.22. A Gaussian signal is
applied on the first site of the lattice, where the carrier frequency
ωext = ϵ0 = 8, T = 2π/ωext, Gaussian spread τ = 10T, and trigger
time t0 = 25T. In the small-amplitude regime, we consider a
chain of N = 45 unit cells. As shown in Fig. 3b, the lattice is free
of topological modes for jΨð1Þ

1 j<Ac ¼ 0:8944. In the large-
amplitude regime, the lattice is constructed from N = 120 unit
cells. Anomalous topological edge modes emerge when jΨð1Þ

1 j>Ac
(see Fig. 3f, h). In contrast to conventional topological modes
that shrink to zero over space, Ψð1Þ

n decay to the plateau Ac gov-
erned by the stable fixed point of Eq. (8), whereas Ψð2Þ

n increase to
Ac by absorbing energy54 from Ψð1Þ

n . Theoretical analysis predicts
that the plateau should extend to infinity, but the plateau is
limited to reach site 60 by the finite lifetime of topological
modes due to the energy conversion to bulk modes, as elaborated
in SI. Fig. 5. Despite the huge nonlinearities (jΨð1Þ

1 j=Ac � 10, and
jΨð1Þ

1 j2maxðd1; d2Þ=maxðc1; c2Þ � 10), this mode is stable within
the finite lifetime of more than 400 periods. The anomalous

behaviors of topological edge states are analogous to those in
Refs. 7,26 in which self-induced topological transition is derived in
beyond-Kerr weakly nonlinear metamaterials by enabling per-
turbation theory. Here, the self-induced topological phase is
extended to the strongly nonlinear regime and is precisely char-
acterized by the topological number in Eq. (3). This model serves
as the combined prototype of long-lifetime, high-energy storage,
long-distance transmission of topological modes, and efficient
frequency converter from Gaussian inputs to monochromatic
signals.

Although T-to-N and N-to-T transitions are converted to one
another by choosing the unit cell, topological modes behave
qualitatively different (Fig. 2d and 3h) due to the distinction in
the fixed points of Eq. (8). The modes converge to the stable fixed
point 0 in T-to-N transition (Ac in N-to-T transition), but this
fixed point becomes unstable in N-to-T transition (T-to-N
transition).

Finally, it is important to emphasize that these strongly non-
linear in-gap states are symmetry-protected topological modes, in
the sense that they cannot exist in systems with broken reflection
symmetry. Berry phase cannot be derived from Eq. (3) to Eq. (6)
and is not quantized for broken reflection symmetry. To
demonstrate this, Fig. 4a–d break reflection symmetry by repla-
cing ϵ0 with ϵA = (1 + 5%)ϵ0 and ϵB = (1–5%)ϵ0 for A and B-
sites, respectively, leading to the disappearance of in-gap non-
linear boundary excitations. Instead of violating reflection sym-
metry, we introduce disorders by changing the coupling
coefficients to ci,n = ci + δci,n and di,n = di + δdi,n, where δci,n/ci
and δdi,n/di ∈[−10%, +10%] are random variables for different
unit cells. As shown in Fig. 4e–h, in-gap nonlinear topological
states are robust against disorders by manifesting themselves on
the lattice open boundary.

Proposals for experimental implementations: Upon establish-
ing nonlinear topological band theory, it is natural to ask if any
realistic physical systems have these properties. Using the
symmetry-based analytic methodology in Eq. (4), recent work73
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Fig. 2 Nonlinear edge excitations of the model subjected to T-to-N transition, where the parameters fulfill c1 < c2 and d1 > d2. a–d and e–h show lattice
boundary responses in small-amplitude topological regime and large-amplitude nontopological regime, respectively. The magnitudes of Gaussian tone
bursts are S = 7 × 10−2 in (a) and S = 56 × 10−2 in (e), respectively. (b) and (f), spatial-temporal profiles of jReΨð1Þ

n ðtÞj for all 45 sites, where jReΨð1Þ
n ðtÞj

denote the strength of the lattice excitations. (c) and (g), spatial profiles of the frequency spectra of the responding modes, where the time domain of
performing Fourier analysis is from 250T to 500T. White dashed lines mark the top and bottom of the linear band gap. In (g), modes in the band gap are
triggered by energy absorption54 from nonlinear bulk modes. (d) and (h), red and blue curves for the spatial profiles of the ω = ϵ0 wave component of the
excitations. The analytic prediction of the topological mode ψð1Þ

n ðϵ0Þ is depicted by the black dashed curve in (d).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31084-y ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3379 | https://doi.org/10.1038/s41467-022-31084-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


extends the study of topological mechanics to strongly nonlinear
regime and manifests strongly nonlinear topological boundary
dynamics. Here we discuss an alternative example, namely the
active topoelectrical circuit, that manifests topological nonlinear
boundary excitations. This experimental proposal is modified
from the cascaded circuit ladder by Hadad, et. al., where the
nonlinear capacitors in Ref. 7 are now replaced by linear ones, and
the nonlinearity in our model is introduced by active voltage
sources (Fig. 5). The unit cell is composed of two LCR resonators

and two linear capacitors C1 and C2. The inductances are con-
nected to external active voltage sources δV ð1Þ

n and δV ð2Þ
n . These

external sources are nonlinearly controlled by V ð1Þ
n and V ð2Þ

n ,
which are the voltage fields of the LCR resonators.

Without these nonlinear voltage sources (i.e., let δV ð1Þ
n ¼

δV ð2Þ
n ¼ 0 for all n), the linear circuit system manifests topological

boundary voltage excitations due to the reflection-symmetric
nature of the dynamics. Thus, it is intuitive to expect that topo-
logical boundary voltages also arise as long as the nonlinear
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voltage sources respect reflection symmetry. To this end, we
demand that the nonlinear sources yield the constraints δV ð1Þ

n ¼
δV ð1Þ

n ðV ð2Þ
n ;V ð2Þ

n�1Þ and δV ð2Þ
n ¼ δV ð1Þ

n ðV ð1Þ
n ;V ð1Þ

nþ1Þ, but their func-
tional forms can be arbitrary. The motion equations of the voltage
fields V ðj¼1;2Þ

n are captured by Eq. (1), which are elaborated in
SI. V. Based on the methodology in Eqs. (1) and (5), the topo-
logical protection of the ladder circuit is demonstrated by
quantized nonlinear Berry phase.

Discussion
In this paper, we extend topological band theory to strongly
nonlinear Schrödinger equations beyond Kerr-type nonlinearities.
The proper definition of Berry phase is carried out for nonlinear
bulk modes, and its quantization is demonstrated in reflection-
symmetric models. The topological invariant experiences transi-
tions induced by mode amplitudes. These results can be extended
to higher-dimensional systems with arbitrarily complex unit cells,
but we leave the full proof for the future. Higher-order nonlinear
topological hinge states74 can be followed from these works.

The advent (disappearance) of topological modes is associated
with a change in the Berry phase to its topological (non-topolo-
gical) value. As amplitudes increase, T-to-N (topological-to-non-
topological) and N-to-T (non-topological-to-topological) transi-
tions take place for different choices of unit cells. Anomalous
topological modes decrease away from lattice boundaries to a
plateau controlled by the stable fixed point of nonlinearities.
These two unconventional properties stem from the interplay
between nonlinear dynamics and topological physics.

By comparing our results with recent developments regarding
topological attributes in classical structures43,46,47,53, we discuss
future directions of nonlinear topological physics. These existing
literature mainly belong to two classes, namely the topological
numbers and properties in Kerr-nonlinear systems43,46,47, and
stochastic topological dynamics in bio-physical cycles53.

With regards to Kerr-nonlinear topological systems, previous
works46,47 study the nonlinear effects in adiabatic geometric
phases. Besides the common interest in nonlinear topological
phases, there are several differences between Refs. 46,47 and our
work. In particular, Ref. 46 conducts a 2D Kerr-nonlinear Chern
insulator, where the geometric Zak phase is naturally un-
quantized due to the lack of symmetry. Interestingly, Ref. 46

figures the quantized Aharonov-Bohm phase that characterizes
nonlinear Dirac cones. It is therefore intriguing to ask if “beyond-
Kerr” interactions can also realize nonlinear Dirac cones pro-
tected by quantized Aharonov-Bohm phase and enable novel
designs of nonlinear mechanical and electrical metamaterials.
Ref. 47 studies the interplay between chiral symmetry and

topological attributes in 1D Kerr-nonlinear systems. Following
this idea, it is worth asking how chiral symmetry quantizes Berry
phase and reveals novel topological physics in general nonlinear
systems. Ref. 43 studies the topological phases of Kerr-nonlinear
3D photonic metamaterial, where the topological invariant is the
3-form Chern-Simons theory. Following this idea43, it is worth
exploring 3D topological insulators with general nonlinearities
using the formalism of our work.

We now discuss the interplay between nonlinear topological
physics and biological dynamics. Ref. 53 studies topological
properties in a linear non-equilibrium stochastic process, where
complex eigenfrequencies manifest themselves in the non-
Hermitian system. Thus, it is exciting to investigate how topo-
logically robust nonlinear edge flow arises in nonlinear active
biological cycles, which demands a systematic construction of
non-Hermitian, nonlinear topological band theory. Moreover,
bulk-boundary correspondence and edge distribution of
biomass37,53,75 may be further identified using the invariant
derived in this work.

Methods
Our primary methods were analytical theories accompanied by computer-aided
simulations on MATLAB interface. Nonlinear bulk modes were numerically
computed by shooting method. The stability of nonlinear modes were confirmed
by the analytic Floquet analysis and the numerical integration algorithm. The
algorithmic details are displayed in the supplementary information.

Data availability
The authors declare that the primary data supporting the findings of this study are
enumerated within the article and the supplementary information. The subsequent data
generated by the primary data and the MATLAB code have been made freely available on
GitHub (https://github.com/kQqr/nonlinearBerryPhase).

Code availability
The numerical data of the nonlinear modes were generated by shooting method on
MATLAB interface. We have made all MATLAB codes freely accessible on GitHub
(https://github.com/kQqr/nonlinearBerryPhase).
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