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ABSTRACT: Drug delivery platforms are anticipated to have
biocompatible and bioinert surfaces. PEGylation of drug carriers is
the most approved method since it improves water solubility and
colloid stability and decreases the drug vehicles’ interactions with
blood components. Although this approach extends their biocompat-
ibility, biorecognition mechanisms prevent them from biodistribution
and thus efficient drug transfer. Recent studies have shown
(poly)zwitterions to be alternatives for PEG with superior biocompat-
ibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-
responsive, easy to functionalize and they display an extremely low
protein adsorption and long biodistribution time. These unique
characteristics make them already promising candidates as drug
delivery carriers. Furthermore, since they have highly dense charged
groups with opposite signs, (poly)zwitterions are intensely hydrated
under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with
antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore,
(poly)zwitterionic materials have been broadly applied in stimuli-responsive “intelligent” drug delivery systems as well as tumor-
targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long
circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this
type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and
physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an
influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science
and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of
intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When
combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent
developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling
techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
KEYWORDS: Charged polymers, Polyzwitterions, Multiscale modeling, Molecular simulations, Drug delivery, Antifouling, Self-assembly,
Intelligent drug delivery system

1. INTRODUCTION
Polyzwitterions consist of oppositely charged cationic and
anionic groups along the chain or side chain within their
constitutional repeating unit (see Figure 1).1,2 Examples of
such zwitterion repeating units are phosphorylcholine,
sulfobetaine, carboxybetaine, zwitterionic amino acids/pep-
tides, and other mix-charged zwitterions (see some examples in
Figure 2). In the following, we use the term (poly)zwitterions
referring to both zwitterions and polyzwitterions. During their
self-assembly, they are both able to form a vesicle structure
(Figure 3) and can thus both be used as platforms to
encapsulate other molecules.3−5 Although (poly)zwitterions
are characterized by highly dense polymer-bound ion pairs

attached to the polymer backbone, their overall charge is zero
under normal conditions. Thus, (poly)zwitterions illustrate a
special subclass of polyampholytes presenting a very particular
property profile.6−9 Polyampholytes act mainly as either
polyanionic or polycationic species, whereas the overall charge
neutrality of (poly)zwitterions makes them illustrate different
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hybrid-like properties (see Figure 1).6 In addition to their
overall electroneutrality and high hydrophilicity, having large
dipole moments and highly charged groups,10 polyzwitterions
share numerous analogies with polar nonionic polymers.6,11−13

Unlike PEG, which binds water molecules via creating
hydrogen bonds, the electrostatic ion−dipole interaction
between zwitterions and water could form stronger, denser,
and tighter hydration shells.14 This feature finally guides to
ultralow nonspecific protein adsorption, bacterial adhesion,
biofilm formation and makes zwitterions suitable substitutes
for PEG.5,15

Although (poly)zwitterions are known at least from the late
1950s,16,17 they have been studied as rather peculiar materials
for a while. (Poly)zwitterions can be manufactured into

different structural forms: brushes,18−20 films,21 hydro-
gels,22−24 particles,25 membranes,26 and coatings,27 with
different functions, e.g. antifouling,23,24,27 responding to
stimuli,28,29 lubricating,30,31 self-healing,32 antibacterial,24 and
biosensing.33,34 Due to their great tolerance to highly saline
environments,9 they have remarkable potential to be applied as
ionomers,35,36 fibers,6 and rheology modifiers,37,38 drug/gene
delivery vehicles,2,5,39,40 analogues of important biological
structures,6,41 and anti(bio)fouling materials.15,42,43 In addition
to their outstanding antifouling property, zwitterionic materials
can also enhance biocompatibility, reduce immune response,
promote cellular uptake of chemical drugs/genes, and prolong
the circulation time.5,44 Zwitterionic modifications could also
provide various special functions when applied as drug carriers,
such as stimuli-responsive and tumor targeting abilities.5 A

Figure 1. Schematic representation of polyanion, polycation, polyampholyte, and two types of polyzwitterion. The bottom-left and bottom-right
panels show two examples of polyzwitterions: poly(phosphorylcholine) and poly(sulfobetaine), respectively.

Figure 2. Chemical structures of the common zwitterionic groups, a
mixed-charge zwitterionic polymer, and pseudozwitterionic materials
with equimolar negative and positive charge binding to the same
medium.

Figure 3. Schematic picture of a polymersome made from
polyzwitterions (left panel) and a vesicle made from zwitterions
(right panel). The amphiphilic (poly)zwitterions contain hydrophilic
headgroups with both positive and negative charges and a
hydrophobic tail or backbone, resulting in vesicles.
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summary of (poly)zwitterion platforms applied in drug
delivery is presented in Table 1.
Among these diverse functionalities, the excellent antifouling

behavior of (poly)zwitterions is still well recognized, which
makes them comparable or even superior to PEG-based
coatings.45,46 In recent years, (poly)zwitterions have attracted
much attention in the field of biomaterials, mainly because of
their outstanding properties.47 Due to their typical stimuli-
responsive behavior (e.g., temperature-, pH-responsive), they
exhibit dual-nature properties, switching between anti-poly-
electrolyte (zero net charge) or polyelectrolyte (non-zero net
charge) behaviors depending on their environment; as such,
they can be considered as “intelligent” or “smart” adaptive
materials.2

If (poly)zwitterions have a strong amphiphilicity, they self-
assemble in supramolecular structures.48,49 These amphiphiles
contain headgroups that have both a positive and negative
charge and hydrophobic tails (hydrophobic backbones for
polyzwitterions), resulting in micelles,50,51 or lipid bilayer
vesicles (see Figure 2).52,53 If, for instance, a (poly)zwitterion
contains a carboxylate and a protonated ammonium ion, it may
behave as a (poly)anion at high pH (due to deprotonation of
the ammonium ions)) and it can act as a (poly)cation at low
pH (due to protonation of the carboxylate groups)), assuming
then an amphoteric character.54 This pH-responsive behavior
has made (poly)zwitterions applicable in controlled drug
release.5,55

To better understand the fundamentals of the behavior of
(poly)zwitterionic molecules, especially in a self-assembly
process, it is crucial to know how these outstanding molecules
interact with themselves and biological molecules, more
specifically their conformational and orientational properties
in solution. Molecular recognition in charged polymeric
systems, such as polyzwitterions and polyelectrolytes, relies
on specific attractive and repulsive electrostatic interactions
and attractive hydrophobic interactions (of the back-
bones).56,57

The rational design of drug delivery systems leveraging self-
assembled supramolecular structures, such as surfactant/
polymer micelles, (micro)emulsions, vesicle/liposomes, and
layer-by-layer assemblies, has gathered notable interest in
recent years in improving therapeutics.58,59 The undeniable
importance of self-assembled supramolecular structures in
transferring drugs originates from their capabilities to improve
the physicochemical, pharmacokinetic, and pharmacodynamic
characteristics of drugs to achieve efficient delivery of
therapeutics to desired sites in the body.60,61 The supra-
molecular formation of (poly)zwitterions (e.g., micellization,
vesiculation, and polymersome formation) is driven by
electrostatic interactions; however, the entropy loss of polymer
chains during this process also matters.62,63 Generally, the
enthalpy−entropy compensation plays a crucial role in the self-
assembly process of (poly)zwitterions. The enthalpy term
favors the process mainly because of the water−water
interactions. Water−water interactions, originated from the
cohesive force, intensify by expelling (poly)zwitterions from
the aqueous phase at the expense of weaker water−hydro-
phobic tail interactions. Another favorable term in the enthalpy
is attributed to the electrostatic interactions between the
positively and negatively charged fragments of the (poly)-
zwitterion. While the main entropy term that disfavors the
process arises from ordering the (poly)zwitterion molecules by

placing them in the bilayer phase that suppresses their freedom
and thus causes entropy loss.64−66

It is needless to say how helpful having a deep understanding
of the affinity contributions of attractive and repulsive
interactions and the entropy contribution can be to engineer
and tune supramolecular-based therapeutic vehicles. As one of
the most effective tools, the multiscale modeling approach
holds great promise in predicting the structure and response
behavior of materials in various disciplines, including the
design of drug carriers.67,68 Visualization of experimental data
in a three-dimensional atomic-scale model can assist in
explaining phenomena and often raises new questions, thereby
improving future research.69−73 However, to study and design
effective drug delivery systems using molecular modeling, a
broad range of length and time scales needs to be spanned. In
this regard, understanding the capabilities of different
molecular modeling techniques such as ab initio quantum
mechanics (QM), molecular dynamics (MD), Monte Carlo
(MC) methods, and mesoscale (MS) methods in the drug
delivery systems studies can assist us to select and well-
parametrize proper modeling tools (more details of the
simulation methods are presented in Table 2).70,74−76 From
all these methods, QM techniques can explain any molecular
systems behaviors at the atomistic level by computing the
electron distribution but are limited in the system size they can
tackle.77 All noncovalent interactions of various systems at
atomic resolution can be monitored using MD simulations.78,79

However, many critical problems in the drug delivery field
happen at larger time and length scales far beyond what can be
tackled using atomistic MD (force field). Such problems can
be modeled via mesoscale modeling techniques that have been
adequately parametrized using atomistic simulations.80 Meso-
scopic simulations are implemented using a coarse-grained
molecular model that starts with a choice of the length scale for
coarsening and then subsumes all atoms within selected
specific length scales into one particle (bead).74,81,82 Some
coarse-grained beads are connected by “bonds” (spring
potentials) to reproduce an overall architecture of the
reference atomistic model.83 Coarse-grained molecular dynam-
ics (CGMD),84,85 MARTINI,86,87 and dissipative particle
dynamics (DPD)20,88−91 are some of the most applied
mesoscopic simulation approaches that have been employed
to tackle ionic and nonionic polymeric materials, providing a
deep understanding of design roles for the rational engineering
of these novel drug carriers.83 Some selected examples of
multiscale molecular modeling studies on (poly)zwitterions are
presented in Table 2.
The field of (poly)zwitterions has occasionally been

reviewed, in which the majority of reviews focus on only one
specific aspect, such as synthetic polyzwitterion applications,92

phospholipids polymers,93,94 polyzwitterionic membranes,95

zwitterionic gel,96 antifouling behavior of (poly)-
zwitterions,42,97−99 (poly)zwitterion/biological species inter-
f a c e , 1 0 0 s yn th e s i s , a nd s t r u c t u r e s o f (po l y ) -
zwitterions,6,8,12,101−103 surface properties of polyzwitteri-
ons,2,98,104 (poly)zwitterion coatings,105 and stimuli-
responsive behavior of polyzwitterions.18,106 In this Perspec-
tive, we summarize the recent studies of (poly)zwitterion
applications in drug delivery systems using multiscale
molecular modeling techniques. We focus on the features of
these materials and discuss the drug delivery applications from
three different angles:
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(1) Self-assembly: We discuss amphiphilic zwitterionic
materials that can self-assemble and form smart drug
carriers, such as stimuli-responsive micelles and lip-
osomes or vesicles. More specifically, vesicle morphol-
ogies are important in view of biological membranes.
Since their structure mimics a cell membrane, vesicles
are membrane models for physical and chemical studies;
e.g. drug carriers to solubilize and incorporate bio-
molecules and to target cells.107

(2) Surface modification: Although drug delivery nano-
particles have attracted significant interest in diagnosing
and treating many human diseases, their cytotoxicity and
uptake efficiency significantly limit their clinical use.108

Fortunately, it is possible to tune their physicochemical
properties to boost their biocompatibility and uptake
efficiency through the functionalization of the surface of
the nanoparticles.109 In this regard, surface modification
by zwitterionic materials allows tuning of charge
densities to improve the solubility and increase their
stability in biological fluids. This modification increases
targeted uptake and their accumulation in target
tissues.110,111

(3) Membrane: The zwitterionic lipid bilayer is another
topic of interest since such bilayers mimic the biological
cell membranes and control the flow of materials in and
out of the cell.112,113 The importance of modeling this
type of membrane originates from the fact that transport
of drugs (or drug delivery systems) over the cell
membrane is a complicated biological process. In this
regard, the model of zwitterionic lipid membranes is very
useful in assisting researchers in perceiving the roles of
lipid membranes in cellular interactions. The usual drug
properties required to be predicted in this type of
modeling study can be pharmacokinetic properties of
drugs such as their distribution, accumulation, and
transport mechanism by screening drug-membrane
interactions and drug orientation in the system.

The use of zwitterion-based drug delivery particles to carry
drugs to their target cells is one of the advantages of
incorporating intelligent stimuli responsive materials within
medicine. Notably, their ability to functionalize surfaces and
respond to stimuli and their antifouling behavior enable them
to properly encapsulate and protect drugs and target cells more
effectively. Understanding how these carriers enter cells is
critical for deciphering the intercellular dose provided for the
target cells to determine the efficacy of utilizing zwitterion-
based intelligent drug delivery and advancing drug delivery
systems. In this context, two main issues need to be focused:
(1) Designing the drug delivery platform and (2) tracking the
platform in crossing cells and releasing the drug. We have
chosen the above subsections because we believe that, through
subsections 1 and 2, design and advancing the drug delivery
systems, and in section 3, their ability to cross the cells and
cellular uptake efficacy can be surveyed. The graphics of the
corresponding algorithm with the above-mentioned issues
(and the subsections) to be followed to engineer desired
(poly)zwitterion-based drug delivery systems is presented in
Figure 4. We hope our Perspective will encourage the readers
to conduct more modeling-guided explorations of (poly)-
zwitterion-based templates as intelligent drug delivery systems.
The motivation of this work is to highlight how multiscale
molecular modeling techniques can assist us in designing suchT
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intelligent (poly)zwitterionic based therapeutic delivery
vehicles, nanocarrier surface engineering using (poly)-
zwitterions, membranes formation, and monitoring drug
penetration mechanism through zwitterion bilayer membranes.

2. ZWITTERIONS AND POLYZWITTERIONS
Let us briefly describe the (poly)zwitterions nature, character-
istics, potential, and typical applications. Zwitterions are small
molecules that include spatially separated positive and negative
charges (see Figures 1 and 2). Generally, the formats of
(poly)zwitterions contain monolayers, bi- or multilayers, layer-
by-layer films, polymer brushes, and polymer networks.167,168

Two prominent examples of zwitterions in nature are
phospholipid bilayers in cell membranes and special osmolytes
in plants or animals.103,167,169 However, bioinspired synthetic
polymers with zwitterionic groups in their repeating units (i.e.,
polyzwitterions) have emerged as an affluent area of study with
a main focus on artificial membranes, drug delivery, water
treatment, and biomedicine.92,167

Zwitterionic materials can be generally classified as betaine-
like zwitterions and mixed-charge zwitterionic materials
depending on whether the cationic and anionic groups are
on the exact same unit of zwitterions (see Figure 2). Most of
the zwitterions belong to the betaine group and these always
contain quaternary ammonium as cations. Typical examples of
betaines are phosphorylcholine (PC), sulfobetaine (SB), and
carboxybetaine (CB), with as anion groups phosphonates

(PO3−), sulfonates (SO3−), and carboxylates (COO−),
respectively. However, there are some mixed-charge materials,
including positively and negatively charged moieties in
different monomer units, to maintain the overall electrical
neutrality.170 These mixed-charge zwitterionic materials show
similar antifouling properties because of their resembling
structures.171,172 Furthermore, amino acids and peptides can
be considered natural zwitterions, such as serine, ornithine,
lysine, aspartic acid, and glutamic acid, which also have
presented considerable anti(bio)fouling and better biocompat-
ibility than many synthetic (poly)zwitterionic polymers.5,173,174

As hydrophilic materials, zwitterions have strong intra- and
intermolecular ion-pairs.15 Consequently, at not so low pHs
that the anionic groups do not get protonated, zwitterions have
a zero effective net charge. However, if the nitrogen is not
quaternary, there will be an upper limit of pH beyond which
the zwitterionic character will also be lost.6,103

Their high density of charged groups with opposite signs, on
the other hand, makes them strongly hydrated under
physiological conditions. For this reason, bioadhesion
(adhesion of biological matters, such as proteins) to (poly)-
zwitterions is strongly reduced. Their biocompatibility is
another valuable aspect that has made them valuable for
medical applications, which arises from their nontoxic
behavior, ability to sustain the healthy functions of surrounding
tissue, noninflammatory causing behavior, and being tissue-
integrated without encapsulation. Thus, (poly)zwitterions, as

Figure 4. Graphical representation of the algorithm to be followed for engineering (poly)zwitterionic-based intelligent drug delivery systems via
molecular modeling.
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protein-repellent, nonthrombogenic, and cell-compatible ma-
terials, are attracting scientific interest, particularly in the field
of biomedicine.101

In the following, we assess recent modeling-led research that
studied (poly)zwitterionic drug delivery systems. We aim to
amplify the importance of modeling-based research in the
characterization of (poly)zwitterionic materials, the design of
self-assembled zwitterionic-based supermolecular structures,
and their surface engineering for applications in drug delivery.
The current state-of-the-art of these two application platforms
forms the focus of the following subsections.
2.1. Self-Assembly of (Poly)zwitterions

(Poly)zwitterions display various solubility properties and self-
assembled morphologies in an aqueous solution.175−178 The
formation of vesicles by some polyzwitterion architectures,179

is one of the particular interests due to the vesicles’ potential
applications in drug delivery. It is generally known that
micelles50 and vesicle-like morphologies such as polymersomes
(see Figure 3) form easily by polyamphiphiles,180−184 through
a self-assembly process in which hydrophilic and hydrophobic
interactions are optimized. However, the unique properties of
polyzwitterion assembly is the involvement of the long-ranged
dipolar forces emerging from the zwitterion groups attached to
the hydrophobic polymer backbone. Different researchers have
studied the self-assembly of (poly)zwitterions using molecular
modeling, employing the coarse-graining method. In the
following, we review some modeling-led research implemented
to study the self-assembly process of (poly)zwitterions.
Shinoda et al.185 presented a coarse-grained (CG) intermo-
lecular force field to model a series of zwitterionic lipids; their
study includes a dodecylphosphatidylcholine (DPC) micelle
solution and four different bilayers: dimyristoylphosphatidyl-
choline (DMPC), dipalmitoylphosphatidylcholine (DPPC),
palmitoyl oleyl phosphatidylcholine (POPC), and palmitoyl
oleyl phosphatidylethanolamine (POPE) (see Figure 5a). For
their model, they optimized the force field parameters for
multiple lipid molecules using simple functional forms. The
resulted CG lipid bilayers exhibited reasonable molecular areas,

chain order parameters, and bilayer elastic properties. Since the
persistence length of the DPPC monolayer is longer than that
of a polyethylene glycol (PEG) lipid monolayer, a stable
curved monolayer surface under negative tension was
perceived for the zwitterionic monolayer. They also success-
fully observed vesicle formation in the system including
DMPC molecules. Furthermore, their results revealed that,
depending on the aggregate size, the lipid assembly
spontaneously transforms into a closed vesicle or a bicelle
(see Figure 5a). They also showed that the proposed CG force
field could also support stable multilamellar DMPC vesicles.185

Due to the nanometer size of the simulated vesicles in this
study and difficulties in performing a lab experiment for the
self-assembly process, the study’s findings can shed light on the
fundamental molecular level aspects of zwitterionic-based
vesicle fusion, formation, and stability beyond the nanoscale.
The importance of the obtained atomistic level perspectives is
beyond only understanding the zwitterionic-based vesicle
formation mechanism, but it can be generalized to one of
the crucial phenomena in biological and nanotechnology
applications, i.e., lipid assembly. In particular, in nano-
technology-led drug delivery, lipid assembly can lead to one
of the demanding intelligent drug delivery platforms, i.e.
liposomes (vesicles). Liposomes are appealing biomimetic
nanocarriers widely used to carry different categories of
therapeutics, such as hydrophobic and hydrophilic drugs,
peptides, proteins, and antibodies.186,187 The structural
versatility of liposomes has been utilized to develop numerous
carriers for the systemic delivery of drugs, with the possibility
of improving their bioavailability and stability and conducting
their release while limiting the side effects simultaneously.186

This modeling-based study elaborates on the potential abilities
of coarse-grain modeling to capture an insightful under-
standing of liposome (vesicle) formation at the nanometer
level (see the time and length scales in Table 2), which
provides knowledge to design novel liposomal drug vehicles
more intelligently. Undoubtedly, due to the importance of
liposomes in intelligent drug delivery systems, this type of
modeling-based study of zwitterions self-assembly can be a

Figure 5. (a) Left top panel: Schematic definition of coarse-grained sites, left bottom panel: Transformation of self-assembled lipid aggregates in a
large water box. The five rows represent lipid aggregates of 5000 DMPC molecules, respectively. Adapted from ref 185. Copyright 2010 American
Chemical Society. (b) Single chain structures and multiple chain morphologies as a function of 1/d. The single chain transitions from globule →
disk → worm-like structures with increase in 1/d. The polymer chains aggregate to form bigger globules for 1/d = 0.000 (45 single chains), bowls,
and/or vesicles (28 single chains) for 0.000 < 1/d < 0.125, and they do not aggregate for 1/d ≥ 0.125 (N = 100). χ represents the Flory−Huggins
interaction parameter. Adapted with permission from ref 4. Copyright 2016 American Institute of Physics.
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starting point for a long road of predictive modeling studies to
rationally design liposomal zwitterion-based drug delivery.
However, there are challenges in investigating realistic vesicle
formation processes, such as (1) a need for systematic CG
force field parametrization that can be aided by developing
density functional calculations and (or) MD modeling besides
available experimental data; (2) and due to the loss of degrees

of freedom that occurs through the mapping between an
atomistic representation and a coarser one, specific physical
interactions between system components are no longer
present. Thus, even though careful parametrization may
compensate for those missing interactions, special care needs
to be taken to interpret CG simulation results, particularly
when establishing the systematic errors associated with the

Figure 6. (a) Self-assembly morphologies of PAMAM(G5)-PCBMA unimolecular micelles at different PCBMA polymerization degrees: (left)
sectional views and (right) density profiles of different segments. Adapted from ref 165. Copyright 2021 American Chemical Society. (b) Coarse-
grained models of DHA-PBLGn-PCBm and DHA-PBLGn-PEGm, (top panel) and197 Comparison of self-assembly morphologies of DOX-loaded
copolymer DHA-PBLG15-PCB10 and DHA-PBLG15-PEG10 sectional views and density profiles of different beads (bottom panel). Adapted from ref
197. Copyright 2019 American Chemical Society. (c) Configurations of the blank micelles at different block lengths and different pH values in an
aqueous solution. Water beads are eliminated for clarity (the same below). Adapted with permission from ref 166. Copyright 2017 Elsevier. (d)
Dispersing zwitterions into comb polymers on the polyplex structure. Adapted from ref 200. Copyright 2016 American Chemical Society.
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results. Applying the Langevin dynamics method and a coarse-
grained model, Mahalik and Muthukumar4 studied vesicles
formation from hydrophobic polymers including zwitterions as
side groups in dilute salt-free aqueous solutions. In their
model, the zwitterions, as permanent charged dipoles, provide
long-range electrostatic interactions that were influenced by
the polymer’s conformational entropy. This competition
between hydrophobic interactions and dipole−dipole inter-
actions led to a series of self-assembled structures. Their results
revealed that by decreasing the spacing between the successive
zwitterion side groups, i.e., d, single chains experienced globule
→ disk → worm-like structures (see Figure 5b).4 Since vesicle
size can be from 100 nm to 1 μm, coarse-graining modeling is
the suitable technique to capture the morphology evolution
(see Table 2). They also monitored the effect of d on the
vesicle structure, such as the radius of gyration, hydrodynamic
radius, spatial correlations between hydrophobic and dipole
monomers, and dipole−dipole orientational correlation
functions. According to their results, during the self-assembly,
these structures formed larger globules and vesicles by
decreasing ‘d’ up to a threshold value, below which no large
assembly formed. Similar to zwitterions, there is a particular
interest in forming vesicles (polymersomes) by some
polyzwitterion architectures given potential applications in
drug delivery. These simulation results are likely to motivate
theoretical work on assembly mechanisms for the less known
field in dipole-bearing polymers; polyzwitterions assembly. In
polyzwitterion self-assembly, there are two main aspects: (1)
hydrophobic interactions of the backbones and (2) electro-
static interactions of the charged segments, both of which
make their self-assembly process more complicated than
zwitterions. A coarse-graining study can predict the effect of
different system parameters, such as molecular weight,
polyzwitterion architecture, and dipole moment that can
control the self-assembly process. Through CG studies,
different assembled morphologies will be achieved which can
have potential applications as novel drug delivery platforms.
Liao et al.188 performed DPD simulations to study the self-

assembled morphologies of two copolymer systems containing
PEG and the polyzwitterion, poly(carboxybetaine) (PCB), in
aqueous solutions. The effects of the polymer composition and
concentration on the self-assembled morphologies of the two
amphiphilic copolymers were studied; one contains a hydro-
philic block of PEG and another a block of PCB, while both
contain a hydrophobic block of poly(lactic acid) (PLA) (PLA-
b-PEG and PLA-b-PCB). Their results revealed that, regardless
of the copolymer composition, PLA-b-PEG systems self-
assembled into core−shell structures, whereas in addition to
core−shell morphology onion-like and vesicle structures were
also found for the PLA-b-PCB systems. For both copolymer
systems, the final morphology was dependent on the polymer
concentration. It is worth noting that, among different coarse-
graining techniques, DPD can tackle the largest mesoscale
systems due to the simple term of the conservative force189 and
largest time and length scales (see Table 2). The simulation
results also demonstrated that, at the same polymer
concentration, the PLA-b-PEG self-assembled into a dumb-
bell-like structure while PLA-b-PCB formed a spherical one,
showing the higher stability of PCB in maintaining self-
assembled spherical structures than PEG. Although both
copolymer systems could self-assemble into core−shell nano-
particles, the PEG shell layers formed in PLA-b-PEG
nanoparticles were inhomogeneous due to the amphiphilicity

of PEG, whereas the PCB shell layers in PLA-b-PCB
nanoparticles were homogeneous because of the strong
hydrophilic nature of PCB block. The work of Liao et al. is
expected to provide valuable insight into the microscopic
origins of the structural differences between the PEG-based
and polyzwitterion-based drug delivery systems for the further
development of these types of drug vehicles. Due to the simple
format of the non-bonded potential term in DPD modeling,
the time and length scales of mesoscale DPD modeling
simulations can go beyond what is possible with other coarse-
grained modeling techniques. This provides the opportunity to
implement larger simulations, even comparable to the
experimental size and in particular for (poly)zwitterions with
high degrees of polymerization.
2.1.1. Drug/Gene Delivery. Herein, we discuss some

research attempts to study self-assembled supramolecular
(poly)zwitterionic structures for use in drug transferring with
the aid of molecular modeling. Zeng et al.165 studied the
stability and drug loading/release mechanisms of unimolecular
micelles formed using a zwitterionic dendrimer, generation-5
polyamidoamine-graf t-poly(carboxybetaine methacrylate)
(PAMAM(G5)-PCBMA), via coarse-grained DPD simula-
tions. First, let us briefly mention the features and potential
of zwitterionic dendrimers in drug delivery. Dendrimers have
become ideal candidates as carriers in biomedical applications
due to having highly controllable architectures, internal
cavities, and the possibility for multivalent functionalization.190

However, the most commonly used dendrimers, such as
PAMAM, by themselves are not biocompatible and can induce
cytotoxic effects.191 Therefore, to reduce their toxicity for in
vivo applications, the exterior of dendrimers is modified with,
for example, PEG or charged groups.192−194 That is how
polyelectrolyte dendrimers and zwitterionic dendrimers have
emerged in designing drug vehicles.195,196 According to the
simulations PAMAM(G5)-PCBMA spontaneously forms
core−shell unimolecular micelles. The studied PAMAM(G5)
dendrimer constituted a hydrophobic core to load the DOX,
while the zwitterionic PCBMA acts as a protective shell to
improve the stability of the unimolecular micelle (see Figure
6a). The results revealed that the DOX could be loaded into a
PAMAM(G5) cavity at the physiological pH of 7.4. Regarding
the release process, they observed that, at the acidic pH of 5.0,
the loaded DOX could be released gradually from the
hydrophobic core (see Figure 6a). This study demonstrates
the potential of the zwitterionic dendrimer unimolecular
micelles in drug transport from the molecular level that can
offer theoretical guidance for designing and developing
promising unimolecular drug delivery micelles. Let us outline
the important issues in this research from scientific to technical
points of view as a roadmap for future research: (1) If a drug
delivery platform with high stability is required, unimolecular
micelles can be one of the ideal options, (2) zwitterionic
dendrimers can be applied as a stable intelligent drug vehicle
taking advantage of the unique architecture, features of
dendrimers, biocompatibility, and antifouling behavior of
zwitterions, and (3) the DPD modeling technique can be a
suitable choice to study zwitterionic dendrimer-based drug
delivery systems, due to the large time and length scales that
need to be covered (see Table 2) and the possibility of force
field parametrization using Flory−Huggins solution theory.
Hao et al.197 investigated the self-assembled behaviors of the

zwitterionic copolymer docosahexaenoic acid−b-poly(γ-ben-
zyl-L-glutamate)−b-poly(carboxybetaine methacrylate) (DHA-
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PBLG-PCB) and the loading and release mechanism of the
anticancer drug DOX via DPD simulations (see Figure 6b for
coarse-graining details). They explored the effects of polymer
concentration, drug content, and pH on zwitterionic
copolymer self-assembly. Simulation results showed that
DHA-PBLG15-PCB10 self-assembled into pH-responsive
core−shell micelles. According to their results, DOX could
be encapsulated into the core−shell micelle under normal
physiological pH conditions, while DOX release occurred
under acidic pH conditions. The behaviors of the self-
assembled copolymer DHA-PBLG-PEG were also studied
and compared with those of DHA-PBLG-PCB. The results
showed that the DHA-PBLG15-PCB10-based micelles were
more stable than those of DHA-PBLG-PEG. This renders
DHA-PBLG-PCB a great potential to serve as a drug vehicle
for targeted delivery (see Figure 6b).197 This study is, in fact, a
good example that indicates, with the help of DPD simulation
and theoretical analyses, researchers could be guided in the
design, preparation, and optimization of drug carriers based on
linear triblock zwitterionic copolymer. It is worth noting that
the applied approach in this study can be generalized to study
linear multiblock zwitterionic copolymers, particularly with
stimuli-responsive behavior.
Min et al.166 performed DPD simulations to study the self-

assembled microstructures and DOX loading/release proper-
ties of pH-sensitive amphiphilic triblock copolymers: poly(ε-
caprolactone)-b-poly(diethylaminoethyl methacrylate)-b-poly-
(sulfobetaine methacrylate) or poly(ethylene glycol methacry-
late) (PCL-PDEA-PSBMA/PEGMA). According to their
results, both copolymers could successfully self-assemble into
core−shell-corona micelles in an aqueous environment (see
Figure 6c). However, the structures of the micelles’ corona
were entirely different. The shell layers formed by PEGMA had
a heterogeneous structure, while the shell layers in PCL-
PDEA-PSBMA micelles were homogeneous. This was mainly
attributed to the stronger hydrophilicity of PSBMA compared
to PEGMA. They also observed that by increasing the mole
fraction of copolymer from 10% to 50%, the microstructures
formed by PCL-PDEA-PSBMA and DOX remained spherical
micelles, whereas PCL-PDEA-PEGMA experienced a struc-
tural transition from spherical to cylindrical and finally to
lamellar micelles (see Figure 6c). They also revealed that the
drug release process followed a “swelling−demicellization−
release” mode. This multiscale modeling study demonstrates
an avenue to design nanomaterials for drug delivery and
optimize their properties.166 Such a computational coarse-
graining approach can be suitable to provide a deep
understanding of existing experiments on systems of interest
by monitoring them at both microscopic and mesoscopic
levels, which causes raising the efficacy of experiments.
Furthermore, it might provide some useful guidelines for
optimizing and designing future novel biomolecules for
intelligent drug delivery with desired properties, for instance,
nonlinear multiblock zwitterionic copolymers.
Gene delivery systems based on polymeric materials benefit

from the presence of hydrophilic groups that provide tunable
polymer−DNA binding strength and stable polyplexes.198−200
However, hydrophilic groups screen charge, which could
reduce cellular uptake and transfection efficiency. Using a
combination of experiments and CG-MD simulations,
Ghobadi et al.200 studied the effect of attaching zwitterionic
sulfobetaine (SB) groups to cationic comb polymers. In the
beginning, they synthesized comb polymers with tetralysine

(K4) and SB pendant groups through ring-opening metathesis
polymerization (ROMP). They could successfully describe the
effect of SB groups on the structure of comb polymer−DNA
polyplexes, such as the shape, size, composition, surface charge,
and polyplexes-DNA binding strength through both CG-MD
simulations and experimental measurements. The simulation
and experimental results concluded that increasing SB
composition in the comb polymers caused a decrease in
polymer−DNA binding strength. The CG-MD simulations
specifically revealed that SB groups were distributed
throughout the polyplex (see Figure 6d). This SB distribution
is helpful to provide high levels of gene expression in living
cells due to the positive charge of polyplexes surfaces. They
also showed that the positive surface charge of the formed
polyplexes from comb polymers, with nearly 50 mol.-% SB was
similar to the polyplexes formed from purely cationic comb
polymers, indicating the ability to add an substantial amount of
SB functionality without screening the surface charge. This
integrated computational-experimental study demonstrates the
effectiveness of incorporating zwitterions in polyplexes, to
design new and effective gene delivery vectors. The applied
methodology in this study can be generalized as a suitable tool
to engineer novel zwitterionic materials for the application in
peptide, protein, antibody, gene and DNA carriers.
2.2. Surface Engineering with (Poly)zwitterionic Materials

Nanoparticle drug-delivery tools, such as liposomes,201

micelles,202 dendrimers,203 hydrogels,204 and virus-like nano-
particles,205 have emerged for different therapeutic applications
to improve the specificity of drug actions and reduce the
systemic side effects.206 However, their massive interactions
with the surrounding physiological environments cause their
rapid elimination from the blood circulation by the body’s
immune system and thus drug release at off-target sites.207,208

By grafting a stealth coating layer onto the surface of
nanoparticle drug carriers, the blood circulation half-life of
nanomaterials can be improved. PEG and (poly)zwitterion are
two typical polymers used for stealth coating.209−211

Compared to PEG coatings, polyzwitterion coatings, such as
poly(sulfobetaine), poly(carboxybetaine), and poly-
(phosphorylcholine), could be better candidates as the
oppositely charged groups within a polyzwitterion chain bind
water molecules stronger than PEG chain molecules,97 and
polyzwitterion coatings are chemically more stable than PEG
coatings.212 In this regard, polyzwitterions are now used in
marine coatings, disease diagnostics, and medical and
biomedical applications.15,213−216

Understanding the role of surface modification on nano-
particle−biomembrane interactions is crucial in promoting the
application of nanoparticles in biomedical fields.217 Quan et
al.160 investigated the interactions between polymer-coated
gold nanoparticles (AuNPs) and lipid membranes using CG-
MD simulations. The results showed that grafting AuNPs with
zwitterionic polymers facilitated the nanoparticles’ approach to
the membrane surface compared to those grafted with
hydrophilic PEG. They also found that, for zwitterionic
polymer-coated AuNPs, which could undergo pH-dependent
charge conversion, the degree of polymer protonation
impacted different interaction modes. At a low protonation
degree, particle adsorption on the membrane surface occurred,
while at a moderate degree of protonation particle trans-
location across the lipid membrane was observed. The curved
lipid membrane entirely wrapped the particles at high
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protonation degrees, leading to endocytosis. They also studied
the effect of polymer chain length on the cellular uptake of
zwitterionic polymer-coated AuNPs. Their results demon-
strated that when the protonation degree was not high, the
long polymer chains would block the translocation of AuNPs
across the lipid membrane. However, the long chain length
could improve the transmembrane efficiency of AuNPs at high
protonation degrees (see Figure 7a). These findings are
expected to be of strong interest for the design and synthesis of
pH-responsive nanomaterials based on polyzwitterions and
prompts their further applications in the field of biomedicine
and drug delivery. This type of coarse-graining research is a
good example that provides regulations for designing other
surface-functionalized nanoparticles, including different possi-
ble inorganic/organic particles and novel (poly)zwitterions as
drug delivery systems.
Kovacevic et al.218 performed MD simulations to study how

the size, hydrophobicity, and drug concentration affect the
structure of zwitterion functionalized AuNPs. They simulated
two groups of nanosystems functionalized with a zwitterion
and a ligand carrying a drug. They showed that in the case of a
hydrophobic drug, the hydrophobicity controlled the con-
formational changes of the coating layer. In the case of a
hydrophilic drug, the final structure of the coating
conformations was controlled by the ligands. The results also
showed that the percentage of the accessible hydrophilic drug

was remarkably higher than in the hydrophobic systems. It
implies that higher biological efficiency can be expected for
hydrophilic systems. This research highlights the importance of
taking into account physicochemical properties of drugs and
ligands at the atomistic level (see Table 2 for the scales that
MD covers) when developing gold-based nanosystems,
especially in the case of hydrophobic drugs.
2.3. Membrane

For most drugs, regardless of the dosage form and the
administration route, a crucial step in generating a biological
effect is represented by the interaction of the drug with a
receptor that can be located either on the cell membrane or
inside the cell.219 Therefore, one part of the drug delivery
process is passing drugs or drug delivery systems across cell
membranes. Due to the similarity between lipid bilayer
zwitterionic membranes and biological cell membranes,
monitoring (1) interactions between drugs and zwitterionic
membranes, (2) drug transport properties over zwitterionic
membranes, and (3) drug orientation and accumulation in the
membranes, can provide useful information for developing
novel drug delivery systems. Here, one question is how
molecular modeling of zwitterionic membranes can assist this
development process. Modeling of different drug delivery
systems (for instance, zwitterionic-based drug delivery) passing
through zwitterionic membranes can represent a model of drug

Figure 7. (a) Final equilibrated configurations of zwitterionic-AuNPs with different polymer chain lengths interacting with lipid membranes at
(left) 50% and (right) 100% protonation degree, respectively. Water molecules are not displayed for clarity. The lipid headgroups are shown in
blue, lipid tails in silver, gold core in yellow, PEG in green, the zwitterionic polymer in blue, and zwitterionic polymer after protonation in magenta.
Adapted from ref 160. Copyright 2017 American Chemical Society. (b) PES-b-PCBMA/PES membrane (the blend of PES-b-PCBMA copolymer
and PES homopolymer) formation process via nonsolvent induced phase separation (NIPS). Depicted are the initial state at (1) step 0; (2) step
20 000; (3) step 100 000; (4) step 20 000; (5) step 400 000. Brown green beads represent PES; orange beads represent the PES segments in the
PES-b-PCBMA copolymer; and cyan depicts MMA segments (composed of A). Solvent D beads, water beads, and zwitterionic segment B beads
are omitted for clarity. Adapted from ref 220. Copyright 2019 American Chemical Society. (c) Molecular structures of the 12 zwitterionic moieties
studied. Adapted from ref 226. Copyright 2014 American Chemical Society. (d) (Left panel) One Levodopa molecule in the POPC-cholesterol
bilayer. All the cholesterol molecules in the visualized lipid phase are depicted in the color blue, and again the Levodopa is portrayed in black color
with green contour. (Right panel) Mass density profiles of the aqueous phase, cholesterol-free lipid phase consisting of DPPC molecules and
Levodopa in its zwitterionic form along the normal to the two leaflets of the bilayer. Adapted with permission from ref 113. Copyright 2021
Elsevier.
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carriers penetrating the cell. The atomistic level information on
this process can provide a better perspective on how to design
intelligent drug delivery systems (i.e., engineering the size,
shape, surface functionality, stability, internal structure, drug
encapsulation level) with higher cellular uptake efficacy (see
Figure 4). In the research field of zwitterion membranes, Huo
et al.220 adopted DPD simulations to investigate the non-
solvent induced phase separation (NIPS) process during a pH-
responsive poly(ether sulfone) membrane preparation with a
zwitterionic copolymer poly(ether sulfone)-block-polycarbox-
ybetaine methacrylate (PES-b-PCBMA) as the blending
additive. Simulation results revealed that the hydrophilic
PCBMA segments enriched on the membrane surface by
surface segregation (see Figure 7b) and exhibited pH-
responsive behavior, which was attributed to the deprotonation
of carboxylic acid groups. With the polymer concentration
increasing, both the membrane shrinkage and the system’s
flexibility decreased, which in turn reduced the effect of surface
segregation. Their research work contributes to a better
understanding of the mechanism of NIPS and can provide a
guide to designing a wide range of novel zwitterion-based
polymer bi- or multicomponent blend membranes, considering
features of each component (chemistry and architecture)
individually and noncovalent interactions in blended systems
with crosstalk.
Significant efforts have been directed to develop a

fundamental understanding of (poly)zwitterion surface anti-
fouling mechanisms at the molecular level.221,222 He et al.14

performed molecular simulations to study the interactions of a
model protein (LYZ) with a phosphorylcholine-terminated
self-assembled monolayer (PC-SAM) surface in the presence
of explicit water molecules and ions. The results were
compared with those obtained for an oligo(ethylene glycol)
terminated self-assembled monolayer (OEG-SAM) surface and
bulk water. Using the radial distribution function and the
residence time dynamics analysis, they showed the hydration
layer of the zwitterionic PC-SAM to be stronger than that of
OEG-SAM. The water molecules above the PC-SAM surface
repelled the protein robustly as it approached the surface,
which was in good agreement with previous experimental
studies, confirming the nonfouling nature of PC-SAM
surfaces.223,224 In spite of the antifouling feature of both PC-
SAM and OEG-SAM surfaces, the zwitterionic PC-SAM
surface was found to be entirely different from the OEG-
SAM surface. First, comparing the hydration layer residence
time between PC-SAM and OEG-SAM surfaces revealed a
longer stay for water molecules in the hydration layer near an
PC-SAM surface than an OEG-SAM surface. This indicates
that the PC-SAM surface binds water molecules more tightly
compared to the OEG-SAM surface. Second, the water
molecules near the PC-SAM surface had a dipole distribution
that was much closer to bulk water than on the OEG-SAM
surface. Finally, the interfacial water molecules near the PC-
SAM surface, which did not form hydrogen bonds with the PC
chains, had reorientational dynamics similar to those of bulk
water molecules but was much slower than those near the
OEG-SAM surface. Despite these differences, hydration still
played a key role in the antiprotein adsorption of PC-SAM
surfaces.14 From a technical viewpoint, this research shows that
the accuracy, time, and length scale of the MD method is
appropriate to capture molecular-level information on protein-
monolayer surfaces (see the time and length scale of MD
modeling in Table 2). The information includes nonfouling

mechanisms and details for (poly)zwitterions (or other
antifouling agents), formation of a water hydration layer,
orientation of water and fouling agent (i.e., protein), and
noncovalent interaction molecules. In principle, the selection
of simulation techniques to study a system depends on the
depth and scale of the required information.
In the anti(bio)fouling field Shao et al.,225 studied the

interactions between carboxybetaine (CB) solution and
chymotrypsin inhibitor 2 (CI2) and the effect of the zwitterion
on the structure of the protein, using MD simulations. They
also compared the structural properties of CI2 in CB and
oligo(ethylene glycol) (OEG) solutions. The simulation results
indicated that zwitterionic CB and nonionic OEG moieties did
not accumulate around the surface of the CI2, confirming the
anti(bio)fouling behavior of both of them. They also indicated
that although the protein could retain its folded structure in
both CB and OEG solutions, superhydrophobic CB had a
minimal effect on the protein. This observation is attributed to
the zwitterionic nature of both CB and CI2, whereas
amphiphilic OEG changed the properties of the protein via
hydrophobic interactions.225 In another research, Shao and
Jiang226 studied the roles of charged groups in zwitterions to
design new anti(bio)fouling (protein-resistant) zwitterionic
moieties beyond carboxybetaine and sulfobetaine. They
studied the hydration and protein interactions of 12
zwitterions (see Figure 7c) derived from three anionic groups
(carboxylic, sulfonate, and sulfate) and four cationic groups
(quaternary ammonium, tertiary ammonium, secondary
ammonium, and primary ammonium) via molecular simu-
lations. They studied hydration level by evaluating the
hydration-free energy of zwitterions and the hydration
structure and dynamics of the charged groups. They showed
that all zwitterions had strong hydration, but their structural
and dynamic properties depended on the type of cationic and
anionic groups. Let us discuss the importance of this research
type in designing intelligent drug delivery platforms. One of
the main hurdles to drug delivery systems is that bioadhesion
(i.e., protein adhesion) controls the fate of drug transporter in
vivo and makes the interface between proteins and biological
surfaces, influencing their physiological response like cellular
uptake and targeting efficiency. Therefore, engineering the
drug delivery systems using anti(bio)fouling agents is an
extremely important issue for designing useful diagnostic and
therapeutic systems. This type of research can be an efficient
approach to study different anti(bio)fouling agents (i.e., various
types of (poly)zwitterions) for application in in drug vehicles
to screen their interaction with the environment and to
monitor their antifouling performance efficacy.
In recent work, Megariotis et al.113 presented MD and

umbrella sampling simulations of the levodopa zwitterion
formulations (standard medication for Parkinson’s disease227)
at various concentrations in between two hydrated zwitterion
bilayers formed with cholesterol-free 1,2-dipalmitoyl-sn-glyc-
ero-3-phosphocholine (DPPC) and cholesterol-containing 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), re-
spectively (Figure 7d). They chose these systems because, in
an effective treatment process, Levodopa has to cross the
blood-brain barrier (BBB), with the help of the membrane
protein LAT1 (L-type amino acid transporter 1), to be
converted to dopamine.228 They aimed to investigate the
extent to which Levodopa can be transported passively through
the BBB. The main purpose of their research was to study
Levodopa’s behavior in different hydrated lipid membranes,
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mainly from the thermodynamic point of view, and elucidate
features of Levodopa’s permeation mechanism through the
studied bilayer membranes. To screen Levodopa’s permeability
through the membranes, local concentration, and orientation
in the membranes, they calculated self-diffusion coefficients,
mass density profiles, and order parameters. Their calculations
of the potentials of mean force by umbrella sampling
simulations revealed that Levodopa zwitterions, which formed
a network of hydrogen bonds with water and phospholipid
molecules, are found to be preferentially located at the water/
lipid interface (see the density profile curve in Figure 7d).113

Through this research, one can find out the practicality of a
combination of biased and unbiased simulation techniques in
studying drug delivery. For example, the umbrella sampling
simulations constitute free energy profiles that explain how the
drug behaves in the heterogeneous biological systems
considered herein. On the other hand, unbiased simulations
allow us to compute properties such as mass density profiles,
self-diffusion coefficients, and specific order parameters. The
applied strategy in this research, as a powerful tool for the in
silico study of drugs in different lipid environments, provides
information and deep insight at the nanoscopic level that is not
easily extracted from in vivo, ex vivo, or in vitro experiments.

3. CONCLUSION, PERSPECTIVES, AND FUTURE
OUTLOOK

Herein, we have reviewed the current state-of-the-art and
research works on (poly)zwitterion modeling for potential
drug delivery applications, identifying the techniques required
for predictive modeling-led design. (Poly)zwitterions are
fascinating soft materials with a wide range of structures and
chemistries. Their unique properties, such as antifouling, make
them very interesting for a plethora of applications in
(bio)medicine. This Perspective aims to amplify the
importance of modeling-led research for the characterization
of (poly)zwitterionic materials, which will enable the predictive
design and surface engineering required for the self-assembly of
more suitable drug delivery platforms.
Let us summarize the importance of (poly)zwitterionic self-

assembly and surface engineering-led zwitterionic materials
design for drug delivery, which reveals the necessity of
understanding this type of systems at the atomic level. Drug
encapsulation by polyzwitterions can occur through drug
adsorption in the core of the formed micelle or the vesicle’s
aqueous core or through drug conjugation on the afore-
mentioned self-assembled particle surface. However, the
(poly)zwitterion self-assembled structure’s size, shape, and
internal structure are attributed to the polymer chemical
composition, chain length, and architecture. The parameters
that control the structure of (poly)zwitterions can independ-
ently or cooperatively govern the self-assembled formation and
structure and thus the drug delivery pathways. Understanding
the impact of the structural parameters on self-assembled
particle-mediated drug delivery can teach us how to design
intelligent multifunctional (poly)zwitterion-based drug ve-
hicles. We also discussed the role of zwitterionic lipid bilayers,
since these mimic biological cell membranes that control the
flow of substances in and out of the cell. Modeling this type of
membrane is essential since the information obtained from
different molecular modeling techniques about transport
properties and mechanisms of drugs across the membranes
can shed light on this complicated biological process and
improve drug pharmacokinetics by screening drug-membrane

interactions and drug orientation. Finally, modification of drug
delivery nanoparticles’ physicochemical properties via surface
functionalization by zwitterions was investigated. Modifying
surfaces with zwitterionic materials leads to an adjustment in
charge densities, optimizing the solubility and increasing the
stability in biological fluids, thus increasing targeted uptake.
We envision that this introductory text will catalyze the

understanding and design criteria for (poly)zwitterions and
allow for their translation into more real-world applications. In
the field of polymer science, the development of advanced
materials is currently one of the main challenges. In our
opinion, the future of intelligent (poly)zwitterions-based drug
delivery system lies in
3.1. Composite Materials

Novel hybrid platforms synthesized via self-assembly of a
composite of (poly)zwitterions and inorganic smart nano-
particles, such as inorganic dendrimers and organic−inorganic
hybrids, can be optimizedto carry drugs owing to their unique
properties such as controllable interactions with biological
material, useful electronic, magnetic, and optical properties. To
design novel composites for drug delivery, predictive
modeling-based studies, from atomistic level to coarse-
graining, are recommended prior to large-scale experimental
studies. This will shed light on the roadmap for the design of
composite materials leading toward more targeted experi-
ments.
3.2. Synthesizing Polymer with New Chemical Structure
To build intelligent (poly)zwitterion-based vesicles, rationally
engineering novel (poly)zwitterion chemical structures can be
necessary. To this end (poly)zwitterions can be functionalized
or grafted with conjugated molecules, biomolecules, non-
charged polymers with different architectures, or inorganic
nanostructures. The new polymer compositions may self-
assemble into new types of supramolecular structures with
potentially valuable functions in biomedicine. Morphological
phase diagrams of the supramolecular structures can be built
using molecular modeling, particularly coarse-graining techni-
ques. Having modeling-led morphological phase diagrams is
recommended to direct experimental studies, including
synthesis and functionalization, considering the required
structure for drug vehicles.
3.3. Multicomponent Systems
The capacity of intelligent (poly)zwitterions-based drug
vehicles can be grown up from binary systems to multi-
component systems, taking advantage of the unique properties
of each component. Based on the structure and properties that
are required from a drug delivery platform, all the components
can be designed by, for instance, altering the repeating units or
copolymerization. This process can be accelerated by employ-
ing appropriate computational screening studies. The road
from design to novel applications of multicomponent (poly)-
zwitterion materials is long, and can be shortened if aided by
multiscale modeling. The reasons can be attributed to the
philosophy about macromolecule models and simulations
(from atomistic to mesoscale) which situates itself somewhere
between the domain of chemistry (which is led by work with
atomistic detail) and physics (design general models to
describe different phenomena).
3.4. Diverse Architectures

Using smart multifunctional copolymer/(poly)zwitterions
combinations or other smart polymers (e.g., polyelectrolytes
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and thermosensitive polymers)/(poly)zwitterions may pro-
duce novel classes of architecture for intelligent drug vehicles.
By changing the parameters of the components (relative
concentration, chemistry, composition, size, molecular sym-
metry, and mechanical/thermal properties), they can be
successfully engineered. Different multifunctional zwitterionic
smart copolymers with various architectures, including star-
like, dendritic, hyperbranched, comb-like, cyclic, and H-
shaped, whose potential in drug delivery is unknown, can be
designed. Molecular dynamics simulationscan show us the
atomistic aspects of the designed multifunctional molecules,
while their performance in the drug delivery process, drug
encapsulation or conjugation, stability, and release can be
understood via mesoscale modeling. Summarizing, all the
effective parameters controlling the drug-carrying can be
studied via multiscale molecular simulations to deliver a
comprehensive guide and shortest route to experimental
validation to shortest routes experiments.
3.5. Other Therapeutics

The application horizon of existing state-of-the-art polyzwitte-
rion/drug formulations can be expanded to other therapeutics
(antibodies, proteins, peptides, and vitamins, etc.). Further-
more, the zwitterionic capsules can also be specifically
designed and optimized for different administration routes.
To change the administration route of the aforementioned
therapeutics to more convenient methods, modeling-led
studies are recommended for the following reasons: to design
suitable polyzwitterion molecules, to monitor if the molecule
can respond to stimuli in the desired new administration route
properly, to track the supramolecular formation of polyzwitte-
rion/therapeutics at the molecular level, to learn about the
roles of different interactions in the system to boost the more
favorable interactions contributions, and to decrease the
number of required experiments by using modeling-guided
protocols.
3.6. Modeling Advances

The theoretical development and the range of applications of
molecular modeling are expanding rapidly. However, there is
still a long way until force fields become so reliable as to
implement modeling-guided studies with experimental accu-
racy. In this regard, machine learning approaches can be
helpful since their recent tremendous success has proven that
they can also lead to great advances in the developing force
fields. Some of these force fields may assist us to push the
modeling of polymeric drug delivery forward to simulate the
events taking place at longer time scales than we can currently
simulate using coarse-grained molecular techniques.
3.7. Other Applications

Taking full advantage of intelligent (poly)zwitterions and their
unique characteristics, they can be employed in other
applications, such as separation materials, sensors, catalysts,
etc. The responsiveness shown by polyzwitterions is specific,
sensitive, and instantaneous. The future challenge lies in
engineering this class of materials for hybrid material
applications, controlled drug biomedical devices, etc. In this
regard, predictive multiscale molecular modeling studies can
smooth the complicated road of designing novel (poly)-
zwitterion-based materials and exploiting them in different
applications. On the other hand, modeling approaches provide
explanations of experimentally observed molecular structure,

dynamics, thermodynamics, and zwitterionic material proper-
ties at microscopic and macroscopic scale.
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