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ABSTRACT Longitudinal studies of gut microbiota following specific interventions
are vital for understanding how they influence host health. However, robust longitu-
dinal sampling of gut microbiota is a major challenge, which can be addressed using
in vitro fermentors hosting complex microbial communities. Here, by employing 16S
rRNA gene amplicon sequencing, we investigated the adaptation and succession of
human fecal microbial communities in an automated multistage fermentor. We performed
two independent experiments using different human donor fecal samples, one configured
with two units of three colon compartments each studied for 22days and another with
one unit of two colon compartments studied for 31days. The fermentor maintained a trend
of increasing microbial alpha diversity along colon compartments. Within each experiment,
microbial compositions followed compartment-specific trajectories and reached independ-
ent stable configurations. While compositions were highly similar between replicate units,
they were clearly separated between different experiments, showing that they maintained
the individuality of fecal inoculum rather than converging on a fermentor-specific composi-
tion. While some fecal amplicon sequence variants (ASVs) were undetected in the fermen-
tor, many ASVs undetected in the fecal samples flourished in vitro. These bloomer ASVs
accounted for significant proportions of the population and included prominent health-
associated microbes such as Bacteroides fragilis and Akkermansia muciniphila. Turnover in
community compositions is likely explained by feed composition and pH, suggesting that
these communities can be easily modulated. Our results suggest that in vitro fermentors
are promising tools to study complex microbial communities harboring important members
of human gut microbiota.

IMPORTANCE In vitro fermentors that can host complex gut microbial communities
are promising tools to investigate the dynamics of human gut microbiota. In this
work, using an automated in vitro gut fermentor consisting of different colon com-
partments, we investigated the adaptation dynamics of two different human fecal
microbial communities over 22 and 31 days. By observing the temporal trends of dif-
ferent community members, we found that many dominant members of the fecal
microbiota failed to maintain their dominance in vitro, and some of the low-abun-
dance microbes undetected in the fecal microbiota successfully grew in the in vitro
communities. Microbiome compositional changes and blooming could largely be
explained by feed composition and pH, suggesting that these communities can be
modulated to desired compositions via optimizing culture conditions. Thus, our
results open up the possibility of modulating in vitro microbial communities to pre-
defined compositions by optimizing feed composition and culture conditions.
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The gut microbiota is a vibrant and diverse community consisting of more than
1,000 bacterial and archaeal species that play a vital role in maintaining host health

and well-being (1, 2). Various factors, such as diet, drugs, lifestyle, and host immune
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system, affect the dynamics of the gut microbiota, and this exerts a significant influ-
ence on host metabolic homeostasis (3). Hence, understanding the complex dynamics
of the gut microbiota is crucial, especially via longitudinal gut microbiota studies.

Longitudinal gut microbiota studies help not only in decoding the changes in mi-
crobial composition and function over time but also in reliably associating these
changes with host health and disease conditions. To date, a number of longitudinal
studies have been carried out to understand the dynamics of gut microbiota under
both healthy and disease conditions (4–6). However, such studies have several draw-
backs that limit our interpretations of longitudinal dynamics of the gut microbiota.
First, most studies use the fecal microbiota as a representative of the gut microbiota,
while the composition and gene expression patterns of the fecal microbiota might be
quite different from that of the gut microbiota. Second, consistent and frequent (e.g.,
daily) sampling of fecal material can be difficult. Third, it is difficult to separate longitu-
dinal gut microbial dynamics from effects of dietary changes and the host immune sys-
tem. Finally, investigating the effects of certain interventions on human gut microbiota
might raise ethical concerns. For example, manipulating the microbiota of an individ-
ual (e.g., introduction of a probiotic strain or fecal microbial transplantation) could
affect microbiotas of cohabiting individuals or family members who had not consented
to that intervention, and evaluating interventions that significantly affect the gut
microbiota in humans could irreversibly damage host-microbiome homeostasis (7). In
vitro gut models can complement in vivo longitudinal studies to assess the dynamics
of gut microbiota. They can simulate gastrointestinal conditions in a precisely con-
trolled manner, allow sampling of active microbial communities in culture, allow con-
sistent and frequent sampling, allow modulation of diet on a flexible schedule, are free
from host influence, support culturing and characterization of engineered synthetic
gut microbial communities, and do not require ethical approvals (8, 9).

Currently, most available gut models are based on (i) static batch fermentation systems
involving small reactors or culture tubes, (ii) semicontinuous fermentation systems involving
single fermentors (10–13), or (iii) multistage fermentation continuous systems that involve
two or more fermentors connected in series, such as the Simulator of the Human Intestinal
Microbial Ecosystem (SHIME) (14), TIM gastrointestinal model (15), PolyFermS model (16),
SIMulator of the GastroIntestinal tract (SIMGI) (17) model, Lacroix model, EnteroMix, and
CoMiniGut (18–20). Among the available gut models, SHIME is widely used due to (i) its auto-
mation, (ii) the possibility of sampling larger volumes more frequently (although this benefit
comes with a requirement for large quantity of feed medium), (iii) the possibility of tightly con-
trolling pH, temperature, and flow rate between the colon regions, (iv) the flexibility to config-
ure multiple parallel units and different compartments, and (v) the possibility of performing
longitudinal sampling in consecutive colon regions (14, 21, 22). While a majority of studies
used SHIME to test the effects of drugs, xenobiotics, and supplements on in vitromicrobial
communities (21, 23–26), it can also be used to study microbial ecology (27, 28).

Recent developments in mass spectrometry and high-throughput sequencing technolo-
gies are enabling the identification of novel microbial-derived metabolites in the gut and their
respective biosynthetic pathways at a much higher pace than before (29–31). Though many
metabolites have been discovered from in vivo studies, this discovery process can be acceler-
ated by employing in vitro gut models. While metabolites identified from fecal or gut samples
could come from host, diet, or microbiota, the major advantage of in vitro gut models in
metabolite discovery is that any identified nonmedium metabolite can be clearly attributed to
the microbiota.

In this study, we used 16S rRNA gene amplicon sequencing to investigate the adap-
tation and succession of two different fecal microbial communities over a period of 22
and 31 days using an automated in vitro fermentation system.

RESULTS AND DISCUSSION

Using the SHIME system, we ran two independent experiments (experiment 1 [Exp1]
and experiment 2 [Exp2]) with fecal samples obtained from two anonymous human donors
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(donor 1 and donor 2, respectively). We performed Exp1 with two identical units consisting
of ascending (AC), transverse (TC), and descending (DC) colon compartments over 22days
and Exp2 with one unit consisting of AC and DC compartments over 31days (Fig. S1). We
characterized the microbiome from these experiments using 16S rRNA gene V4 variable
region amplicon sequencing (see Materials and Methods). We generated 3,031,524 high-
quality paired-end reads (median, 20,760 per sample) from 3 fecal inoculum replicates and
143 in vitro samples in Exp1 and 8,117,537 paired-end reads (median, 231,733 per sample)
from one fecal inoculum sample and 32 in vitro samples in Exp2. Due to the major difference
in sequencing depth between the two experiments, we rarefied all samples to 20,000 high-
quality paired-end reads (see Materials and Methods). After merging the rarefied read pairs
and removing chimeric amplicons, we obtained 2,279,301 (and 417,882) high-quality amplicon
sequences from Exp1 (and Exp2) with 15,682 (and 12,440) median amplicons per sample.
From this, we derived 424 amplicon sequencing variants (ASVs) across the two experiments
using the DADA2 pipeline (32). In Exp1, we confirmed that the microbiome communities
in the two identical units were quite similar in both alpha diversity (ASV richness and ASV
Shannon index) and beta diversity (Jensen-Shannon distance based on ASV relative abun-
dances) by comparing corresponding samples (Fig. S2 and S3A). Additionally, using sam-
ples collected as technical triplicates on days 2, 7, 12, 17, and 22, we verified the reproduci-
bility of our sample processing and analytical pipeline, measured by alpha diversity
(Fig. S3B and S3C) and beta diversity (Fig. S3D). For these time points in Exp1, we consis-
tently chose the second replicate for all further analyses.

Different colon compartments reach individual stable microbiome compositions.
We detected 117 ASVs in donor 1 fecal inoculum, while in the AC, TC, and DC compart-
ments from Exp1, we detected on average 39, 71, and 82 ASVs, respectively, across the
study period. In the case of Exp2, we detected 79 ASVs in donor 2 fecal inoculum, while
in the AC and DC compartments, we detected on average 36 and 66 ASVs, respectively.
This suggests that some ASVs in the fecal samples from both experiments either were
permanently lost or went below our detection threshold. To identify our detection
threshold, we performed cell counting on the fecal sample in Exp2 and estimated a
cell density of 9.3� 1010 cells/g. At a rarefied read depth of 15,000, we estimated our
detection threshold to be 6.2� 106 cells/g of feces. In addition, the biases inherent to
DNA extraction and 16S rRNA gene amplicon sequencing library preparation could
affect the detection threshold (33, 34).

In Exp1, after an irregular trend in the first 2 days, the ASV richness declined in all
compartments over the week from D5 to D12 (Fig. S2, top left). However, from D12
onward, ASV richness reached different stable values in all three compartments. On
the other hand, Shannon diversity of all the compartments in Exp1 showed a declining
trend until D12 starting from D2 and thereafter reached stable values only in DC but
exhibited an increasing trend in AC and TC (Fig. S2, bottom left). In Exp2, after a declin-
ing trend of ASV richness for the first 7 days, it reached stable values in both the com-
partments (Fig. S2, top right). However, the Shannon diversity of both compartments
showed increasing trends until D23, starting from D9 in AC and from D3 in DC. Then,
starting from D25, both compartments exhibited instability until the end of the experi-
ment (Fig. S2, bottom right). The colon compartments maintained a trend of increasing
alpha diversity from AC to TC to DC compartments for Exp1 and from AC to DC for
Exp2 (Fig. S2). This pattern of increasing alpha diversity along AC, TC, and DC compart-
ments is in accordance with an earlier in vitro study that employed SHIME (22).

Next, we investigated community stability in the different compartments in both
experiments. For this purpose, we estimated the beta diversity of in vitro samples com-
pared to fecal inoculum and observed that in vitro communities stabilized around D12
in Exp1 (Fig. 1A, top). Since beta diversity measures are thought to saturate at higher
magnitude (35), we also estimated community compositional changes at 1-day inter-
vals, which further confirmed that the microbiome communities stabilized at this time
point (Fig. 1A, bottom). Similar analysis showed that microbiome compositions also
stabilized in Exp2 around D13 (Fig. 1B). Comparing the microbiome compositions of
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fecal inoculum to samples from all colon compartments, we found that the DC micro-
biome was closest to the fecal microbiome throughout the experiment, followed by TC
and AC microbiomes, in Exp1 (Fig. 1A), whereas the AC microbiome was closest to the
fecal inoculum in Exp2 (Fig. 1B). In addition, the highest separation in Exp1 was
observed between AC and DC, followed by AC/TC and TC/DC separations (Fig. S4).

We visualized the longitudinal compositional changes in both experiments by perform-
ing principal-coordinate analysis (PCoA) on the beta diversity and visualizing the first two
coordinates. In Exp1, microbiome compositions of different compartments changed dramat-
ically over the first few days and diverged from each other (Fig. 2A). They maintained these
diverged compositions, followed different trajectories, and later stabilized at their own indi-
vidual steady-state compositions. Similarly, in Exp2, AC and DC microbiomes followed differ-
ent trajectories and stabilized to steady-state compositions after D9 (Fig. 2B). This divergence
observed between the compartments in both experiments could be due to the differences
in pH, availability of carbohydrates, or bile salt concentration across these compartments
(22). A combined PCoA showed that Exp1 and Exp2 microbiomes followed independent tra-
jectories and reached different stable compositions (Fig. 2C), demonstrating that microbial
compositions of colonic compartments and their trajectories depend on the composition of
the fecal inoculum, thus maintaining individuality, and more importantly that they do not
converge toward a common composition inherent to the batch fermentation system (36).

Previous in vitro studies employed short-chain fatty acid (SCFA) concentrations as a
proxy to determine microbial community stability (37–39). SCFAs are predominantly

FIG 1 Microbiome compositions stabilize in different compartments of the in vitro fermentor. (A) Microbial beta diversity of the colon compartments
compared to the fecal inoculum (top) and during 1-day intervals (bottom) in Exp1. (B) Microbial beta diversity of the colon compartments compared to the
fecal inoculum (top) and during 2-day intervals (bottom) in Exp2. Beta diversity was calculated using Jensen-Shannon distance.
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produced by a limited number of bacteria (40), and there is compelling evidence from
both in vitro and in vivo studies that the SCFA concentrations might not reflect the
community structure (41–43). Also, cross-feeding on the SCFAs by other members of a
community is inevitable in both in vivo and in vitro settings, which could introduce
bias in the quantified SCFA levels (44, 45). Therefore, our use of microbiome beta diver-
sity from amplicon sequencing assesses community stability more accurately.

In both experiments, microbial communities in the DC compartment exhibited the
highest richness (Fig. S2) and harbored a different composition (Fig. 2) compared to
other compartments. While this has been observed before (22), previous studies have
not investigated whether this (i) was merely due to the cumulative wash-through of
the microbes from the preceding compartments combined with new bacterial growth
or (ii) stemmed from the establishment of a different actively growing richer commu-
nity due to the differences in conditions (e.g., pH, availability of carbohydrates, or bile
salt concentrations) between DC and other compartments. As relative abundance can-
not reveal whether ASVs expanded in DC, we estimated ASV absolute abundances for
Exp2 by performing cell counts on all samples (Fig. S5A) and compared them between
AC and DC in all time points (Fig. S5B). While several ASVs detected in AC were not
detected in DC (11.1% to 32.5% across all time points) (Fig. S5C), most were detected
in DC with an abundance difference within an order of magnitude. This suggests that
periodic flow from AC to DC could play a major role in shaping DC microbial composi-
tion. However, several ASVs increased in abundance from AC to DC while several
others decreased, sometimes by more than an order of magnitude (Fig. S5B).
Additionally, 51.5% to 61.5% ASVs detected in DC were not detected in AC (Fig. S5C),

FIG 2 Projection of the first two principal coordinates in the microbiome composition in the two experiments. Microbiome compositions in the parallel
units in Exp1 exhibit similar trajectories over time (A). Different colon compartments follow different trajectories in Exp1 (A) and Exp2 (B). Microbiome
compositions in Exp1 and Exp2 also follow distinct trajectories in a combined analysis (C). Samples are labeled with the day of the experiment in panels A
and B and colored with a gradient corresponding to the day of the experiment in panel C. Beta diversity was calculated using Jensen-Shannon distance.
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several reaching an abundance of .107 cells per ml (Fig. S5B), suggesting that DC con-
ditions were less restrictive. As specific examples, Akkermansia muciniphila [4] (num-
bers in brackets are ASV IDs) thrived well in DC but was not detectable in AC;
Lachnoclostridium [5] thrived in higher abundance in DC than AC; and ASVs such as
Prevotella copri [18], Prevotella [42], and Prevotellaceae [28] thrived in higher abundance
in AC than DC (Fig. S5D). These observations support the hypothesis that DC harbors a
richer actively growing community. Due to the interconnected nature of compart-
ments, we cannot rule out flow of microbial strains from preceding reactors to DC con-
tributing to the increased richness and influencing the composition in DC.
Nevertheless, our results imply that the conditions in DC play a pivotal role in establish-
ment and maintenance of an active community with higher richness.

Different dynamics exhibited bymicrobes during the adaptation and succession.
To gain insights into how microbes adapted to the in vitro fermentor, we analyzed lon-
gitudinal relative abundance profiles of ASVs that were detected at at least three time
points from each DC compartment (prominent ASVs). Based on hierarchical clustering
of their profiles, we identified three major trends: survivors, i.e., prominent ASVs
detected in the fecal inoculum that successfully survived in the fermentor; nonsurvi-
vors, i.e., ASVs detected in the fecal inoculum that failed to survive in the fermentor or
declined in abundance below the detection threshold; and bloomers, i.e., prominent
ASVs which were not detected in the fecal inoculum but which bloomed in the fermen-
tor and mostly maintained their population (Fig. 3). In Exp1, survivors, nonsurvivors,
and bloomers accounted for 25%, 48%, and 17% of prominent ASVs, while in Exp2
they accounted for 14%, 44%, and 29%. Overall, a high diversity of bacteria represent-
ing different genera were present in all three groups, suggesting that none of the
groups was dominated by any particular genus.

The survival and blooming of ASVs were highly dependent on the fecal inoculum
used for seeding. Among the 40 survivors in Exp1 and 18 survivors in Exp2, only six ASVs
(Bacteroides stercoris [37], Bacteroides vulgatus [24], Faecalibacterium prausnitzii [15],
Parabacteroides merdae [51], Subdoligranulum [43] and Blautia [36]) were common to
both experiments. Similarly, among the 27 bloomers in Exp1 and 38 bloomers in Exp2,
only 4 ASVs (Akkermansia muciniphila [4], Bacteroides fragilis [1], Lachnoclostridium [5], and
Eisenbergiella tayi [80]) were common. Five ASVs belonging to Faecalibacterium prausnitzii
were present in considerable abundance in each of the fecal inocula. However, only F.
prausnitzii [15] survived in both experiments, although with a declining trend. The declin-
ing growth of F. prausnitzii could be due to the absence of sugars such as lactose in the
feed (46) or to its lower fitness in catabolizing mucin present in the feed compared to
more efficient mucin catabolizers, such as A. muciniphila or some Bacteroides spp., that
exhibited higher growth (47, 48). In addition, in both experiments, several fecal ASVs
could not be detected at any of the time points in the in vitro microbiomes. Around 16%
of fecal ASVs from both Exp1 (19 of 117) and Exp2 (13 of 79) went undetected in DC com-
partments (Fig. S6).

During the adaptation and succession, even dominant ASVs in the fecal micro-
biomes ended up losing their dominance. In the donor 1 fecal microbiome, the five
most abundant ASVs together accounted for .50% of relative abundance: Bacteroides
dorei [3] (23%), Faecalibacterium prausnitzii [15] (10%), Sutterella wadsworthensis [9]
(6%), Lachnospiraceae sp. [84] (6%), and Blautia sp. [36] (5%). These accounted for only
8% of total relative abundance in the DC compartments after stabilization (3%, 1%, 3%,
0%, and 1% individual average relative abundances, respectively). The same trend was
also evident among the 20 most abundant fecal ASVs, which accounted for 80% of rel-
ative abundance in the fecal microbiome but a meager 12% in DC microbiomes. In do-
nor 2 fecal microbiome, the five most abundant ASVs accounted for .70% of relative
abundance: Prevotella copri [18] (42%), Prevotella [42] (17%), Alloprevotella [77] (7%),
Prevotellaceae [139] (4%), and Megamonas funiformis [23] (3%). However, the abun-
dance of these ASVs declined to,10% in the DC compartment.

Enrichment of rare microbes undetected in the fecal microbiome. Many ASVs
that were not detected in the fecal microbiome were consistently detected in the in
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FIG 3 Relative abundance profiles of prominent ASVs in descending colon (DC) compartments from Exp1 (A) and Exp2 (B) highlight three different trends
based on hierarchical clustering – survivors, nonsurvivors, and bloomers. Only prominent ASVs detected in at least 3 and 4 samples in Exp1 and Exp2,
respectively, are shown here. Relative abundance profiles of all ASVs are shown in Fig. S6. Each row is scaled between 0% to 100% of the maximum log
relative abundance of the given ASV.
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vitro microbiomes in both experiments. These bloomer ASVs were present in the fecal
sample but went undetected, as their density was likely below our detection threshold
of 6.2 million cells per g of feces. In all three compartments in Exp1, bloomer ASVs
accounted for significant proportions of ASV relative abundance (88%, 76%, and 69%
in AC, TC, and DC, respectively). For instance, the top 5 bloomer ASVs in the DC com-
partments (Bacteroides fragilis [1], Akkermansia muciniphila [4], Lachnoclostridium [26],
Lachnoclostridium [5], and Veillonella parvula [10]) constituted .63% of relative abun-
dance after stabilization (Fig. 4A). Similarly, the top 5 bloomer ASVs in the AC compart-
ment constituted .83% and the top 5 bloomer ASVs in the TC compartment consti-
tuted .71% of relative abundance (Fig. S7). Compared to Exp1, the bloomer ASVs in
Exp2 accounted for lower proportions of ASV relative abundance (18% in AC and 43%
in DC). In the same vein, the top 5 bloomer ASVs in DC (A. muciniphila [4], Mitsuokella
[34], Bilophila wadsworthia [2], Bacteroides uniformis [21], and Cloacibacillus porcorum
[63]) constituted only 21%, and the top 5 bloomers in AC constituted only 13%.

In Exp1, the bloomer B. fragilis [1] was the most abundant ASV after stabilization in
AC (60%), TC (50%), and DC (40%) compartments (Fig. 4A; Fig. S7), potentially due to
its fitness over other Bacteroides species such as B. dorei [3], which was the most abun-
dant ASV (23%) in donor 1 fecal microbiome, in utilizing a wide variety of carbon sour-
ces present in our feed (49, 50). In Exp2, on the other hand, B. fragilis [1] was not
detected in the donor 2 fecal microbiome, and its relative abundance was less than 1%
in the in vitro samples after stabilization. Instead, B. uniformis [21] bloomed in the DC
compartment, albeit to a maximum of 5.1% relative abundance. Donor-dependent tra-
jectories were also observed at other taxonomic levels. For example, the genus
Bacteroides maintained its dominance in Exp1 (33% in donor 1 fecal microbiome and
30 to 62% in the in vitro samples), whereas it maintained a lower abundance in Exp2
(,0.1% in donor 2 fecal microbiome and 3% to 18% in the in vitro samples) (Fig. S8).
Such a large difference in Bacteroides genus abundance despite the same nutrient
composition likely derives from the different ecological constraints inherited from the
donor fecal microbial communities. This could suggest that the ecological niche for
Bacteroides in Exp1 had room for a new Bacteroides ASV to grow in higher abundance,
while the niche in Exp2 did not.

Another prominent bloomer, A. muciniphila, was not detected in the donor 1 or do-
nor 2 fecal samples but bloomed in the TC (14%) and DC (19%) compartments of Exp1
and the DC (8%) compartment of Exp2 after stabilization. Also, in both experiments, A.
muciniphila continued to increase in relative abundance until the end of the study,
suggesting the availability of excess mucin for its catabolism. From relative abundance
data, it was not possible to verify whether A. muciniphila continued to expand in abso-
lute abundance. When we estimated absolute abundances using cell counts in Exp2
(Fig. S5A), we observed that A. muciniphila indeed exhibited a pattern of absolute
expansion, while other top ASVs showed a reduction in absolute abundance (Fig. 4B,
right). Since A. muciniphila is a highly prevalent commensal in healthy humans, its
undetected presence in both fecal inocula is not surprising. It normally accounts for
less than 1% of total fecal bacteria (51), which likely explains why we did not detect it
in the fecal inocula. Its higher growth under the in vitro conditions is also not surpris-
ing, as the nutrient media have ample amounts of mucin (3 g/liter) (52). However, its
higher growth especially in the DC compartments compared to other compartments
could be due to the more neutral pH (6.6 to 6.9) conditions (28, 53). This possibility of
cultivating and enriching undetectably low-abundance microbes present in feces using
in vitro fermentors provides a unique opportunity for characterizing rare microbes that
cannot be identified using DNA sequencing of the fecal microbiome.

Coherent microbe-exometabolite groups based on correlation network. In
Exp1, we performed untargeted metabolomics analysis on fecal inoculum, fresh media,
and supernatants from in vitro samples to understand the differences between the
exometabolomes from different compartments and to investigate microbe-metabolite
interactions. A total of 3,398 m/z features in positive mode and 10,448 m/z features in
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FIG 4 Longitudinal dynamics of the top 5 bloomer ASVs and top 20 fecal ASVs in the DC compartments of Exp1 (A) and Exp2 (B). The 20
most abundant ASVs in the fecal sample (colored boxes at the bottom) accounting for .75% and .85% of relative abundance decreased

(Continued on next page)
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the negative mode were detected across all samples (see Materials and Methods for
details and Table S1 for the list of mass features). Beta-diversity analysis based on the
detected features showed that D1 exometabolome compositions in all three compart-
ments started between fecal and medium metabolite compositions (Fig. 5A).
Longitudinal trajectories of the exometabolome compositions were comparable to
those of microbiome compositions seen in Fig. 2A—different trajectories for the differ-
ent compartments stabilizing around D12 at individual stable compositions—reinforc-
ing the connection between the microbiome and exometabolome compositions.
Metabolite compositional changes at 1-day intervals further confirmed that the metab-
olomes stabilized around D12 (Fig. S9). The AC exometabolome was the closest to the
medium metabolome, followed by TC and DC exometabolomes, agreeing with the
flow between compartments.

Microbes in a community interact with each other via resources such as metabo-
lites. Understanding these interactions in an ecological network is crucial for deriving
associations between the members of a community (54). The large difference between
the DC exometabolome and the medium metabolome suggested that DC harbored
the most biochemically active microbial community, at least in terms of secreted
metabolites. Hence, we derived a microbe-exometabolite network for DC compart-
ments using 162 mass features annotated based on tandem mass spectrometry (MS/
MS) fragmentation and 129 prominent ASVs present at at least three time points. We
generated a bipartite correlation network, applied community discovery on this net-
work, and identified 6 different coherent groups (Fig. 5B). These coherent groups are
different from the traditional microbe-microbe correlation subnetworks (55), as the
stratification here is mediated by exometabolites secreted by microbes. For instance, a
traditional correlation network might not have grouped S. wadsworthensis [9] with
Dorea formicigenerans [118], or Oscillibacter [129] with Lachnospiraceae [190], as their
relative abundance profiles were quite different (Fig. 3A). However, they were con-
nected in our bipartite network via exometabolites that correlate with both (Fig. 5B).

Among the exometabolites that were strongly correlated with ASVs, we identified
several that were relevant for host health. For instance, kynurenic acid, a neuroprotective
(56) and anti-inflammatory (57) metabolite, was positively correlated with Escherichia-
Shigella flexneri [61] and V. parvula [49] and negatively correlated with Dorea longicatena
[62], Fusicatenibacter saccharivorans [57], and Lachnospiraceae UCG-004 [67] (Fig. 5B).
Kynurenine, the substrate for kynurenic acid, is produced by selective cleavage of trypto-
phan by the enzyme tryptophan 2,3-dioxygenase, found in mammals and bacteria (58, 59).
The positive correlation of kynurenic acid to Escherichia-Shigella flexneri [61] is in agreement
with previous findings that it can be produced by Escherichia coli (60). Another tryptophan-
derived metabolite, indole, known for its role in reducing intestinal inflammation, exhibited
no positive correlations to any ASVs but only negative correlations to Bifidobacterium den-
tium [152], Lachnoclostridium [133], and Butyricicoccus [163] (Fig. 5B). This was very surprising,
as indole is a prevalent gut microbial metabolite known to be produced by many gut bacte-
ria that harbor the tryptophanase gene (61). However, we observed positive correlations of
multiple ASVs to indolelactate in our network, indicating the possibility that most of the free
indole might have been converted to other metabolites, such as indolelactate. Various stud-
ies have shown that indolelactate is produced mainly by Bifidobacterium spp. (62–64), and
the negative association of B. dentium [152] with indole could indicate the conversion of
free indole to indolelactate.

Among bile acids and their derivatives, we detected cholic acid, lithocholenic acid,
taurocholic acid, and 5b-cholanic acid-3a-ol-7,12-dione. Cholic acid, an unconjugated

FIG 4 Legend (Continued)
to ,20% and ,30% by D12 and D11 in Exp1 and Exp2, respectively. Unshaded gray boxes represent other fecal ASVs. At the same time,
the 5 most abundant bloomer ASVs (green boxes at the top) increased from being undetected in the fecal microbiome to .60% by D12 in
Exp1 and .30% by D11 in Exp2. Hatched gray boxes represent other bloomer ASVs. Longitudinal dynamics in other compartments are
shown in Fig. S7. (A) ASV relative abundances over time in DC compartment of unit 1 (left) and unit 2 (right) from Exp1. (B) ASV relative
(left) and absolute (right) abundances over time in DC compartment from Exp2.
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FIG 5 (A) Projection of the first two principal components in the metabolome composition for Exp1. Different
compartments follow different trajectories and stabilize around D12, similar to the microbiome compositions in Fig. 2A.

(Continued on next page)
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primary bile acid synthesized from cholesterol in the human liver, was part of the pan-
creatic juice fed to the colon compartments in abundance. Hence, its positive correla-
tion with multiple highly abundant bloomer and survivor ASVs such as S. wadsworthen-
sis [9] and Parabacteroides distasonis [35] could be due to the continuous accumulation
of unmetabolized cholic acid in the media (Fig. 5). We found 27 ASVs negatively corre-
lated with lithocholenic acid, potentially suggesting the conversion of lithocholenic
acid to secondary bile acids such as lithocholic acid, isolithocholic acid, ketolithocholic
acid, ursodeoxycholic acid, and chenodeoxycholic acid (65). However, we could not
confirm the production of these secondary bile acids, as we did not identify these bile
acids unambiguously in our metabolomics analysis.

Conclusions. By evaluating the longitudinal adaptation and temporal variation of
two fecal microbial communities in a multistage fecal fermentor, our study sheds light
on the dynamics of a complex gut bacterial community grown in vitro under different
colonic conditions. Specifically, our study also illuminates the dynamics of some of the
interesting and clinically relevant species in a complex in vitro community. For
instance, we could study the dynamics of (i) A. muciniphila, a well-known probiotic
microbe that plays a significant role in regulating various host functions (66, 67); (ii) S.
wadsworthensis, which is associated with inflammation (68); (iii) B. wadsworthia, which
is associated with inflammation and intestinal barrier dysfunction (69); (iv) P. distasonis,
which is associated with the alleviation of obesity and colitis (70); and (v) F. prausnitzii,
which has been negatively correlated with various disease conditions such as inflam-
matory bowel disease, irritable bowel syndrome, colorectal cancer, obesity, and celiac
disease (47, 71). These results imply that in vitro fermentors are suitable for growing
and characterizing clinically relevant microbes, both beneficial and detrimental to
human health, as part of a complex community similar to the human gut microbiota.
Distinct microbial compositions in the two experiments suggest that in vitro fermen-
tors can maintain the individuality of fecal microbiota rather than converging on a fer-
mentor-specific composition. Nevertheless, using an in vitro gut fermentor is not
devoid of limitations: in both experiments, less than one-third of fecal ASVs managed
to persist in the fermentor after stabilization. This implies that the combination of con-
ditions and feed used here may not be favorable for all members of the gut microbiota.
At the same time, another 33 ASVs in Exp1 and 45 ASVs in Exp2 that were not detected
in the fecal microbiome (at a detection threshold of 6.2 million cells per g feces) per-
sisted in the fermentor after stabilization, suggesting that in vitro fermentors can enrich
the hidden biodiversity in fecal microbiota.

The successful growth of any desired microbe in an in vitro fermentor that harbors
a complex and diverse community composition strongly relies on the symphony of
both ecological and molecular forces. The diversity of species also means intense com-
petition, but also potentially mutually beneficial relationships. Hence, it is crucial to
have the presence of a favorable ecological niche that provides beneficial interactions
among the candidate members of a community and the microbes of interest. This can
be addressed by modulating the feed and by introducing engineered synthetic com-
munities comprising commensals and mutualists wherein, most importantly, competi-
tors are eliminated.

MATERIALS ANDMETHODS
SHIME setup design, inoculation, and sample collection. All experiments were carried out using

the in vitro digestion model SHIME, specifically the luminal SHIME (L-SHIME). The setups in our experi-
ment were adapted from the TwinSHIME and QuadSHIME models (Fig. S1) (14). Each unit in Exp1 com-
prised a succession of five compartments (reactors) that simulated stomach (ST), small intestine (SI),

FIG 5 Legend (Continued)
(B) Microbe-metabolite bipartite correlation network in the DC compartments for Exp1 identifies six coherent groups.
Positive correlations are denoted by green edges and negative correlations by red edges. Coherent groups are
identified by different colors for the nodes and node labels. Node size corresponds to its degree. ASVs are indicated by
taxonomic annotation followed by ASV ID. Only mass features that were annotated using their MS/MS fragmentation
pattern were selected for this network analysis.
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ascending colon (AC), transverse colon (TC), and descending colon (DC), while the Exp2 was performed
with a combined stomach and small intestine (ST1SI) compartment, an AC compartment and a DC com-
partment (21). All compartments were continuously stirred at 300 rpm, and the temperature was kept
constant at 37°C. Anaerobic conditions were maintained by flushing all compartments with 100% N2.
The first two compartments of Exp1 and the first compartment of Exp2 were based on the fill-and-draw
principle simulating stomach and small intestine, with a peristaltic pump adding 140ml SHIME nutri-
tional medium (ProDigest BVBA, Ghent, Belgium) and 60ml pancreatic and bile liquid (ProDigest BVBA,
Ghent, Belgium) in three cycles a day with an 8-h interval between cycles. The SHIME nutritional medium
comprised arabinogalactan (1.2 g/liter), pectin (2 g/liter), xylan (0.5 g/liter), glucose (0.4 g/liter), yeast
extract (3 g/liter), special peptone (1 g/liter), mucin (3 g/liter), L-cysteine-HCl (0.5 g/liter), and starch (4 g/
liter). The pancreatic and bile liquid contained NaHCO3 (12.5 g/liter), oxgall (6g/liter), and pancreatin (0.9
g/liter). The last three compartments of Exp1 and the last two compartments of Exp2 were continuously
stirred compartments simulating colonic conditions. In Exp1 and Exp2, for the colon compartments, the
volume (V) and the pH were maintained as follows: for Exp1, the AC pH was 5.6 to 5.9 and V was 500ml,
the TC pH was 6.15 to 6.4 and V was 800ml, and the DC pH was 6.6 to 6.9 and V was 600ml; for Exp2,
the AC pH was 5.6 to 5.9 and V was 500ml and the DC pH was 6.6 to 6.9 and V was 800ml.

For the inoculation of colon compartments, the fecal inoculum was prepared from feces obtained
from two anonymous human donors with no history of antibiotic use 6 months prior to the study. For
this purpose, we used fresh fecal samples (less than 1 h after voiding). Fecal materials were mixed with
anaerobic phosphate buffer in a 20% (wt/vol) proportion. The anaerobic phosphate buffer contained
K2HPO4 (8.8 g/liter), KH2PO4 (6.8 g/liter), sodium thioglycolate (0.1 g/liter), with the pH adjusted to 7, and
was boiled to make it anaerobic. Prior to use, sodium dithionite (15mg/liter) was added to the buffer
and stored at room temperature. The fecal suspension was then homogenized using the Stomacher 400
circulator (Seward, UK) at 300 rpm for 10 min. Upon homogenization, the suspension was centrifuged
for 2 min at 500 � g to separate the inoculum (supernatant) from the debris. The inoculation was per-
formed with the resulting fecal inoculum in 5% (vol/vol) proportions in all colon compartments.

For Exp1, samples (1ml) were collected from AC, TC, and DC compartments in both units on days 1,
2, 5, 6, 7, 12, 13, 15, 16, 17, 20, 21, and 22, and for Exp2, samples were collected every second day for AC
and DC compartments from day 1 until day 31. All collected samples were centrifuged at 6,000 rpm for 5
min to separate bacterial cells from the culture. In Exp1, for days 2, 7, 12, 17, and 22 as well as for fecal
samples, triplicate sampling was performed. Upon centrifugation, both the bacterial pellet and culture
supernatants were stored at280°C for further analysis.

DNA extraction, 16S rRNA gene amplicon sequencing. Genomic DNA from the bacterial pellets
was extracted using a NucleoSpin Soil kit (Macherey-Nagel, Duren, Germany) following the manufac-
turers’ instructions with a modification in the sample lysis step. For efficient lysis, the bacterial pellets
were resuspended in the optional enhancer SX solution and SL1 buffer and homogenized using
TissueLyser II (Qiagen, Hilden, Germany) at a speed of 30 oscillations/s for 5 min. The concentrations and
quality of DNA were evaluated using a NanoDrop system and Qubit Fluorometer/microplate reader
(Thermo Fisher Scientific, USA). 16S rRNA gene amplicon sequencing targeting the V4 variable region
was performed using the Illumina HiSeq 2500 system, producing 2� 250-bp paired-end reads.
Altogether, 3,031,524 high-quality paired-end reads (median, 20,760 per sample) from 3 fecal inoculum
replicates and 143 in vitro samples in Exp1 and 8,117,537 high-quality paired-end reads (median,
231,733 per sample) from one fecal inoculum sample and 32 in vitro samples in Exp2 were generated.

Total cell counting. Cell counting was carried out using the Quantom Tx microbial cell counter
(Logos Biosystem, South Korea). The bacterial pellets were resuspended in sterile SHIME nutritional
media, and the samples were diluted 10 times. Ten microliters of diluted samples was mixed well with
1ml of Quantom total cell staining dye, 1ml of Quantom total cell staining enhancer, and 8ml of
Quantom cell loading buffer I. From the resulting mixture, 6ml was loaded on a Quantom M50 cell
counting slide and centrifuged at 300 � g for 10min in a Quantom centrifuge. Then, the samples were
counted with the Quantom Tx microbial cell counter with the following parameters: light intensity, level
5, size gating, ;0.3 to 50mm; roundness, 25%; declustering level, 10; and detection sensitivity, 9.

Bioinformatics and statistical analysis. All analyses were performed in R software (v3.6.2).
(i) Sequence quality control.We used the DADA2 v1.16 R package (32) to process the 2 � 250-bp

Illumina HiSeq amplicon sequencing reads representing the V4 region of 16S rRNA genes. Primers
were removed from raw reads; and reads were filtered and trimmed using the parameter truncLen=c
(200,160).

After this, 20,000 high-quality filtered and trimmed reads were randomly selected to remove the
confounding effect of sequencing depth between the two experiments. The error-rate-learning step was
performed individually for each experiment. Then, reads were dereplicated and merged. Chimeras were
identified and removed from the amplicons, leaving 424 unique amplicon sequence variants (ASVs).

(ii) Taxonomic classification of ASV sequences. Taxonomic classification of ASV sequences was
performed using the Silva 138 database (72) following recommended procedure from DADA2 develop-
ers: using the assignTaxonomy function (with silva_nr_v138_train_set.fa), which assigns taxonomy up to
the genus level, followed by the addSpecies function (with silva_species_assignment_v138.fa), which
uses exact sequence matching to assign species.

(iii) Full-length 16S rRNA gene sequencing and taxonomic assignment for DC samples. To
improve species-level assignment, we sequenced near-full-length 16S rRNA gene regions from 29 sam-
ples from Exp1 (14 DC samples each from unit 1 and unit 2; 1 fecal sample) using PacBio sequel II circular
consensus sequencing (CCS) technology using the manufacturer’s recommendation (number 101-599-
700, version 03 [February 2020]; Pacific Biosciences, USA). We derived 832,879 high-quality circular
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consensus sequences (median, 26,555 sequences per sample) using the CCS program v4.2.0 with the fol-
lowing parameters: –min-snr = 3.75 –max-length = 7000 –min-length = 1200 –min-passes = 20 –min-
rq = 0.9995 (73). We then generated unique full-length 16S rRNA gene sequences using two approaches:
(i) ASVs using the workflow recommended by DADA2 developers (74) and (ii) zero-radius operational
taxonomic units (ZOTUs) using the UNOISE algorithm (75). To ensure high reliability, we derived sequen-
ces found by both approaches as the full-length ASVs. We then taxonomically annotated these ASVs
using the assignSpecies function (with silva_nr99_v138_wSpecies_train_set.fa).

(iv) Improving taxonomy assignment of V4 region ASVs using full-length ASVs. To improve the
taxonomic resolution of the V4 ASVs, we aligned them to the full-length ASVs and transferred better-
resolved taxonomy from the latter if a V4 ASV aligned either to only one full-length ASV or to multiple
full-length ASVs with identical taxonomy. This increased species-level resolution from 95 to 121. Finally,
ASVs without phylum assignment were discarded.

(v) Alpha- and beta-diversity analyses. Alpha- and beta-diversity analyses were performed using
the phyloseq package (v1.30.0). Alpha diversity between colon compartments was compared by apply-
ing the Wilcoxon signed-rank test using ASV richness and the Shannon index. Beta diversity analysis was
done by calculating the Jensen-Shannon distance.

(vi) Heat map visualization. For visualization purposes, only prominent ASVs present in at least
three time points (including fecal samples) were considered. Heat map rows were ordered based on
hierarchical clustering. For visualization, ASV relative abundance was converted to read counts by multi-
plying with approximate average sequencing depth (20,000 reads) and normalized in log scale by the
formula log10 (1+ xi)/max {log10 (1+ xi)}, where xi is the read count for a given ASV in sample i.

(vii) Network analysis. Correlations (between ASV relative abundances and metabolite abundan-
ces) were calculated using Spearman rank correlation. In the bipartite microbe-metabolite network,
each node corresponds to either an ASV or a mass feature detected in the DC compartment. Edges in
this network connect only ASVs with metabolites (i.e., no links within metabolites themselves or within
ASVs). An edge between two nodes corresponds to a correlation, positive or negative, between the
corresponding mass feature and ASV, calculated using Spearman’s correlation. In the visualized net-
work, we considered absolute correlation values greater than 0.6 with statistical significance
(P# 0.001). In the visualizations, node size corresponds to the degree of the node in the graph, and
node color corresponds to its community membership when applying community discovery on the
graph using the Louvain method (76).

(viii) Longitudinal trends on cell count. Since raw cell counts were noisy, cell count longitudinal
trends were calculated using a third-degree polynomial model as implemented in the R function lm. The
R function predict was applied to extract the values predicted by the lm function, which were used for
further analysis.

Metabolomics analysis. (i) Chemicals and reagents. High-performance liquid chromatography
(HPLC)-grade water, acetonitrile, and methanol (MeOH) were purchased from Honeywell (Charlotte, NC,
USA). Labeled standards were acquired from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA,
USA). Electrospray ionization low-concentration (ESI-L) tuning mix was purchased from Agilent
Technologies (Santa Clara, CA, USA). Formic acid ($99.5%), Optima liquid chromatography-mass spec-
trometry (LC-MS) grade, was purchased from Fisher Chemical (Pittsburgh, PA, USA).

(ii) Sample preparation for metabolite extraction. From the supernatants obtained from SHIME
compartments, 50 ml of supernatants was treated with 100ml of 50% MeOH. For quality control and nor-
malization, 50ml of two internal labeled standard mix of chenodeoxycholic acid-d4 (1mg/liter) and L-
phenylalanine-13C9,

15N (1mg/liter) in MeOH was added to the extraction solvent. Samples were vortexed
and precipitated on ice for 30min. After precipitation, extracts were centrifuged at 10,000 rpm at 4°C for
3min for protein precipitation and metabolite extraction. The supernatants containing the polar metab-
olites were collected in LC vials for LC-MS analysis (77).

(iii) Quality control. A pooled sample (quality control sample [QC]) of the reconstituted extracts
was prepared by mixing equal volumes of each sample. The pooled sample was further diluted with
MeOH at 1:1 and 1:2. To condition the column, the QC sample dilution series was injected at least 3
times before initiating the run. Then, the sample was reinjected every 10 sample injections and at the
end of the run to assess instrument stability and analyte reproducibility. An equal volume of a blank
sample consisting of 100% MeOH was randomly inserted into the real sample queue to be processed as
a needle wash and to equilibrate the column, as well as to avoid contamination among real samples.
The analytical reproducibility in terms of detected intensities of detected m/z features was evaluated by
calculating the coefficient of variation (CV) of detected peaks in QC samples and by visualizing the tight
clustering of QC samples in principal-component analysis (PCA) (78).

(iv) Analysis of metabolites by UHPLC–TOF-MS. Metabolomics profiling was performed using an
ultrahigh-performance liquid chromatography (UHPLC) system (Agilent 1290 Infinity II) connected to a
Bruker timsTOF Pro instrument equipped with a trapped-ion mobility spectrometer (TIMS) coupled to a
hybrid quadrupole time-of-flight mass spectrometer (TOF-MS) (Bruker, Bremen, Germany). Ions were
generated in the positive and negative electrospray ionization modes. The samples were randomized
and analyzed using reversed-phase Acquity UPLC HSS T3 columns, 100 Å, 1.8mm, 2.1mm by 50mm
(Waters, Milford, MA). The column and autosampler temperatures were maintained at 40°C and 10°C,
respectively. Solvent A, consisting of 0.1% formic acid in water, and solvent B, consisting of 0.1% formic
acid in acetonitrile and propanol (3:1, vol/vol), were used as mobile phases. The injection volume and
flow rate were 5ml and 0.4ml/min, respectively. The UPLC gradient was programmed as follows: 0 to
10% B over 0 to 2min, 99% B (2 to 9min), 0.1% B (9 to 10min). The ESI source used 10 liters/min of dry-
ing gas at a temperature of 220°C. The ESI was set at a 3,500-V capillary voltage and a 300-kPa nebulizer
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pressure. Detection of the mass/charge ratio (m/z) of ions was set from 50 to 1,000 over 10min. To facili-
tate the compound identifications, QC samples were analyzed by auto-MS/MS in positive and negative
electrospray ionization modes. The absolute threshold was set to 1,000 counts. MS and MS/MS spectrum
acquisition rates were set to 4Hz, with a total cycle time of 1 s for precursor ion collection. The collision
energy varied between 10 eV and 60 eV.

(v) MS data processing. Data acquisition was performed with otofControl version 6.0 and Bruker
Compass HyStar version 5.0 (Bruker Daltonics, Bremen, Germany), and data processing was performed with
Bruker Compass Data Analysis 5.2 software and MetaboScape version 5.0 (Bruker Daltonics, Bremen, Germany).
Molecular feature selection, bucketing, filtering, and scaling were performed by MetaboScape to generate the
peak lists from MS and MS/MS spectra. An internal calibrant of Na format injected at the beginning of each
analysis was used to calibrate the acquired MS and MS/MS data in MetaboScape.

For identification of metabolites, the m/z features obtained from MS analysis were matched to the Human
Metabolome Database (HMDB) (https://hmdb.ca). The positive and negative ion adducts [M 1 H]1, [M 1
NH4]

1, [M 1 Na]1, [M1H 2 H2O]
1, [M1K]1, [M 1 Na 2 2H]2, [M 1 Cl]2, and [M 2 H]2 were used during

annotation, with a confidence limit of 10ppm to increase sensitivity in the matching of compounds (66). The
MS/MS spectra in MetaboScape were annotated using SmartFormula and by comparing the spectra with previ-
ously created MS/MS spectral libraries, such as Bruker HMDB Metabolite Library, Bruker MetaboBASE Personal
Library 2.0, Bruker MetaboBASE Personal Library 3.0, MoNA, and MSDIAL-TandemMassSpectralAtlas, with a con-
fidence limit of 5 mDa for parent mass tolerance (79). The complete list of the mass features and their inten-
sities for different time points is available in the supplemental material (Table S1).

(vi) Principal-component analysis. Metabolite peak intensity data normalization was performed as
follows: (i) log transformation using ln 11xð Þ to avoid taking log of 0, (ii) z-scoring (mean centered and
divided by the standard deviation of each variable). PCA was performed on normalized data utilizing
Euclidean distance.

Data availability. Sequencing reads have been deposited at NCBI Short Read Archive under
BioProject identifier PRJNA687518. Metabolomics data have been deposited in the MetaboLights data-
base under study identifier MTBLS2531. Processed microbiome summary data are available as an R phy-
loseq object at http://arumugamlab.org/SuppData/Gnanasekaran_et_al_2021_microbiome_adaptation/.
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