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Introduction
Heart failure (HF) is a heterogeneous clinical 
syndrome caused by cardiac overload and injury, 
impacting an individual’s quality of life and lon-
gevity.1,2 It is estimated that about 1% to 2% of 
the adult population experiences HF.3 In addi-
tion to pharmacological therapy, interventional 
and surgical treatments offer new opportunities 
for the treatment of HF. To optimize and estab-
lish these therapeutic approaches as well as dis-
cover new ones, an understanding of the 
underlying mechanisms of HF is critical. 
According to recent studies, inflammation plays 
an important role in HF pathogenesis. 
Macrophages, a major cell type of the innate 
immune system, which are responsible for phago-
cytosis and immune activation, govern inflamma-
tory processes in injured tissues.4 These cells 
contribute to a localized rise in the levels of 
inflammation cytokines, which activate numerous 
pro- or anti-inflammatory transcription factors. 
Many lines of evidence from in vivo and in vitro 
studies indicate the importance of macrophages 

in HF. Here, we specifically discuss the emerging 
roles of macrophages and their therapeutic poten-
tial in HF.

HF and inflammation
HF is a multifactorial systemic disease caused by a 
structural or functional cardiac abnormality.3,5 
Following cardiac injury, a network of structural, 
neurohumoral, cellular, and molecular mecha-
nisms are engaged in sustaining the physiological 
function of the heart.6 Inflammation and HF are 
strongly interconnected and mutually reinforce 
each other.4 During HF, the immune system is 
activated, which usually increases in local inflam-
matory cytokines and proinflammatory transcrip-
tion factors that trigger subclinical systemic 
inflammation.7 Many studies indicate a correla-
tion between the elevation of proinflammatory 
cytokine levels and poor prognosis and emphasize 
the role of inflammation and anti-inflammatory 
agents in acute cardiac injury. However, the 
underlying molecular mechanisms remain unclear.
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Inflammation is the main element of the cardiac 
remodeling process in HF and other cardiovascu-
lar diseases (CVD). It may also indicate a worsen-
ing functional capacity of the heart and a poor 
prognosis for end-stage cardiac diseases.8,9 
Resolving inflammation is now considered as an 
active biochemical strategy to restore homeostasis 
in inflamed tissue.10 It is accomplished upon 
prompt resolution of the acute inflammatory 
response to prevent tissue injury, cessation of leu-
kocyte infiltration, and removal of foreign agents 
(such as bacteria) and necrotic debris from the 
inflammation site.8 These processes are largely 
governed by macrophages, which play a vital role 
in mounting and resolution of inflammation, and 
subsequent tissue repair, due to their high versa-
tility and plasticity.11,12 In addition, various dis-
eases are associated with chronic nonresolved 
inflammation, such as cancer, arthritis, and ath-
erosclerosis, wherein the underlying persists for a 
longer period.13 For instance, cells in atheroscle-
rotic lesions (macrophages, dendritic cells, and T 
cells) promote the expression of proinflammatory 
cytokines and eicosanoids that maintain the pro-
inflammatory state, in response to the activation 
of both innate immunity and adaptive immunity 
in the host.14,15

Macrophages
Macrophages are an essential part of the innate 
immune system and reside in virtually all verte-
brate tissues.16 They serve an important role in 
maintaining the body’s homeostasis by disposing 
internal waste material and engaging in tissue 
repair.17 Heterogeneity of the macrophage lineage 
has been recognized for a long time. It is partly 
associated with the inability to identify and char-
acterize defined subsets of the monocyte/mac-
rophage lineage18 because of the differences in 
replication and turnover rates of macrophages 
from different tissues.19 Variations in the physio-
logical microenvironment and the surrounding 
stimuli have diverse effects on the macrophage 
phenotype and, hence, impact the macrophage 
function. Mills et  al.20 categorized macrophages 
into M1 and M2 classes, representing classically 
activated and alternatively activated macrophages, 
respectively, based on the T-helper (Th) 1/Th2 
T-cell polarization paradigm and their function. 
It is known that M1 macrophages promote 
inflammation, while M2 macrophages are respon-
sible for healing and tissue repair.18 While the 

M1/M2 nomenclature is useful, it is widely recog-
nized as an oversimplified approach for categoriz-
ing multiple polarization phenotypes of 
macrophages found in various tissues and regu-
lated by multiple microenvironmental signals. 
However, although a new macrophage classifica-
tion system is needed to help inpatient clinical 
diagnosis and treatment, the M1 and M2 nomen-
clature remains indispensable for the delineation 
of macrophage phenotypes.

M1 macrophages
M1 macrophages (classically activated mac-
rophages) are proinflammatory cells activated by 
pathogen-associated molecular patterns 
(PAMPs), such as lipopolysaccharides and intra-
cellular pathogens. They are also activated by 
Th1 cytokines like interferon-γ (IFN-γ) and gran-
ulocyte-macrophage colony-stimulating factor 
(GM-CSF). The activation ultimately leads to 
the production of proinflammatory cytokines, 
including interleukin (IL)-1α, IL-1β, and IL-6, in 
addition to tumor necrosis factor-α (TNF-α) and 
cyclooxygenase-2 (COX-2).12 Damage-associated 
molecular patterns (DAMPs), secreted or exposed 
by living cells experiencing stress or by dead cells, 
are also linked to inflammation and tissue repair.21 
Functionally, during infection, it is thought that 
pathogens are eliminated by M1 macrophages via 
activation of the nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase system and 
generation of reactive oxygen species (ROS), 
nitric oxide (NO), cytokines, and prostaglan-
dins.22,23 In conclusion, M1 macrophages exhibit 
Th1-oriented proinflammatory effector proper-
ties, as well as robust antibacterial and antitumor 
activity, which promote ROS-induced tissue 
damage.

Typically, pattern recognition receptors (PRRs), 
the surveillance molecules on the cell surface or in 
the cytoplasm of macrophages, dendritic cells, 
and a variety of nonprofessional immune cells, 
are the targets of PAMPs and DAMPs.24,25 Toll-
like receptors (TLRs) are among the best-charac-
terized PRR subfamilies associated with 
macrophage activation. TLR signaling is roughly 
categorized into two pathways, the myeloid dif-
ferentiation primary response gene 88 (MYD88)- 
and the toll-receptor-associated activator of 
interferon (TRIF)-dependent pathways, based on 
the involvement of distinct adaptor molecules, 
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and ultimately results in transcriptional upregula-
tion of the downstream genes.25 In M1 mac-
rophages, TLR agonists rely on the 
MYD88-dependent signaling pathway, transloca-
tion of free nuclear factor kappa-B (NF-κB) to 
the nucleus, and activation of proinflammatory 
cytokine genes. As a result of this, numerous pro-
inflammatory cytokines and chemokines are 
released.26,27 M1 macrophages sense the invading 
pathogens and initiate local stimuli through this 
pathway during the innate immune response. M1 
macrophages are also stimulated by Th1 
cytokines, including IFN-γ. IFN-γ is primarily 
produced during the innate immune response by 
natural killer (NK) and natural killer T (NKT) 
cells.28,29 Müller et  al.30 found that IFN-γ and 
TLR agonists both enhance the tumoricidal activ-
ity of M1 macrophages and the production of NO 
and proinflammatory cytokines, while IFN-γ sup-
presses macrophage production of IL-10, which 
is affected by TLR agonists. There is evidence 
that combining IFN-γ and TLR agonist therapy 
may open up new options for macrophage-asso-
ciated treatment.30 On the contrary, it has 
recently been demonstrated that M1-like mac-
rophages produce a large number of proinflam-
matory exosomes (M1-Exos) after myocardial 
infarction (MI). M1-Exos express high levels of 
proinflammatory miRNAs that exert an antian-
giogenic effect and accelerate MI injury by 
downregulating target genes.31 The current 
understanding of this process highlights critical 
roles for M1 macrophages and M1-Exos in car-
diac repair. It, thus, paves the way for the devel-
opment of a new therapeutic approach in MI 
prevention and treatment.

M2 macrophages
M2, known as ‘alternatively activated mac-
rophages’, are immunomodulatory macrophages 
that are activated by various cytokines: CSF-1, 
transforming growth factor-β (TGF-β), IL-4, 
IL-10, and IL-13. They primarily function in 
releasing immune modulators, phagocytosing 
apoptotic cells, facilitating collagen synthesis, and 
maintaining tissue integrity, with proliferative and 
wound-healing properties.32,33 M2 macrophages 
are phenotypically heterogeneous and are classi-
fied accordingly. M2a macrophages highly express 
CD206, CD200R, and CD209 after activation by 
IL-4 and IL-13. M2b macrophages are obtained 
upon Fc-receptors, immune complexes (ICs), 
and TLR stimulation and secrete both 

proinflammatory cytokines (IL-1β, IL-6, and 
TNF-α) and anti-inflammatory cytokines (IL-
10). M2a and M2b macrophages are involved in 
immune regulation and can trigger M2-type 
immune responses. Meanwhile, M2c mac-
rophages can be stimulated by glucocorticoids, 
IL-10, and TGF-β and show strong anti-inflam-
matory activity against apoptotic cells. Finally, 
adenosine receptors are responsible for the induc-
tion of M2d macrophages by TLR agonists. The 
M2d subset can mediate proangiogenic effects by 
producing anti-inflammatory cytokines (IL-10high 
IL-12low) and vascular endothelial growth factor 
(VEGF).

IL-4 and IL-13 are the most important 
M2-polarizing cytokines that can cause fibrogen-
esis by regulating the expression of fibronectin-1 
(FN-1) and β2-integrins.34 Abnormal expression 
of these two cytokines is correlated with fibrosis 
in multiple tissues and diseases. IL-10 can also 
drive M2 polarization by regulating the signal 
transducer and activator of transcription 3 
(STAT3) pathway via the IL-10 receptor 
(IL-10R).35 A recent study in a mouse model of 
MI confirmed that the administration of long-
acting IL-4 complex increases the population of 
M2-like macrophages (CD206+ F4/80+), pri-
marily in the damaged myocardium.36 IL-4 com-
plex administration improved cardiac function, 
which was linked to reducing infarct size, enhanc-
ing tissue repair, improving connective tissue 
development and microvascular formation, and 
decreasing hypertrophy of cardiomyocytes. The 
therapeutic effect was reduced when IL-4 com-
plex was administered 28 days after MI. These 
experiments validated the efficacy of IL-4 and 
M2 macrophages as a treatment for acute MI.36 
Meanwhile, according to recent studies, Klotho, 
an anti-aging protein, alleviates indoxyl sulfate-
induced HF and kidney damage via NF-kB sign-
aling inactivation and promotes M2 macrophage 
polarization.37

Notably, the polarization of macrophages deter-
mines the fate of organs and tissues after inflam-
mation or infection. In the case of severe 
inflammation, macrophages first manifest the M1 
phenotype to secrete proinflammatory cytokines. 
If the M1 phase continues for a long time, this 
causes extensive damage because of the prolonged 
exposure to proinflammatory molecules, which 
explains why some inflammatory diseases get 
exacerbated. Investigation of how polarized M1 
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macrophages mature and transform into M2 
repair macrophages may be the key to developing 
new therapeutic approaches.

Other macrophage subtypes
Other macrophage subtypes such as M4, Mox, 
and M (Hb) or Mhem are induced by CXCL4, 
oxidized low-density lipoprotein (LDL), and 
hemoglobin, respectively, in an intraplaque hem-
orrhage setting.38,39 However, the current under-
standing of their unique functions is poor. Further 
exploration of these subtypes may provide new 
insights into macrophages and macrophage-asso-
ciated diseases to enable more effective and novel 
therapeutic strategies for treating HF.

Cardiac-resident macrophages
Tissue-resident macrophages have been identi-
fied as a heterogeneous immune cell population 
with tissue-specific functions.40,41 They present in 
different organs, such as the liver, brain, lung, 
skin, and heart, maintaining homeostasis and 
enabling tissue regeneration.42,43 Furthermore, a 
self-renewing and self-proliferating population of 
tissue-resident macrophages that is not mono-
cyte-derived and decreases with age has been 
detected during adulthood.40,42

The tissue microenvironment is a major determi-
nant of macrophage phenotype and influences the 
expression of numerous genes. In the adult heart, 
resident macrophages constitute the largest sub-
population of cardiac macrophages.44 While cir-
culating monocyte-derived macrophages express 
high levels of C-C motif chemokine receptor 2 
(CCR2) and are vital in promoting and coordi-
nating inflammation and migration, CCR2− resi-
dent cardiac macrophages promote angiogenesis 
and cardiomyocyte proliferation in a steady 
state.45,46 Recently, Dick et al.47 demonstrated the 
existence of four macrophage populations in a 
healthy adult myocardium: TIMD4 + LYVE1 +  
MHC-IIlowCCR2− (independent of blood mono-
cytes), TIMD4−LYVE1−MHC-IIhighCCR2− 
(partially replaced by monocytes), and two 
subsets of TIMD4−LYVE1−MHC-IIhighCCR2+ 
(fully replaced by monocytes). They also found 
that ischemia damage reduces the number of 
TIMD4+ and TIMD4− resident macrophages, 
while CCR2+ monocyte-derived macrophages 
take on other roles inside the infarcted tissue. 

According to the study, using a CX3CR1-based 
system, depleting resident cardiac macrophages 
led to impaired cardiac function and exacerbated 
peri-infarct remodeling. Another study showed 
that depleting resident cardiac CCR2 mac-
rophages in an MI murine model increased the 
infarct area and exacerbated left ventricular 
remodeling.48 These results indicate that resident 
cardiac macrophages provide cardioprotection. 
Lavine et al.49 captured this characteristic feature 
and assessed the potential therapeutic impact of 
resident cardiac macrophages by selective admin-
istration of a CCR2 inhibitor in a cardiac injury 
mouse model. They found that the mRNA 
expression of proinflammatory cytokines in the 
heart of the injured mouse treated with the CCR2 
inhibitor was lower than that in the control. These 
treated mice showed only minimal adverse 
remodeling after cardiac injury and, ultimately, 
revealed restored cardiac function.

Collectively, although the role of resident cardiac 
macrophages in cardiac injury has not yet been 
characterized, an increasing number of studies 
suggest that these cells might have cardioprotec-
tive properties in MI. Resident cardiac mac-
rophages continue to proliferate and self-renew 
upon disruption of homeostasis.50 They may be 
involved in the initiation and resolution of 
ischemic heart disease, contrary to the role of 
monocyte-derived macrophages. Their potential 
functions in cardiomyocyte metabolism, contrac-
tion, and survival remain to be established.

Macrophages and early MI
The immune responses in myocardial ischemia 
can be divided into three distinct but overlapping 
phases: very early, early, and late, representing a 
time of zero–hours, hours–days, and weeks–
months, respectively.51 After ischemic myocar-
dium necrosis, the intracellular contents are 
released into the surrounding tissue environment. 
Cardiac macrophages, fibroblasts, endothelial 
cells, and other cardiac cells become immediately 
activated. In the infarcted heart, macrophages 
constitute the majority of the immune cells.48 A 
mount of bone marrow and splenic monocytes is 
attracted to ischemic heart tissue as monocyte-
derived macrophages in response to the ischemic 
injury. These macrophages replace the resident 
cardiac macrophages and support the inflamma-
tory process.52,53 It has been reported that, within 
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30 min of MI, ROS are generated and the MCP-1/
CCR2 axis mediates recruitment of Ly6Chigh 
monocytes from the bone marrow and spleen.54,55 
Ly6Chigh monocytes become the predominant 
and first cell populations arriving at the infarct 
lesion to produce proinflammatory cytokines, 
including IL-6, IL-1α, and TNF-α.12,56 As phago-
cytosis occurs extensively, there may be myocar-
dial tissue damage due to the release of proteolytic 
enzymes and attraction of immune cells to the 
heart during inflammatory episodes.57 On the 
contrary, Ly6Chigh monocytes phagocytize cell 
debris and mediate proteolysis at an early stage of 
acute inflammatory response,58 presenting a car-
dioprotective function. Ly6Chigh monocytes peak 
approximately 3 days after MI.56 From days 1–3, 
monocytes accumulate and constantly differenti-
ate into classically activated macrophages. 
Consequently, M1 macrophages are the domi-
nant cells in the infarcted zone. They produce 
proinflammatory cytokines and enhance the pro-
inflammatory response, contributing to the break-
down of collagen and extracellular matrix (ECM). 
These proinflammatory macrophages pave the 
way for the ensuing reparative phase by clearing 
apoptotic cells, cell debris, and ECM compo-
nents.59 Approximately 5–7 days after injury, 
macrophage populations within the infarct area 
peak, with a transition to the postinfarction prolif-
erative phase following the resolution of 
inflammation.60

Macrophages and postinfarction cardiac 
remodeling
Cardiac remodeling following MI is a response to 
either functional or structural cardiac stress, as 
well as the loss of viable myocardium, and plays a 
pivotal role in the progress of the disease.61 
During this stage, inflammatory cells (Ly6Chigh 
monocytes and M1 macrophages) are gradually 
replaced by anti-inflammatory cells (Ly6Clow 
monocytes and M2 macrophages). As the inflam-
matory phase subsides, macrophages regain con-
trol of the wound-healing process. Alternatively, 
activated macrophages produce anti-inflamma-
tory (IL-10), proangiogenic [VEGF, platelet-
derived growth factor (PDGF), and insulin-like 
growth factor (IGF 1)], and pro-fibrotic (TGF-
β1, fibronectin) factors to help reconstruct vascu-
lar supply and repair the necrotic tissue.62,63 This 
remodeling initially supports improved cardiac 
performance; however, with time, it may lead to 
detrimental pathological consequences such as 

cardiomyocyte death, compromised ventricular 
wall integrity, impaired ventricular function, and 
cardiac fibrosis, eventually contributing to HF61 
(Figure 1).

Despite increasing evidence showing that mac-
rophages are abundant in infarcted hearts and are 
capable of regulating inflammation, our under-
standing of macrophage-mediated interactions in 
suppressing inflammatory signals and resolving 
leukocyte infiltration is limited. Reports reveal 
that inflamed heart tissue postinfarction contain a 
wide range of macrophage subpopulations with 
distinct functional characteristics, such as regula-
tory macrophages and reparative macrophages.64 
It has been indicated that the phenotype of a mac-
rophage population can change over time, after 
infarction. However, it remains unknown whether 
this alteration of new subpopulations of mac-
rophages into the infarcted zone replaces the orig-
inal macrophages or is a result of the original cells 
transforming into different states.

Recently, progressive adverse cardiac remodeling 
after MI has been treated by targeting mac-
rophages. Bai et al.65 concluded that environmen-
tal eustress (EE) improved cardiac function and 
ameliorated adverse ventricular remodeling after 
MI in mice models, possibly contributing to the 
increased survival of Ly6Clow macrophages and 
their CCR2-MHCIIlow subsets by the brain-
derived neurotrophic factor (BDNF)-mediated 
ERK1/2 and AKT pathways. It represents a pre-
viously unknown strategy for preventing adverse 
ventricular remodeling postinfarction. Another 
recent study by Wei et  al.66 demonstrated that 
EGF-like repeats and discoidin domains 3 
(EDIL3) deficiency ameliorates adverse cardiac 
healing by neutrophil extracellular traps (NET)-
mediated M1 macrophage polarization. 
Moreover, Yes-associated protein (YAP)/tran-
scriptional coactivator with Postsynaptic density 
95, PSD-85; Discs large, Dlg; Zonula occludens-1, 
ZO-1 (PDZ)-binding motif (TAZ) deletion 
impedes IL-6 and promotes Arg1 expression via 
interaction with the histone deacetylase 3 
(HDAC3)-nuclear receptor corepressor 1 
(NCoR1) repressor complex.67 These changes in 
macrophage polarization contribute to improved 
cardiac function by reducing MI-induced ventric-
ular hypertrophy and fibrosis and increasing angi-
ogenesis. Dysregulation of macrophage 
polarization into the M1 and M2 phenotypes 
causes severe inflammation and cardiac injury. 
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KDM3A plays an essential role in the biological 
function of rat bone marrow-derived macrophages 
(BMDMs) acting via epigenetic mechanisms. 
KDM3A deficiency promotes the M1 phenotype 
but restrains the polarization of the M2 pheno-
type in vitro, as well as aggravates inflammation 
and exacerbates left ventricular remodeling in 
vivo.68 On the contrary, as recently demonstrated, 
M2 macrophage-derived exosomes (M2-exos) 
carry microRNA-148a (miR-148a) that alleviates 
myocardial ischemia/reperfusion injury by down-
regulating thioredoxin-interacting protein 
(TXNIP) and inactivates the TLR4/NF-κB/
NLRP3 inflammasome signaling pathway.69 
Furthermore, in the same study, in vivo treatment 

with M2-exos reduced infarct size along with mit-
igated Ca2+ overload and cardiac enzyme dys-
regulation. Glinton et al.70 indicated that cardiac 
macrophages ameliorate cardiac injury post-MI 
through the promotion of myocardial lymphangi-
ogenesis by secreting vascular endothelial growth 
factor C (VEGFC). These important regulators 
of macrophage-mediated responses may provide 
new insights for MI treatment.

Macrophages and myocarditis
Myocarditis is an inflammatory mechanism that 
affects the heart’s muscular tissue. It is the main 
factor behind HF and sudden death.71,72 If acute 

Figure 1. Macrophage involvement in postinfarction cardiac remodeling.
In the early stage of myocardial infarction, the infarct expansion can lead to left ventricular remodeling. The necrosis 
of cardiomyocytes activates inflammatory pathways. M1 and M2 macrophages arise from Ly6Chigh monocytes recruited 
from the spleen and bone marrow to the ischemic heart tissue in response to ischemic injury. M1 macrophages secrete 
proinflammatory cytokines to enhance the proinflammatory response during the early stage. Anti-inflammatory M2 
macrophages participate in chronic inflammatory repair and regeneration during the later reparative phase that involves 
interstitial fibrosis, left ventricular dilatation, and hypertrophy. Terminal disease trajectory inevitably leads to damage of the 
ventricular wall integrity and HF.
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inflammation persists, the disease may progress 
into subacute and even chronic stages, leading to 
fibrosis, heart remodeling, and deterioration of 
the myocardium’s architecture and contractil-
ity.71,73 In myocarditis, macrophages and mono-
cytes are the most prominent immune cells 
involved. Specifically, monocyte-derived mac-
rophages are the earliest myocardium-infiltrating 
cells in myocarditis and play a role in disease 
initiation.

The year 2019 saw an outbreak of a new corona-
virus disease (COVID-19) caused by the severe 
acute respiratory syndrome coronavirus-2. 
COVID-19 has led to millions of infections and 
deaths worldwide and is one of the biggest medi-
cal challenges in decades. Although COVID-19 
primarily affects the respiratory system, it can also 
affect other organs, such as the heart, brain, and 
digestive tract. As regard the cardiovascular sys-
tem, HF has been reported in approximately 23% 
of hospitalized individuals with COVID-19, with 
fulminant myocarditis as one of the most pre-
dominant causes.74 As reported in mouse models 
of viral myocarditis, the pathology of myocarditis 
starts with viral-mediated myocyte lysis, which 
triggers the release of proinflammatory molecules 
and activates the innate immune response.75 
Considering the major inflammatory cell types in 
the cardiac injured zone, macrophages migrate 
and infiltrate the impaired myocardium immedi-
ately after viral infection. Depletion of cardiac 
tissue-resident macrophages and an abundance of 
inflammatory monocyte-derived macrophages 
were found in the injured heart tissue of individu-
als with severe COVID-19 infection.76

Altogether, macrophages are the predominant 
inflammatory cells in myocarditis. They take part 
in the initiation phase and are also in charge of the 
progression of the disease. Hence, further studies 
should focus on the compensatory and regulatory 
mechanisms of myocarditis therapies targeting 
these cells.

Macrophages and the aging heart
It is widely recognized that aging increases car-
diac-related morbidity and mortality, leading to 
higher rates of stroke, coronary heart disease, HF, 
and other CVD.77 Aging enhances adverse 
changes in cardiac structure and function, prob-
ably by slowing down the cardioprotective molec-
ular mechanisms, thus lowering the CVD 

threshold.78 Several pathological changes occur in 
the aging heart: myocardial sarcopenia, vascular 
hyperpermeability, hypertrophy, fibrosis, inflam-
mation, and impaired cardiac function. In mouse 
models of aging, the age groups are defined as 
young, middle-aged, old, and senescent, corre-
sponding to the ages of <9 months, 12–15 
months, 18–24 months, and > 26 months, respec-
tively. The old heart (>18 months) harbors more 
monocyte-derived macrophages and fewer resi-
dent cardiac macrophages with self-renewal abil-
ity.79,80 Macrophages, one of the key contributors 
to the aging process, secrete proinflammatory 
cytokines, including IL-6, CCL2, TNF-α, and 
matrix metalloproteinase (MMP)-9. MMPs are 
zinc-dependent enzymes that regulate ECM, 
indirectly affecting cardiac structural support and 
myocardial passive stiffness.81 Among them, 
MMP-9 mediates the pathogenesis of cardiac 
remodeling, and its levels are increased in the 
plasma and left ventricle of the aging mouse.82 
Chiao et al.81 showed that, in a mouse model, the 
deletion of MMP-9 reduces age-related diastolic 
dysfunction partly by lowering the expression of 
TGF-β signaling-mediated periostin and connec-
tive tissue growth factor (CTGF), along with 
increased MMP-8 levels to adjust myocardial col-
lagen. These abovementioned examples provide 
growing evidence supporting the therapeutic 
intervention potential of macrophages in various 
cardiac diseases.

Macrophages and ectopic calcification
In the pathogenesis of cardiovascular calcifica-
tion, two distinct phases can be distinguished.83 
The first phase of this process (initiation) is char-
acterized by lipid deposition as well as inflamma-
tion and injury. In this stage, immune cells 
infiltrate the tissue and become activated upon 
lipid oxidization. For disease progression, osteo-
genic differentiation and calcification occur in the 
second phase (propagation). Further calcification 
is triggered by calcifying microvesicles released by 
macrophages, valvular interstitial cells (VICs), 
and vascular smooth muscle cells (VSMCs).83,84 
Multiple studies indicate that M1 macrophages 
promote aortic valvular calcification,85–87 secrete 
cytokines from proinflammatory macrophages 
(TNF-α, IL-1β, and IL-6), inhibit the myofibro-
blast response in VICs, and promote their osteo-
blast-like phenotype.88 Based on these findings, 
inflammatory M1 macrophages may contribute 
to the myofibroblast-to-osteogenic intermediate 
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VIC phenotypes. Further investigation on the 
switch from fibrosis to calcification and mac-
rophage-driven inflammation as therapeutic tar-
gets in calcific aortic valve disease is needed.

In human atherosclerotic lesions, vascular calcifi-
cation occurs when calcium phosphate is improp-
erly deposited, similar to the process of bone 
formation. Chinetti-Gbaguidi et al.89 emphasized 
that macrophages surrounding calcium deposits 
in human atherosclerotic plaques are phenotypi-
cally defective and incapable of resorbing calcifi-
cation. It is, therefore, possible that uniquely 
attractive pharmacological approaches targeting 
macrophage subpopulations involved in vascular 
calcification could alleviate calcium deposition by 
modulating their activity. Interestingly, single-cell 
RNA sequencing uncovered that a previously 
undescribed group of macrophages was enriched 
in Trem2 (triggered receptor expressed on mye-
loid cells 2) in atherosclerotic aortas of LDL 
receptor-deficient (Ldlr−/−) mice.90 It appears 
that TREM2hi macrophages possess specialized 
lipid metabolism and catabolism functions as well 
as an osteoclast-like gene expression signature. In 
addition, these macrophage populations were 
found in advanced atherosclerosis, as well as in 
Apoe−/− aortas, which indicates the importance 
of TREM2hi macrophages in lesion calcifica-
tion.90 More systematic and theoretical studies in 
the future may elucidate their role in detail.

Macrophages and cardiac stem cell therapy
Despite the major developments in modern medi-
cine, morbidity and mortality due to HF remain 
high. The HF treatment typically depends on the 
etiology. The condition rapidly progresses and 
compromises the quality of life if left untreated. 
Stem cell therapy is a relatively new technology 
that is still being developed.5 In recent decades, 
an increasing number of studies have shown it to 
be an attractive therapeutic approach for treating 
and preventing CVD.91 Vagnozzi et al.92 demon-
strated the integral role of macrophages in cardiac 
stem cell therapy. The authors showed that, in 
stem cell therapy, the cardiac function in mice 
following ischemia-reperfusion injury is enhanced 
by an acute sterile immune response with induc-
tion of CCR2+ and CX3CR1+ macrophages 
rather than the production of new cardiomyo-
cytes. They also observed that this selective mac-
rophage response improves the cardiac fibroblast 
activity, reduces ECM content in the border 

zone, and improves the mechanical properties in 
the ischemic area. These macrophage types con-
stitute a new cell-mediated cardiac protection 
mechanism. Additional research is needed to 
determine the therapeutic implications of these 
findings.

Macrophages are regulated by stem cells and vice 
versa. In general, bone marrow-derived mesen-
chymal stem cells (BMMSCs) interact with 
immune cells in the injured heart, providing novel 
insights for cardiac regeneration therapy.93 
According to previous studies, coculturing mac-
rophages with BMMSCs shifts macrophage 
polarization toward the anti-inflammatory pheno-
type.94 Lim et al.95 confirmed that priming mac-
rophages with BMMSCs enhances their 
therapeutic effects. They used a rat model of MI 
to inject one animal group with BMMSCs and 
another with a mix of cocultured BMMSCs and 
BMDMs. The authors found that M2 mac-
rophages were more abundant in the latter group 
but that improved cardiac function was noted in 
both groups. Furthermore, angiogenesis was sig-
nificantly improved, and cardiac fibrosis was 
reduced in the group injected with the mixed cell 
population. These findings indicate the therapeu-
tic effects of macrophages and demonstrate the 
successful application of BMDMs primed with 
BMMSCs as a complementary therapy for car-
diac repair.

Macrophage-targeted therapies in HF
Although the production, differentiation, and 
recruitment of macrophages have been consider-
ably studied in the last decades, this knowledge is 
yet to lead to effective clinical therapies. In HF, 
macrophages are mainly responsible for mediating 
tissue damage and fibrotic scar formation. Precise 
targeting of macrophages could be beneficial ther-
apeutically, limiting the deleterious effects of the 
innate immune system while preserving many of 
its essential features. Macrophages are phagocytic 
and, thus, capable of swallowing particles ranging 
in size from nanometers to micrometers.96 
Accordingly, designing nanoparticles and nano-
based drug delivery systems is essential for the 
implementation of macrophage-targeted therapy. 
As mentioned above, inflammatory monocytes, 
which differentiate into classically activated mac-
rophages and promote inflammatory diseases, rely 
on CCR2 to mark the lesion. Leuschner et  al.97 
synthesized specific monocyte-targeting siRNA 
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nanomolecules to silence CCR2 mRNA in the 
inflammatory monocytes and selectively inhibit 
their migration. When administered systemically 
in mice, these molecules were promptly taken up 
by monocytes and enriched in the spleen and bone 
marrow. Surprisingly, the authors observed that 
the degradation of CCR2 mRNA in monocytes 
reduced their accumulation at the inflammatory 
lesion. This treatment has been tested in mouse 
models, where it reduced the infarct size after cor-
onary artery occlusion, lowered the number of 
atherosclerotic plaques, and decreased the tumor-
associated macrophages.

One of the main causes of HF in adolescents is 
myocarditis, highlighting the need for mac-
rophage-targeted therapy for viral infection and 
autoimmune myocarditis. It has been reported 
that, in individuals with myocarditis, the expres-
sion of CSF-1 is elevated.98 CSF-1 is produced 
by cells of the mononuclear phagocyte system, 
which influences the origination and develop-
ment of monocytes/macrophages through the 
CSF-1 receptor tyrosine kinase (CSF-1R).99 
Meyer et al.98 downregulated the CSF-1 axis by 
using nanoparticle-encapsulated siRNA. They 
observed that silencing CSF-1 production attenu-
ates acute inflammatory injury to the heart and 
mitigates the lasting sequela of acute myocardial 
damage. This was shown to be effective in the 
treatment of viral and autoimmune myocarditis.

Macrophages have been a specific target for treat-
ing cardiovascular disease since the discovery of 
their importance in inflammatory heart tissue and 
their phenotypic plasticity during disease progres-
sion. Many macrophage-targeted therapies for 
HF can be expected in the future, such as the 
ones based on the identification and utilization of 
macrophage markers to provide tissue-specific 
therapy. In addition, in recent years, the knowl-
edge of epigenetic programming in fibrosis and 
HF has rapidly evolved,100 even in the context of 
macrophage polarization.101 Targeting epigenetic 
modifications in macrophages with genetic or 
pharmacological interventions is highly promis-
ing. Moreover, introduction of permanent genetic 
changes in cells using the clustered regularly 
interspaced short palindromic repeats (CRISPR) 
technology could also be used to alter macrophage 
polarization and their functional phenotype. After 
cardiac surgery, the protective role of macrophage 
migration inhibitory factor has been reported.102 

Although there are few studies focused on mac-
rophages and cardiac surgery at the moment, we 
believe it will be a promising direction for further 
investigation in the near future.

Limitations
This review mainly discusses the various roles of 
macrophages in HF, as understood in recent 
years. Although we have read the literature exten-
sively, some of the latest research advancements 
may not be fully covered in this review due to the 
rapid development of emerging technologies and 
molecular research in this field.

Conclusion
In this review, we present the recent advances in 
the understanding of the participation of cardiac 
macrophages in HF pathology, cardiac repair, 
and postischemic remodeling. Nonetheless, there 
is still a mountain to climb in this field. Further 
studies should utilize new tools to image the 
dynamic recruitment, apoptosis, and function of 
macrophages in the ischemic myocardium and 
injured tissues. Although extensive progress has 
been made in the understanding of the roles of 
macrophages in HF, translating these patho-
physiological findings into clinical practice 
requires additional information. As insight beck-
ons effort and innovation, we believe that innate 
immunity processes are crucial for the HF mech-
anism and that macrophage-targeted treatment 
will eventually become an effective and neoteric 
therapy.
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