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Abstract

Many studies that aim to detect model-free and model-based influences on behavior employ

two-stage behavioral tasks of the type pioneered by Daw and colleagues in 2011. Such

studies commonly modify existing two-stage decision paradigms in order to better address a

given hypothesis, which is an important means of scientific progress. It is, however, critical

to fully appreciate the impact of any modified or novel experimental design features on the

expected results. Here, we use two concrete examples to demonstrate that relatively small

changes in the two-stage task design can substantially change the pattern of actions taken

by model-free and model-based agents as a function of the reward outcomes and transitions

on previous trials. In the first, we show that, under specific conditions, purely model-free

agents will produce the reward by transition interactions typically thought to characterize

model-based behavior on a two-stage task. The second example shows that model-based

agents’ behavior is driven by a main effect of transition-type in addition to the canonical

reward by transition interaction whenever the reward probabilities of the final states do not

sum to one. Together, these examples emphasize the task-dependence of model-free and

model-based behavior and highlight the benefits of using computer simulations to determine

what pattern of results to expect from both model-free and model-based agents performing

a given two-stage decision task in order to design choice paradigms and analysis strategies

best suited to the current question.

Introduction

The brain contains multiple systems that interact to generate decisions, among them model-

free systems, which reinforce rewarded actions and create habits, and model-based systems,

which build a model of the environment to plan toward goals. Model-free and model-based

influences on behavior can be dissociated by multi-stage behavioral tasks. In such tasks, agents
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predict different state-action-reward contingencies depending on whether or not they employ

a model of the task, i.e., whether or not they know how the transitions between task states

most often occur [1]. Since the original two-stage task was first proposed and reported by Daw

et al. [1], it or one of its variations has been employed by many studies on decision making

(e.g., [2–17]).

In the original two-stage task [1], each trial takes the participant sequentially through

two different environmental states, where they must make a choice (Fig 1). Typically, at the

initial state, the participant makes a choice between two actions, which we will refer to as

“left” or “right”. Each initial-state action has a certain probability of taking the participant to

one of two final states, which will be called “pink” and “blue”. Importantly, each initial-state

action has a higher probability (for example, 0.7) of taking the participant to one of the final

states, the “common” transition, and a lower probability (for example, 0.3) of taking the par-

ticipant to the other final state, the “rare” transition. Let us assume that the left action com-

monly transitions to the pink state and the right action commonly transitions to the blue

state. A participant should thus choose left if they want to maximize the probability of

reaching the pink state and right if they want to maximize the probability of reaching the

blue state. At the final state, the participant makes another choice between one or more

actions (typically two), and each final-state action may or may not result in a reward with a

certain probability. Typically, the probability of reward, or in some cases the reward magni-

tude, changes from trial to trial in order to promote continuous learning throughout the

experiment.

Daw et al. [1] proposed that, to analyze the results of this task, each initial-state choice is

coded as 1 if it is a stay, that is, the participant has repeated their previous choice, or as 0 other-

wise. Then, the participant’s stay probability is calculated depending on whether the previous

trial was rewarded or not and whether the previous transition was common or rare. This anal-

ysis involves performing a logistic regression in which the stay probability is a function of two

factors, reward and transition.

Applying this analysis to results obtained from simulated model-free or model-based agents

produces a plot similar to that shown in Fig 2A. (Note that the exact stay probability values

depend on the simulated agents’ parameters). It is observed that for model-free agents, only

reward affects the stay probability, and for model-based agents, only the interaction between

reward and transition affects the stay probability. This difference allows us to distinguish

between model-free and model-based choices.

The choice patterns of model-free and model-based agents in Fig 2A are different because

model-based reinforcement learning algorithms take into account the task structure and

Fig 1. Scheme of a typical two-stage task. The thicker arrow indicates the common transition and the thinner arrow

indicates the rare transition.

https://doi.org/10.1371/journal.pone.0195328.g001
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model-free algorithms do not, with the result that they make different predictions about which

action agents will choose at the initial stage. Here, we use “agent” as a general term to refer to

either a computer simulation or a human or non-human participant. The model-free SARSA

(λ = 1) algorithm predicts that if an agent makes a certain initial-state choice in a trial, they are

more likely to repeat it on the next trial if it was rewarded, whether the transition was common

or rare. A model-based algorithm [1], however, predicts that the agent is more likely to repeat

the previous choice if, in the previous trial, it was rewarded and the transition was common,

or if it was unrewarded and the transition was rare. For example, suppose an agent chooses

left, is taken to the blue state through the rare transition, and receives a reward. In this case,

the model-free prediction is that the agent is more likely to choose left again in the next trial,

while the model-based prediction is that the agent is instead more likely to switch and chose

right. The model-based agent is predicted to choose to go right, instead of left, at the initial

state because the right action maximizes the probability of reaching the blue state, where the

agent received the reward on the previous trial.

One might assume that even if the two-stage task structure is slightly changed to suit a par-

ticular research goal, model-free-driven actions will remain unaffected by transition-types

because the model-free algorithm predicts that rewarded actions are more likely to be repeated

regardless of transition. Similarly, one might assume that model-based choices will not be

affected by reward because reward effects are characteristic of model-free actions. However,

the general danger of relying on untested assumptions is well-known, and our work here aims

to highlight the particular dangers of assuming fixed relationships between reward, transition-

types, and model-free or model-based processing in two-stage tasks. It has already been dem-

onstrated that these assumptions do not hold for a simplified version of the two-step task, opti-

mized for animal subjects [15]. Here, we demonstrate by means of computer simulation that

even seemingly small changes in task design can change the resulting choice patterns for

model-based and model-free agents. For example, depending on the task details, it is possible

that the stay probability of model-free agents is larger for common transitions than for rare

transitions (i.e. that there is an interaction between reward and transition of the type thought

to characterize model-based behavior). Below, we demonstrate two concrete examples of how

slight changes in task design strongly affect the results of model-free and model-based agents

in a logistic regression analysis. We also explain why these task features change the expected
behavior of model-free and model-based agents and offer some further thoughts on how to

analyze data from these modified tasks. Together, these examples emphasize the importance of

simulating the behavior of model-free and model-based agents on any two-stage task, espe-

cially novel modifications, in order to determine what pattern of behavior to expect.

Results

Unequal reward probabilities make model-free agents indirectly sensitive

to transition probabilities

Contrary to the assumptions of many researchers, it is not universally true that the stay proba-

bility of model-free agents is only affected by reward or that the stay probability of model-

based agents is only affected by the interaction between reward and transition. Therefore, the

stay probability plot will not necessary follow the “classic” pattern shown in Fig 2A; alterations

in this pattern can stem from seemingly small and innocuous variations in the properties of

the two-stage task.

The behavior of model-free agents is indirectly sensitive to the relative reward probabilities

of the final states. If, for instance, we set the reward probabilities of the actions at the pink state

to a fixed value of 0.8 and the reward probabilities of the actions at the blue state to a fixed
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Fig 2. Results from the classical two-stage task as originally reported by Daw and colleagues (A) and variations (B–F), obtained by

simulating model-free and model-based agents. In all panels, the behavior of simulated model-free agents are shown in the left bar-plots and

model-based agents on the right. The y-axis shows the probability of staying with (i.e. repeating) the same action made on the previous trial. The

x-axis separates the data as a function of previous outcome (rewarded, unrewarded) and transition (common = dark grey, rare = light grey). The

data were analyzed by logistic regression, in which the stay probability was computed as a function of the previous outcome and transition, with

the analysis in panel E) being modified to include additional regressors (see Section “Unequal reward probabilities make model-free agents

indirectly sensitive to transition probabilities”). The reward probabilities at each second stage and the agents’ eligibility trace (λ) are listed for

each panel. A) The results from the classic two-stage task, as described by Daw et al. [1]. B) shows the pattern of stay probabilities when the

second-stage rewards are fixed at 0.8 and 0.2. C) is identical to panel A, except that both second-stage reward probabilities are fixed at 0.5

instead of drifting independently around a mean of 0.5. D) is identical to panel B, except that the agents’ eligibility traces are set to values< 1

instead of equal to 1. E) plots the same data as B), but analyzed with the extended logisitic regression discussed in Section “Unequal reward

probabilitiesmake model-free agents indirectly sensitive to transition probabilities”. Lastly, F) presents the results of the modified task discussed

in Section “Model-based agents will show main effects of transition in addition to transition by reward interactions under specific task

conditions”, in which the second-stage reward probabilities sum to a value greater than 1.

https://doi.org/10.1371/journal.pone.0195328.g002
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value of 0.2, we obtain the results shown in Fig 2B instead of those shown in Fig 2A. (Similar

results have already been observed by Smittenaar et al. [6] and Miller et al. [15]). Recall that

these are computer-simulated model-free agents, who cannot use a model-based system to

perform the task because they do not have one. Thus, this pattern cannot result from a shift

between model-free and model-based influences on behavior.

The reason for this change is not that the reward probabilities are now fixed rather than var-

iable. If we fix the reward probabilities to 0.5, we obtain the original pattern again, as shown

in Fig 2C. In their original paper, Daw et al. [1] noted that the reward probabilities drift from

trial to trial because this encourages participants to keep learning. Continued learning is a crit-

ical feature for testing many hypotheses, but it is not the feature that distinguishes model-free

from model-based behavior.

The different model-free pattern in Fig 2B versus Fig 2A is caused by one final state being

associated with a higher reward probability than the other. If actions taken at one final state

are more often rewarded than actions taken at the other final state, the initial-state action that

commonly leads to the most frequently rewarded final state will also be rewarded more often

than the other initial-state action. This means that in trials that were rewarded after a common

transition or unrewarded after a rare transition, corresponding to the outer bars of the plots,

the agent usually chose the most rewarding initial-state action, and in trials that were rewarded

after a rare transition or unrewarded after a common transition, corresponding to the inner

bars of the plots, the agent usually chose the least rewarding initial-state action. Since one ini-

tial-state action is more rewarding than the other, model-free agents will learn to choose that

action more often than the other, and thus, the stay probability for that action will be on aver-

age higher than the stay probability for the other action. This creates a tendency for the outer

bars to be higher than the inner bars, and alters the pattern of model-free results relative to the

canonical pattern by introducing an interaction between reward and transition. It does not

alter the pattern of model-based results because model-based results already have higher

outer bars and lower inner bars even if all reward probabilities are 0.5 (or stochastically drifting

around 0.5).

Furthermore, unequal final-state reward probabilities will have an even greater effect on

model-free agents with an eligibility trace parameter λ< 1 (Fig 2D). This is because the values

of the initial-state actions are updated depending on the values of the final-state actions, which

causes the action that takes the agent to the most rewarding final state to be updated to a higher

value than the action that takes it to the least rewarding final state (see Eq 9 in the Methods sec-

tion for details).

It also follows that if the reward probabilities of the final state-actions drift too slowly rela-

tive to the number of trials, model-free results will also exhibit an interaction between reward

and transition. This is why the simulated results obtained by Miller et al. [15] using a simplified

version of the two-step task do not exhibit the expected pattern; it is not because the task was

simplified by only allowing one action at each final state. In that study, there was a 0.02 proba-

bility that the reward probabilities of the two final-state action (0.8 and 0.2) would be swapped,

unless they had already been swapped in the previous 10 trials. If the swap probability is

increased to 0.2 for a task with 250 trials, the canonical results are obtained instead (results not

shown).

Despite changes in the expected pattern of model-free choices, it is still possible to use this

modification of the task together with a logistic regression analysis to distinguish between

model-free and model-based agents based on reward and transition. In order to do so, we sim-

ply need to include two more features in the analysis. As previously discussed, experimental

data from two-stage tasks are typically analyzed by a logistic regression model, with pstay,

the stay probability, as the dependent variable, and xr, a binary indicator of reward (+1 for
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rewarded, −1 for unrewarded), xt, a binary indicator of transition (+1 for common, −1 for

rare), and xrxt, the interaction between reward and transition, as the independent variables:

pstay ¼
1

1þ exp½� ðb0 þ brxr þ btxt þ br�txrxtÞ�
: ð1Þ

The levels of the independent variables were coded as + 1 and −1 so that the meaning of the

coefficients are easy to interpret: βr indicates a main effect of reward, βt indicates a main effect

of transition, and βr×t indicates an interaction between reward and transition. We applied this

analysis to create all the plots presented so far, which can also be created from raw simulation

data with similar results. In the modified task we just discussed, the βr×t coefficient is positive

for model-free agents, which does not allow us to distinguish between purely model-free and

hybrid model-free/model-based agents.

We can, however, obtain an expected null βr×t coefficient for purely model-free agents if we

add two control variables to the analysis: xc, a binary indicator of the initial-state choice (+1 for

left, −1 for right), and xf, a binary indicator of the final state (+1 for pink, −1 for blue):

pstay ¼
1

1þ exp½� ðb0 þ brxr þ btxt þ br�txrxt þ bcxc þ bf xf Þ�
: ð2Þ

These two additional variables control for one initial-state choice having a higher stay prob-

ability than the other and for one final state having a higher reward probability than the other,

respectively. The variable xf is only necessary for model-free agents with λ< 1, because only in

this case are the values of the initial-state actions updated depending on the values of the final-

state actions.

By applying this extended logistic regression analysis to the same data used to generate Fig

2D and setting xc = xf = 0, we obtain Fig 2E, which is nearly identical to Fig 2A and 2C. This

result demonstrates that even though the original analysis fails to distinguish between model-

free agents and hybrid agents, other analyses may succeed if they can extract more or different

information from the data.

Another analysis that can be applied for this task is to fit a hybrid reinforcement learning

model to the data and estimate the model-based weight (see [1] for details). A reinforcement

learning model may be able to distinguish model-free and model-based behavior in this case

without further modification. Kool et al. [18] describe another potential variation on the two-

stage task in which model-free agents show interaction effects that are qualitatively similar to

model-based agents, and those authors also suggest fitting reinforcement learning models to

distinguish subtle differences between model-free and model-based behavior in such cases.

However, we note that while reinforcement learning models will be more robust than logistic

regression analyses in many cases, they will not be able to distinguish model-free and model-

based actions equally well in every version of the two-stage task. Thus, computer simulation

and parameter recovery exercises are advised when the data will be fit with reinforcement

learning models as well.

Model-based agents will show main effects of transition in addition to

transition by reward interactions under specific task conditions

When the final state probabilities do not sum to one, model-based agents will show both a

main effect of transition and a transition by reward interaction. An example of these combined

influences on model-based behavior can be seen in Fig 2F. This pattern was generated by mod-

ifying the original two-stage task so that the reward probability of all actions available at the

pink and the blue states was 0.8. In this case, the reward probabilities of both final states are
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the same, and therefore, the stay probability of model-free agents is only affected by reward.

On the other hand, the stay probability of model-based agents is not only affected by the inter-

action between reward and transition, but also by transition type itself. This main effect of

transition can be seen in the right panel of Fig 2F by comparing the two outermost and inner-

most bars, which show that the common transitions (dark gray bars) lead to a lower stay prob-

ability relative to the corresponding rare transitions (light gray bars). This negative effect of

common transitions on stay probabilities is because the sum of the reward probabilities of the

final states, 0.8 and 0.8, is 1.6, which is greater than 1.

Fig 3 shows the relative extent to which the stay probabilities of model-based agents are

influenced by transition type as a function of the sum of the reward probabilities at the final

state. Let p be the value of the most valuable action at the pink state and b the value of the most

valuable action at the blue state. The relative stay probabilities for model-based agents will be

lower following common than rare transitions when p + b> 1. Conversely, relative stay proba-

bilities for model-based agents will be higher following common than rare transitions when p
+ b< 1. Fig 3 shows the difference in stay probabilities between common and rare transitions

as a function of both the sum of the final state reward probabilities and learning rate, α. Indeed,

this graphic shows that model-based agents will show a main effect of transition in all cases

Fig 3. Difference in stay probability for model-based agents. Differences between the sum of the stay probabilities for model-

based agents following common versus rare transitions (i.e., the sum of the dark gray bars minus the sum of the light gray bars)

as a function of the sum of the reward probabilities at the final state (p + b). This specific example plot was generated assuming

that final state reward probabilities are equal (p = b) and that the exploration-exploitation parameter in Eq 16 is β = 2.5. When

computing the differences in stay probability on the y-axes, Prc stands for the stay probability after a common transition and a

reward, Puc is the stay probability after a common transition and no reward, Prr is the stay probability after a rare transition and

a reward, and Pur is the stay probability after a rare transition and no reward.

https://doi.org/10.1371/journal.pone.0195328.g003
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except when p + b = 1. We explain the intuition and algebra behind this characteristic of our

model-based agents in the following paragraphs.

Model-based agents make initial-state decisions based on the difference, p − b, between the

values of the most valuable actions available at the pink and blue states (this is a simplification;

further details are given in the Methods section). As p − b increases, the agent becomes more

likely to choose left, which commonly takes it to pink, and less likely to choose right, which

commonly takes it to blue. This difference increases every time the agent experiences a com-

mon transition to pink and is rewarded (p increases) or experiences a rare transition to blue

and is not rewarded (b decreases). Analogously, this difference decreases every time the agent

experiences a common transition to blue and is rewarded (b increases) or experiences a rare

transition to pink and is not rewarded (p decreases). This is why the model-based agent’s stay

probabilities are affected by the interaction between reward and transition. But p − b may

change by different amounts if the agent experiences a common transition and is rewarded ver-

sus if the agent experiences a rare transition and is not rewarded. If the agent experiences a

common transition to pink and receives 1 reward, the difference between the final-state values

changes from p − b to

½ð1 � aÞpþ a � 1� � b; ð3Þ

where 0� α� 1 is the agent’s learning rate. If, on the other hand, the agent experiences a rare

transition to blue and receives 0 rewards, the difference between the final-state values becomes

p � ½ð1 � aÞbþ a � 0�: ð4Þ

The two values are the same only if

½ð1 � aÞpþ a � 1� � b ¼ p � ½ð1 � aÞbþ a � 0�

að1 � p � bÞ ¼ 0

pþ b ¼ 1 ðassuming a > 0Þ

ð5Þ

that is, when the sum of the final-state action values is 1. This is expected to occur when the

actual reward probabilities of the final states sum to 1, as p and b estimate them. Thus, when

the reward probabilities do not sum to 1, the outer bars of the stay probability plots may not

be the same height. Similarly, p − b may change by different amounts if the agent experiences

a common transition and is not rewarded versus if the agent experiences a rare transition

and is rewarded, which also occurs when the reward probabilities do not sum to 1 (calcula-

tions not shown) and causes the inner bars of the stay probability plots to be different

heights. In the S1 Appendix to this paper, we prove that this specifically creates a transition

effect.

The end result is that the model-based behavior is not solely a function of the interaction

between reward and transition, but also of the transition in many cases. Unlike our previous

example, the main effect of transition cannot be corrected for by adding the initial-state choice

and the final state as control variables. Fortunately, however, the original analysis can still be

used to distinguish between model-free and model-based agents on this task because model-

free agents exhibit only reward effects while model-based agents exhibit only transition and

reward by transition interaction effects. According to Eqs 29 and 30 in the S1 Appendix, the

transition coefficient βt and the reward by transition interaction coefficient βr×t of model-

based agents are related so that βt = (1 − p − b)βr×t. Therefore, if 1 6¼ p + b, both coefficients

can be used to evaluate model-based control, since they are mathematically related by a known

constant, which is determined by task design.
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Discussion

The class of two-stage tasks pioneered by Daw et al. [1] has been instrumental in advancing

efforts in the behavioral, computational, and biological sciences aimed at teasing apart the

influences of model-free and model-based behavior and how the relative influences of these

systems may change as a function of environmental context, biological development, and

physical or mental health ([2–17] among many others). The continued and expanded utiliza-

tion of such tasks will require design modifications to better address specific new hypotheses

and such efforts currently constitute an active and productive line of research across multiple

scientific disciplines.

In the current paper, we have shown that slight modifications to established versions of the

two-stage task design may deviate substantially from the expected patterns of results for both

model-free and model-based agents when a logistic regression analysis is performed. Specifi-

cally, it is not a universal property of model-free and model-based learning that their stay

probabilities are driven solely by rewards for model-free agents versus reward by transition

interactions for model-based agents. Instead, the patterns of behavior produced by model-free

and model-based agents are rather sensitive to changes in task features or learning algorithms.

The two examples discussed here were just intended to illustrate this point, rather than present

“flawed” versions of the two-stage paradigm to be avoided; indeed, it should be possible to use

these modified tasks successfully in experiments, though it is important to keep in mind that

they too rely on specific task features and parameterizations of the model-free and model-

based learning algorithms.

Most importantly, there is a very straightforward means of avoiding potential design flaws

or misinterpretations created by incorrect assumptions about the nature of model-free and

model-based behavior in a given context—test how any changes in task design affect model-

free and model-based agents’ choice patterns. Specifically, researchers who plan to use custom-

ized two-stage-style tasks in their work should always check by computer simulation of model-

free and model-based agents what patterns each type of agent will produce in the new para-

digm. It may be impossible to distinguish model-free from model-based choices with a logistic

regression analysis containing only the previous outcome and transition as predictors. In this

case, researchers can try adding additional relevant predictors to the analysis as we showed in

Section “Unequal reward probabilities make model-free agents indirectly sensitive to transi-

tion probabilities”. If a suitable set of logistic regression predictors cannot be found, it may

be possible to analyze the data with a hybrid model-free/model-based reinforcement learning

model.

It is obviously best to know if an extended logistic regression or reinforcement learning

model can effectively achieve the analysis objectives from the outset, and thus, we recommend

simulating and analyzing the behavior of model-based, model-free, or hybrid agents when

planning to use a two-stage task. In order for any model to be able to distinguish between

model-based and model-free behavior, it is necessary that the two algorithms make distinct

choices in a sufficient number of trials. Such exercises in generating simulated data and analyz-

ing them will allow researchers to tell if the data to be collected from a given task will contain

enough information to allow retrieval of model parameters within the desired level of preci-

sion. More generally, they will allow researchers to better understand both the intended as well

as potential unintended consequences of their design modifications before spending the time,

effort, and money to acquire data from human participants or non-human animals. This will

lead to better experimental designs that in turn yield more readily interpretable and informa-

tive conclusions about the question(s) of interest.
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Methods

The code used to generate the results discussed in this paper is available at Github: https://

github.com/carolfs/note_analysis_2stage_tasks.

Task

The results were obtained by simulating model-free and model-based agents performing the

two-stage task reported by Daw et al. [1] for 250 trials. In each trial, the agent first decides

whether to perform the left or right action. Performing an action takes the agent to one of two

final states, pink or blue. The left action takes the agent to pink with 0.7 probability (common

transition) and to blue with 0.3 probability (rare transition). The right action takes the agent to

blue with 0.7 probability (common transition) and to pink with 0.3 probability (rare transi-

tion). There are two actions available at final states. Each action has a different reward proba-

bility depending on whether the final state is pink or blue.

Simulation parameters

In the simulation of the two-stage task with drifting reward probabilities, all reward probabili-

ties were initialized at a random value in the interval [0.25, 0.75] and drifted in each trial by

the addition of random noise with distribution N ðm ¼ 0; s ¼ 0:025Þ, with reflecting bounds

at 0.25 and 0.75. Thus, the expected reward probability of final-state actions is 0.5. In the simu-

lations of tasks with fixed reward probabilities, three different settings were used for the reward

probabilities of the final-state actions: (1) 0.5 for all actions, (2) 0.8 for the actions available at

the pink state and 0.2 for the actions available at the blue state, and (3) 0.8 for all actions.

The learning rate of the model-free agents was α = 0.5, the eligibility trace parameter was

λ = 0.6 (for the case λ< 1) or λ = 1, and the exploration parameter was β = 5. The learning rate

of model-based agents was α = 0.5 and the exploration parameter was β = 5. These parameter

values are close to the median estimates in Daw et al. [1]. The values of all actions for all states

were initialized at 0.

It should be noted, however, that all the explanations given for the observed results are

based only on task design and mathematical calculations, not on the specific parameter values

used in the simulations. Therefore, the study’s conclusions should not be affected by other

parameters values, under the assumptions that agents are not making completely random

choices (β> 0), that they learn from each outcome (α> 0) and retain this information in the

long term (α< 1), and that the rewards obtained at the final states have a direct reinforcing

effect on model-free choices at the initial state (λ> 0).

Model-free algorithm

Model-free agents were simulated using the SARSA(λ) algorithm [1, 19]. Specifically for two-

stage tasks [1], the SARSA(λ) algorithm specifies that when an agent performs an initial-state

action ai at the initial state si (the index i stands for “initial”), then goes to the final state sf,

performs the final-state action af (the index f stands for “final”) and receives a reward r, the

model-free value QMF(si, ai) of the initial-state action is updated as

QMFðsi; aiÞ  QMFðsi; aiÞ þ adi þ aldf ; ð6Þ

where

di ¼ QMFðsf ; af Þ � QMF; ðsi; aiÞ; ð7Þ
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df ¼ r � QMFðsf ; af Þ; ð8Þ

α is the learning rate and λ is the eligibility trace parameter [1]. Alternatively, the updating rule

can be expressed in a single equation:

QMFðsi; aiÞ  ð1 � aÞQMFðsi; aiÞ þ a½ð1 � lÞQMFðsf ; af Þ þ lr�: ð9Þ

Since λ is a constant, this means that the value of an initial-state action is updated depend-

ing on the obtained reward and the value of the performed final-state action. If λ = 1, the equa-

tion becomes

QMFðsi; aiÞ  ð1 � aÞQMFðsi; aiÞ þ ar; ð10Þ

that is, the updated value depends only on the reward. The value QMF(sf, af) of the final-state

action is updated as

QMFðsf ; af Þ  QMFðsf ; af Þ þ adf ¼ ð1 � aÞQMFðsf ; af Þ þ ar: ð11Þ

The probability P(a|s) that an agent will choose action a at state s is given by

PðajsÞ ¼
exp½bQMFðs; aÞ�P

a02A exp½bQMFðs; a0Þ�
; ð12Þ

where A is the set of all actions available at state s and β is an exploration-exploitation parame-

ter [19].

Model-based algorithm

Model-based agents were simulated using the algorithm defined by Daw et al. [1]. Model-

based agents make initial-state decisions based on the estimated value of the most valuable

final-state actions and the transition probabilities. The value QMB(si, ai) of an initial-state

action ai performed at the initial state si is

QMBðsi; aiÞ ¼ Pðpinkjsi; aiÞmax
a2F

QMBðpink; aÞ þ Pðbluejsi; aiÞmax
a2F

QMBðblue; aÞ; ð13Þ

where P(sf|si, ai) is the probability of transitioning to the final state sf by performing action ai

and F is the set of actions available at the final states [1].

When the agent receives a reward, it will update the value of the final-state action af per-

formed at state sf, QMB(sf, af), according to the equation

QMBðsf ; af Þ  ð1 � aÞQMBðsf ; af Þ þ ar; ð14Þ

where α is the learning rate and r is the reward.

Let p ¼ maxa2F QMBðpink; aÞ and b ¼ maxa2F QMBðblue; aÞ. The probability P(left|si) that

the agent will choose the left action at the initial state si is given by

PðleftjsiÞ ¼
1

1þ exp½bðPðpinkjsi; leftÞpþ Pðbluejsi; leftÞb � Pðpinkjsi; rightÞp � Pðbluejsi; rightÞbÞ�
; ð15Þ

where β is an exploration-exploitation parameter. If each initial-state action transitions to a

different final state with the same probability, e.g., P(pink|si, left) = P(blue|si, right) and hence
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P(pink|si, right) = P(blue|si, left), this equation is simplified to

PðleftjsiÞ ¼
1

1þ exp½bðPðpinkjsi; leftÞ � Pðbluejsi; leftÞÞðp � bÞ�
: ð16Þ

Hence, the agent’s probability of choosing left, the action that will take it more commonly

to the pink state, increases with p − b.

Analysis

The simulation data were analyzed using the logistic regression models described in the

Results section. 1,000 model-free and 1,000 model-based agents were simulated for each task

modification discussed. The regression models were fitted to the data using the regularized

logistic regression classifier with the liblinear algorithm from scikit-learn, a Python machine

learning package [20].

Supporting information

S1 Appendix. Proof that if the reward probabilities of final-state action do not sum to 1, a

transition effect is created in a logistic regression analysis of purely model-based behavior.

(PDF)
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