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Abstract. Adverse Drug Reaction (ADR) is a significant public health
concern world-wide. Numerous graph-based methods have been applied
to biomedical graphs for predicting ADRs in pre-marketing phases. ADR
detection in post-market surveillance is no less important than pre-
marketing assessment, and ADR detection with large-scale clinical data
have attracted much attention in recent years. However, there are not
many studies considering graph structures from clinical data for detect-
ing an ADR signal, which is a pair of a prescription and a diagnosis
that might be a potential ADR. In this study, we develop a novel graph-
based framework for ADR signal detection using healthcare claims data.
We construct a Drug-disease graph with nodes representing the medical
codes. The edges are given as the relationships between two codes, com-
puted using the data. We apply Graph Neural Network to predict ADR
signals, using labels from the Side Effect Resource database. The model
shows improved AUROC and AUPRC performance of 0.795 and 0.775,
compared to other algorithms, showing that it successfully learns node
representations expressive of those relationships. Furthermore, our model
predicts ADR pairs that do not exist in the established ADR database,
showing its capability to supplement the ADR database.

Keywords: ADR detection · Graph Neural Network · Large-scale
clinical data

1 Introduction

An adverse drug reaction (ADR) is considered to be one of the significant causes
of morbidity and mortality, estimated to be the fourth to sixth highest cause of
death in the United States [8]. Most ADR detection research has been aimed
to predict ADRs in pre-marketing phases, using biomedical information sources
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Fig. 1. Overview of the proposed ADR detection task pipeline. Drug and disease
embeddings are learned using Skip-gram model on clinical data. Categorical embedding
is extracted from the identifier codes of drug and diseases. Skip-gram and categorical
embeddings are jointly used as input of node feature in the heterogeneous graph, and
the graph is passed through GNN for ADR prediction.

such as chemical structures, protein targets, and therapeutic indications. Espe-
cially, studies using graph-structured data have demonstrated the superiority
of modeling biomedical interactions as graphs. Nevertheless, capturing poten-
tial ADRs from the entire population in post-marketing phases is also essen-
tial to fully establish the ADR profiles [5]. The potential causal relationship
between an adverse event and a drug is called a ‘signal’ when the relation is pre-
viously unknown or incompletely documented. Traditional ADR signal detection
research in post-marketing phases mainly counts on a spontaneous and volun-
tary reporting system that collects spontaneous reports of suspected drug-related
events, such as the WHO Uppsala Monitoring Center [1,2,4]. However, the spon-
taneous reporting system has inherent limitations such as underreporting [3,16],
selective reporting [4], and the lack of drug usage data. Therefore, recent studies
have attempted algorithmic approaches to detect ADR signals on large clini-
cal databases such as electronic health records (EHR) and healthcare claims
data [5,14]. Many of these studies apply basic machine learning techniques such
as random forest, support vector machines, and neural networks. However, fewer
studies are using graph-based approaches on the clinical databases in the field
of post-marketing ADR signal detection. Due to the complex polypharmacy and
multiple relations among drugs and diseases, we expect that graph structure can
provide insights to potential ADRs, which may not otherwise be apparent using
disconnected structures.

In this study, we develop a novel graph-based framework for ADR signal
detection using healthcare claims data to construct a Drug-disease graph. Specif-
ically, we use National Health Insurance Service-National Sample Cohort (NHIS-
NSC), the 12-year healthcare claims data that covers medical histories for one
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million population [10]. The constructed graph is a heterogeneous graph with
drug and disease nodes, as it is depicted in Fig. 1. The nodes represent the
medicine prescription codes and disease diagnosis codes derived from the health-
care claims data. To represent the relations among these codes, we define edge
weights using information from the data. For example, l2 -distance between two
node embeddings, which are learned from the data, is used to define the drug-
drug and disease-disease edge weights. Also, the conditional probability com-
puted on the data is used for the drug-disease relationship. As Graph Neural
Network (GNN) models have been demonstrated [7,19] their power to solve
many tasks with graph-structured data, showing state-of-the-art performances,
we use GNN-based approach for ADR detection. We verify that GNNs can learn
node representations that are indicative of various relations between drugs and
diseases. Then our model makes a prediction on whether a drug node and a dis-
ease node will have an ADR relation based on the learned node representations.

To evaluate the performance of the proposed approaches, we conduct exper-
iments with the newly generated dataset using the side effect resource database
(SIDER). The empirical results demonstrate the superiority of our proposed
model, which outperforms other alternative machine learning algorithms with a
significant margin in terms of the area under the receiver operating characteristic
(AUROC) score and the area under the precision-recall curve (AUPRC) score.
Furthermore, our method unveils ADR candidates that are examined to be very
useful information to the medical community. Our model uses only simple data
processing and well-established medical terminologies. Therefore, our work does
not demand case-by-case feature engineering that requires expertise.

2 Related Works

There have been numerous studies on ADR prediction in pre-marketing phases,
attempting graph-based approaches on biomedical information sources [12,15,
18,22]. These studies predicted potential side-effects of drug candidate molecules
based on their chemical structures [15] and additional biological properties [12].
Although such studies may play important roles in preventing ADRs in pre-
marketing phases, capturing potential ADRs in real-world use cases has been
considered very important.

A spontaneous and voluntary reporting system has been an important data
source of the real world drug usages. Most of the traditional ADR signal detec-
tion research used voluntary reporting systems with disproportionality analysis
(DA), which measures disproportionality of observed drug-adverse event pairs
existing in data and the null expectations [1,2,4]. Recently, large-scale clinical
databases such as EHR (Electronic Health Records) or healthcare claims data
have gained popularity as an alternative or additive data source in ADR signal
detection research. Much of the studies applied machine learning techniques such
as support vector machine (SVM), random forest (RF), logistic regression (LR)
and other statistical machine learning methods to model the decision boundary
to detect ADR in post-marketing phases [5,6,11,14,21].
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More recently, researchers explored neural network-based models over clin-
ical databases. Shang et al. [17] combined graph structure with the memory
network to recommend a personalized medication. The longitudinal electronic
health records and drug-drug interaction information were embedded as a sep-
arate graph to be jointly considered for the recommendation. There also exists
research for the recommendation, but the architectures are limited to the single
use of instance symptoms [20,23], or patient history [9]. However, none of these
research explored graph neural network model for predicting the ADR reactions
in the post-marketing phase.

3 The Proposed Framework

In this section, we formulate our problem and describe how we apply graph
structures for the task. We also present the process of training and prediction.

3.1 Problem Formulation

The task is to predict the potential causal relationship between a given drug
and a disease pair, which represents the prescription code and the diagnosis
code in clinical data. To consider the various relationships between drugs and
diseases, we convert our clinical data into a novel graph structure that consists
of drug and disease nodes. The node representations and the edge weights are
given according to the information retrieved from the clinical data NHIS-NSC in
this study. We first learn a node embedding that reflects the temporal proximity
between homogeneous nodes, i.e., drug-drug and disease-disease node pairs. In
order to model the proximity between two codes, we form drug/disease sequences
from patients’ records.

After the drug-disease graph is constructed, we build a GNN model that
predicts the signal of side effects between any pairs of drug and disease. The
side effect labels, which are taken from the SIDER database, are given to a
subset of drug-disease pairs in graph G. We define the label function l : V SIDER

drug ×
V SIDER
dis → {0, 1} as follows:

l(v, w) =
{

1 if (v, w) ∈ ESIDER,
0 otherwise, (1)

where V SIDER
drug and V SIDER

dis are the subsets of Vdrug and Vdis registered in the
SIDER database respectively, and ESIDER is the set of drug-disease pairs that
are known to have side effect relation according to the SIDER database.

3.2 Code Embedding Learning with Skip-Gram Model

Most large-scale clinical databases including NHIS-NSC, are collected in the
form of longitudinal visit records of the patients. In this section, we explain how
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we process the patient’s longitudinal records as sequential data and apply skip-
gram model to learn the code embeddings.

Definition 1 (Drug/Disease Sequence). In the patient’s longitudinal
records, each patient can be treated as a sequence of hospital visits
{v

(n)
1 , v

(n)
2 , ... , v

(n)
Tn

} where n represents each patient in the data, and Tn is
the total number of visits of the patient. The ith visit can be denoted as
v
(n)
i = {Pi

(n),Di
(n)} where Pi

(n) is the set of prescribed codes and Di
(n) is the

set of diagnosed codes in the ith visit. Within a set of codes, codes are listed
in arbitrary order. The size of each set is variable since the number of pre-
scribed/diagnosed codes varies from visit to visit. With these sets of codes, we
form a drug sequence Seqdrug

(n) and a disease sequence Seqdisease
(n) of nth

patient by listing each of the codes in a temporal order, as it is described below
(Here, we leave out the symbol n):

Seqdrug = {p1, p2, ... , pTp
}, px ∈ Pi,

Seqdisease = {d1, d2, ... , dTd
}, dy ∈ Di,

(2)

where px ∈ R
Vp and dy ∈ R

Vd are the one-hot vectors representing each of
the medical codes in the sequences. Vp and Vd are the vocabulary size of the
whole prescription and diagnosis codes within the data, respectively. Tp and
Td represent the total number of prescription/diagnosis codes of the patient’s
record. In this way, we can build a corpus consisting of Seqdrug or Seqdisease,
in which the proximity-based code embedding learning can be implemented.

We use Skip-gram [13] model to learn the latent representation of medical
codes in our data, in a way that captures the temporal proximity between them.
With Seqdrug or Seqdisease, we use the context window size of 16, meaning
16 codes behind and 16 codes ahead, and apply the Skip-gram learning with
negative sampling scheme. As a result, we project both diagnosis codes and
prescription codes into the separate lower-dimensional spaces, where codes are
embedded close to one another that are in close proximity to them. The trained
Skip-gram vectors are then used as the proximity-based code embeddings.

3.3 Drug-Disease Graph Construction

Here, we describe how we construct our unique Drug-disease graph from NHIS-
NSC. In Definition 2, we explain the concept of the Drug-disease graph. Then,
we explain the node representations and edge connections.

Definition 2 (Drug-disease Graph). We construct a single heterogeneous
graph G = (V, E) consisting of drug and disease nodes, where V =Vdrug ∪ Vdis is
the union of drug and disease nodes, and E = Edrug ∪ Edis ∪ Einter is the union
of homogeneous edges Edrug and Edis (i.e. consisting of same type of nodes) and
heterogeneous edges Einter (i.e. consisting of different types of nodes).
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To represent vdrug ∈ Vdrug and vdis ∈ Vdis, we jointly use proximity-based
node representation along with category-based node representation. Proximity-
based node representation is obtained by initial Skip-gram code embedding as in
Sect. 3.2. We denote a proximity-based drug node as v′

drug and a disease node as
v′
dis. Category-based node representation is designed to represent the categorical

information of medical codes. We utilize the hierarchical structure of categorical
codes (i.e. ATC and ICD-10 codes) by adopting the one-hot vector format. Since
there are multiple categories for each code, the category-based node represen-
tation is shown as a concatenation of one-hot vectors, thus, a multi-hot vector.
Finally, the initial node representation of the Drug-disease graph are represented
as the concatenation of the proximity-based node embeddings and the category-
based node embeddings. Following are the definitions for the drug and disease
node representations.

Definition 3 (Node Representations)

v′′
drug = {v1

drug||v2
drug||v3

drug||v4
drug||v5

drug},

v′′
dis = {v1

dis||v2
dis},

vdrug = {v′
drug ||v′′

drug},

vdis = {v′
dis ||v′′

dis},

(3)

where v′′
drug is a category-based drug node, v′′

dis is a category-based disease node,
vdrug is an initial drug node, vdis is an initial disease node, and || is a vector
concatenation function. Each vi

drug represents the each level in the ATC code
structure and v′′

drug ∈R
104. Because the ATC code structure is represented in 5

levels, a drug node vector is also represented as the concatenation of 5 one-hot
vectors. Similarly, each vi

dis represents each of the first two levels in the ICD-
10 code structure and v′′

dis ∈R
126. We only use two classification levels of the

ICD-10 code structure, therefore, the disease node vector is represented as the
concatenation of 2 one-hot vectors.

For homogeneous edges like Edrug and Edis, we view the relationships between
homogeneous nodes as the temporal proximity of two entities, meaning that
two nodes are likely to be close together in the records. Therefore, using the
proximity-based node embeddings, we compute l2 -distance between two node
embeddings to estimate the temporal proximity. For heterogeneous edges, which
are the edges connecting drug nodes and disease nodes, are given as the condi-
tional probability of drug prescription given the diagnosed disease. The defini-
tions of the two types of edges are given as follows:

Definition 4 (Homogeneous Edges). For any node i, j ∈ Vdrug (or Vdis),
the edge weight wij between two nodes are defined using Gaussian weighting
function as follows:

wij =

{
exp(−‖v′

i−v′
j‖2

2θ2 ) if ‖v′
i − v′

j‖ ≤ threshold,
0 otherwise,

(4)
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for some parameters threshold and θ. v′
i and v′

j are the proximity-based node
embeddings of two nodes i and j. Later, we additionally use edge-forming thresh-
olds to control the sparsity of the graph.

Definition 5 (Heterogeneous Edges). For any drug node i ∈ Vdrug and any
disease node j ∈ Vdis, the edge weight wij between two nodes are given as:

wij =
nij

nj
, (5)

where nij is number of patients’ histories in the NHIS-NSC database that is
recorded with a diagnosis j and a prescription i in tandem. nj is the number of
patients’ histories with the diagnosis j.

3.4 A GNN-Based Method for Learning Graph Structure

We aggregate neighborhood information of each drug/disease node from the con-
structed graph using the Graph Neural Network (GNN) framework. In each layer
of GNN, the weighted sum of neighboring node features in the previous layer is
computed to serve as the node features (after applying a RELU nonlinearity σ)
as follows:

zi(l+1) = σ(
∑

j∈N (i)

α
(l)
ij Wzj(l)), (6)

where N (i) denotes the set of neighbors of ith node, zi(l) denotes feature vector
of ith node at lth layer, W denotes a learnable weight matrix and α

(l)
ij denotes

the normalized edge weight between ith and jth nodes at the lth layer. In the
first layer, the initial drug/disease node representations are each passed through
a nonlinear projection function to match their dimensions.

We use two weighting schemes for α
(l)
ij . The first variant follows the definition

in [7], and the weight is defined as follows:

αij =
wij√
didj

, (7)

where di and dj are the degree of nodes i and j respectively, and wij are the
edge weights defined in Sect. 3.3. The weights are fixed for all layers. The second
weighting scheme instead learns the weighting scheme using attention mechanism
[19] as follows:

α
(l)
ij =

exp(g(zi(l), zj(l)))∑
k∈N (i) exp(g(zi(l), zk(l)))

, (8)

where g is a single fully-connected layer with LeakyReLU nonlinearity that takes
a pair of node features as input. In the rest of this paper, we call the network with
the first weighting scheme as GCN and the network with the second scheme as
GAT.
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Table 1. Summary statistics of the constructed graph and datasets

Edge-forming threshold Low High

# Drug nodes 1,201

# Labeled drug-dis pairs in train 37,016

# Labeled drug-dis pairs in test 6,092

# Disease nodes 10,117

# Drug2drug-Edges 19,918 7,199

# Drug2dis-Edges 1,306

# Dis2dis-Edge 401,801

We predict the ADR signal of a drug-disease pair using the learned embed-
dings from the GNN model with a single bilinear layer as follows:

ŷij = σ(zi(L)Wpzj(L) + b), (9)

where Wp, b are the learnable weights, and v
(L)
i , v

(L)
j are the node features of

drug node i and disease node j at the last GNN layer. The whole model is trained
by minimizing the cross-entropy loss.

4 Experiments

4.1 Data Preprocessing

As we get the labels from the SIDER database and the edge weight from the
NHIS-NSC database, we retrieve the drug and disease nodes over the joint set of
two databases. The resulting dataset is composed of 607 drugs and 556 diseases,
and the number of positive samples, indicating the drug-side effect relationships,
are 28,746 pairs. A negative sample is defined as a combination of drugs and
diseases over the dataset, where the known 28,746 positive samples are excluded.
We randomly select negative samples, setting the size of negative samples same
as the size of positive samples.

4.2 Experimental Settings

Since we extract those combinations from the SIDER database, it is plausible to
believe that they have not been reported as ADRs. Although the labels are only
given to the drug-disease pairs over the joint set of two databases, we make use
of all the drugs and diseases in NHIS-NSC as graph nodes to utilize the relations
among the drugs and diseases.

To predict the link between the drugs and diseases, we split drug-disease
pairs from the ADR dataset into training, validation, and test sets, ensuring
that the classes of diseases included in each set do not overlap. The reason we
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Table 2. Model AUROC and AUPRC performances (including 95% CI)

Model AUROC AUPRC

LR 0.631 ± 0.006 0.585± 0.007

NN 0.739 ± 0.005 0.701± 0.006

GCNlow 0.795± 0.006 0.775± 0.006

GATlow 0.732± 0.005 0.686± 0.009

adrGCNlow 0.755± 0.008 0.726± 0.009

GCNhigh 0.784± 0.006 0.761± 0.008

GAThigh 0.733± 0.008 0.692± 0.009

adrGCNhigh 0.756± 0.004 0.732± 0.006

split the data without overlapping disease classes is to increase the usability of
the ADR signal detection model. It is also because only a few classes of diseases
exist in our dataset, and therefore there could be a data leakage if the same
disease class exists in both training and validation. The class of disease means
the classification up to the third digit of ICD-10 codes. Note that we make the
inference very difficult by not letting the model know which classes of diseases are
linked with drugs as ADRs. We use 80% of data for training, 10% for validation,
and the remaining 10% for testing.

To control the sparsity of a graph, we build two types of graphs where the
edge-forming threshold is either low or high. When the edge-forming threshold is
low, the graph has more edges, having more information as a result. We examine
whether it is beneficial or detrimental to have more edge information. We dis-
tinguish two graphs by setting the thresholds for Edrug differently. The summary
statistics of the constructed graphs and datasets are provided in Table 1.

4.3 Evaluations

To verify the performance of the GCN-based approach, we compare GCN-based
models with non-graph-based ML techniques. We apply vanilla GCN and its
variants to examine the effect of considering the edge types. The followings are
the models used for the graph embedding learnings. All the neural-network based
models use two layers with a hidden dimension of 300.

– LR is a logistic regression (LR) approach with information of the graph
topology. The vector composed of initial node representations of the node
itself and its neighbor nodes are input to the LR model. The number of
neighbors is limited to 10.

– NN is a 2-layer fully-connected neural network which is solely based on the
initial node representations.

– GCNlow is a graph convolution network, a representative GNN model that
uses graph convolutions [7].
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– GATlow is a GNN that applies the attention mechanism on the node embed-
dings. Here we use GAT with two layers, where the number of heads are (4,4)
for each layer.

– adrGCNlow is an adapted version of GCN, that uses separate GCN layers
according to the edge types and then aggregate them.

– GCNhigh , GAThigh , adrGCNhigh are the graph-based models applied to
the sparser graph, i.e. the edge-forming threshold is high.

As shown in Table 2, the proposed graph-based approaches surpass all the
non-graph-based approaches. The best AUROC performance is achieved when
GCN is applied with the low edge-forming threshold. The results show that
the GCN model efficiently leverages the information from sufficiently selected
edges. To see the robustness of the proposed method, we also examine whether
our model works well for the infrequent drug-ADR pairs. We evaluate model
performance for the infrequent drug-ADR pairs, which are labeled as ‘rare’ or
‘post-marketing’ in SIDER. As a result, the best average test accuracy in infre-
quent drug-ADR pairs is achieved with adrGCNhigh (0.746), demonstrating
that using multiple GCNs according to the edge types is useful to detect rare
symptoms. According to the SIDER database, the ADRs with ‘rare‘ or ‘post-
marketing‘ labels are reported with frequencies under 0.01.

4.4 Newly-Described ADR Candidates

To verify the power of the graph-based approach to discover ADR candidates
which are unseen in the dataset, we extract the drug-disease pairs which are
predicted to be positive with high probability—over 0.97 but labeled as negative
(false positive). To demonstrate the genuine power of graph-based methods, we
exclude the candidates that are also positively predicted by the baseline neural
network, which does not use relational information. As a result, clinical experts
(M.D.) confirm that there exist pairs that are clearly considered to be real ADRs.
The pairs are listed in Table 3.

Many of the discovered pairs, including umbrella terms like edema, are rather
symptoms and signs than diseases. This can be explained by the fact that the
SIDER database is less comprehensive to cover all the specific symptoms, that
can be induced by taking medicine. Especially, cardiac murmur and abnormal
reflex are frequent symptoms, but it is reasonable to say that the suggested
pairs are ADRs. For example, Dasatinib is used to treat leukemia and can have
significant cardiotoxicity, which can lead to cardiac murmurs. Hydroxycarbamide
is a cytotoxic drug used for certain types of cancer, and it is known that cytotoxic
medications can cause electrolyte imbalance leading to abnormal reflex.

There are also significant pairs such as alendronic acid and tetany in the third
row. Severe and transient hypocalcemia is a well-known side-effect of bisphos-
phonates, which can lead to symptoms of tetany. Alendronic acid is classified as
bisphosphonates, and therefore, tetany can be described as ADR of alendronic
acid. Ibandronic acid and etidronic acidin the last two rows are also bisphospho-
nates, and the paired symptoms are relevant to the usage of bisphosphonates.
Unspecified edema may signify bone marrow edema caused by bisphosphonate
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use, and electrolyte imbalance, which can lead to abnormal reflex, can be caused
by etidronic acid use. All these explanations show that the ADR pairs we extract
are based on various relations among drugs and diseases.

Table 3. Newly-described drug-ADR pairs which are predicted, by the proposed
method, to be positive with high probability.

Drug name ADR symptom Probability

Dasatinib Cardiac murmur 0.985

Hydroxycarbamide Abnormal reflex 0.981

Alendronic acid Tetany 0.978

Ibandronic acid Unspecified edema 0.976

Etidronic acid Abnormal reflex 0.972

5 Conclusion

In this study, we propose a novel graph-based approach for ADR detection by
constructing a graph from the large-scale healthcare claims data. Our model
can capture various relations among drugs and diseases, showing improved per-
formance in predicting drug-ADR pairs. Furthermore, our model even predicts
drug-ADR pairs that do not exist in the established ADR database, showing that
it is capable of supplementing the ADR database. The explanation by clinical
experts verifies that the graph-based method is valid for ADR detection. In this
study, we only make inferences within the labeled dataset, yet we plan to make
inferences on unlabeled data to discover unknown ADR pairs, which will be a
huge breakthrough in ADR detection.
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