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Abstract: This paper presents a systematic and efficient design approach for the two degree-of-
freedom (2-DoF) capacitive microelectromechanical systems (MEMS) accelerometer by using com-
bined design and analysis of computer experiments (DACE) and Gaussian process (GP) modelling.
Multiple output responses of the MEMS accelerometer including natural frequency, proof mass dis-
placement, pull-in voltage, capacitance change, and Brownian noise equivalent acceleration (BNEA)
are optimized simultaneously with respect to the geometric design parameters, environmental condi-
tions, and microfabrication process constraints. The sampling design space is created using DACE
based Latin hypercube sampling (LHS) technique and corresponding output responses are obtained
using multiphysics coupled field electro–thermal–structural interaction based finite element method
(FEM) simulations. The metamodels for the individual output responses are obtained using statistical
GP analysis. The developed metamodels not only allowed to analyze the effect of individual design
parameters on an output response, but to also study the interaction of the design parameters. An
objective function, considering the performance requirements of the MEMS accelerometer, is defined
and simultaneous multi-objective optimization of the output responses, with respect to the design
parameters, is carried out by using a combined gradient descent algorithm and desirability function
approach. The accuracy of the optimization prediction is validated using FEM simulations. The
behavioral model of the final optimized MEMS accelerometer design is integrated with the readout
electronics in the simulation environment and voltage sensitivity is obtained. The results show
that the combined DACE and GP based design methodology can be an efficient technique for the
design space exploration and optimization of multiphysics MEMS devices at the design phase of
their development cycle.

Keywords: microelectromechanical systems (MEMS); design and analysis of computer experiments
(DACE); Gaussian process (GP); finite element method (FEM); multiphysics; optimization

1. Introduction

MEMS accelerometers are miniaturized sensors for measuring constant, time varying,
and quasi-static accelerations and have wide applications in the field of automotive indus-
try [1], machine condition monitoring [2,3], shock sensing [4], precision navigation [5], and
consumer electronics [6]. For these applications, one basic requirement is that the MEMS
accelerometer must be able to determine the position of a body in space by sensing its
acceleration in three axes. This is generally achieved by designing a single axis MEMS
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accelerometer and mounting orthogonal to each other on a body for acceleration mea-
surement. This results not only increased device footprint area and increased packaging
cost, but also measurement error due to misalignment [7]. To resolve these issues, one of
the solutions reported in the literature is the monolithic integration of three proof masses,
each sensing in a specific axis, in a single chip [8–10]. Though, this approach minimizes
the packaging cost, but achieving small device size, high sensitivity and small noise floor
values remain the main limitations. In comparison to multiple proof masses integrated,
MEMS accelerometers based on single proof mass for sensing multiple axis acceleration
have proved to be an efficient solution for achieving a small device footprint, low cost, and
improved performance [11–13].

MEMS are multiphysics devices and generally require the optimization of multiple
output responses for a given set of design parameters and microfabrication process con-
straints. The optimization of MEMS is traditionally carried out by varying one factor
at a time and analyzing its effect on an output response either by developing analytical
models, FEM models, or topology optimization [14–19]. These methods are efficient for
MEMS devices with simple geometric configuration but for MEMS with relatively complex
geometry and with the requirement of multiphysics design space exploration and multiple
output responses to be optimized simultaneously, these methods become inefficient due to
high computational costs and modelling complexity.

The optimization of a capacitive MEMS accelerometer design is a multiphysics prob-
lem involving electro–thermal–structural interactions. The main performance responses of
a capacitive MEMS accelerometer that must be optimized include natural frequency, proof
mass displacement, pull-in voltage, capacitance change, and thermomechanical noise. The
natural frequency and proof mass displacement are strongly dependent on the stiffness
of mechanical suspension beams. For high sensitivity, the natural frequency value should
be low which requires low stiffness mechanical suspension beams or large proof mass.
However, low mechanical stiffness of suspension beams leads to a low value of pull-in
voltage which further limits the maximum value of initial bias voltage that can be applied
to the sensing capacitive parallel plates and maximum input acceleration range. Similarly,
for high resolution, a large value of capacitance change is desired in a MEMS accelerometer
which is dependent on the initial air gap between the sensing parallel plates and their
overlap area. A large value of overlap area and small air gap results in large capacitance
change but decreases the pull-in voltage threshold. Moreover, the air damping between
the sensing parallel plates increases by increasing the overlap area of plates and decreasing
their initial gap. Thus, decreasing the quality factor and hence increasing the thermome-
chanical noise. Thus, it becomes important that for the geometric design optimization of
MEMS accelerometer, all the output responses be considered simultaneously instead of
the traditional approach of varying one factor at a time and analyzing its effect on a single
output response presented in the literature [20–22].

The design of experiments (DoE) is a systematic statistical approach for optimization
problems and has been a widely used optimization technique in many different fields,
for example in manufacturing processes [23], sensor optimization [21,24], and precision
agriculture [25]. The traditional DoE approach explores the design space of an optimization
problem with a minimum number of physical experiments and the metamodels for output
responses are developed by estimating the effect of design parameters using least square
regression which is based on the randomness due to experimental variations [26]. Previ-
ously, the authors have presented the application of traditional DoE based optimization
methodology for MEMS devices [27,28]. The application of the traditional DoE technique
based on least square regression for deterministic computer simulations has been a matter
of discussion in the literature since it lacks random error and the method of least squares
residuals has no statistical meaning [29]. However, Simpson et al. [30] have argued that the
application of traditional DoE for computer simulations is a trade-off of appropriateness vs.
practicality. Sacks et al. [31] pointed out that the selection of design points for deterministic
computer simulations is a statistical experimental design problem and also proposed a
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Gaussian process (GP) model by considering the deterministic output responses as random
stochastic processes.

The design and analysis of computer experiments (DACE) based on GP models are
now a popular choice for the development of metamodels, using deterministic computer
simulations, in different fields and allow the design space exploration with minimum
computational cost [32–35]. For MEMS devices, the DACE based design optimization,
combined with the FEM based MEMS simulation tools and latest high computing machines,
can greatly minimize the MEMS development cycle time and reduce the costs involved
in the traditional iterative microfabrication runs for the realization of a fully functional
MEMS device.

In this paper, we present a DACE based systematic and efficient design methodology
for MEMS in general and MEMS accelerometer in particular by using Latin hypercube
sampling (LHS) technique to create a design space with different combinations of geometric
design parameters and GP based metamodelling for the multi-response optimization. The
optimization for the MEMS accelerometer is carried out by considering the microfabrication
process constraints and environmental operating conditions.

2. Working Principle and Structural Design of MEMS Accelerometer

Figure 1 shows the schematic of the proposed two degree-of-freedom (2-DoF) MEMS
accelerometer design conceptualized considering the constraints imposed by the commer-
cially available SOIMUMPs microfabrication process offered by MEMSCAP Inc. USA [36].
The main constraints of the SOIMUMPs process are (a) no bottom electrode is available for
the out-of-plane proof mass displacement sensing and (b) the design cannot have anchors
in the middle of the proof mass, thus limiting the position of the mechanical springs to
the outer side of the mass. For sensing the proof mass displacement, corresponding to an
input acceleration, parallel plate combs are attached to each of the four sides of the proof
mass. The stator combs are located between the two rotor combs, attached to the proof
mass, in a gap–antigap configuration. To obtain maximum capacitance change, the ratio of
the larger gap to the smaller gap between combs is kept at 3 with gap and antigap values
of 2.5 µm and 7.5 µm, respectively. The suspension beams are T-shaped and are designed
symmetrically on the four corners of the proof mass to minimize the cross-axis coupling
and increase stability. To minimize the effect of sudden high acceleration values, end stop-
pers are designed on the proof mass corners. The capacitance sensing mechanism is based
on the gap closing mechanism and both stator and rotor combs are attached in differential
sensing configuration to obtain the maximum capacitance change. The thickness of the
structural silicon-on-insulator (SOI) layer in the whole structure is 25 µm.
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Figure 1. Schematic of the single proof mass 2-DoF MEMS capacitive MEMS accelerometer.

3. Design and Analysis of Computer Experiments (DACE) Based
Multi-Response Optimization
3.1. Gaussian Process Modelling

A generalized form of Gaussian distribution is termed as Gaussian process (GP), which
is a type of continuous stochastic process. It is used to describe the probability distribution
over functions and the model developed by GP is a conditional probabilistic model. When
fitting data from a deterministic computer experiment, the Gaussian process model is
frequently utilized. Sacks et al. [31] presented these models as models for computer
experiments. They are desired because they give an exact fit to the data gathered from
computer experiments and only need a single parameter for every design parameter. The
optimization design space can be represented as ds = (xi, yi) of k runs, where i = 1, 2, . . . , k;
xi is the D-dimensional vector of input design parameters for each run and yi is the scalar
value of the output response. The design parameters and the output responses for the
k runs can be written in a matrix X = [x1, x2, . . . . . . , xk]

T and y = [y1, y2, . . . . . . , yn]
T,

respectively. The Gaussian process model for an output response is defined as [26]:

yi = z(xi) + µ (1)

where µ is the mean of the modelled surface and z(xi) is the Gaussian process, as a function
of design parameters xi. The value of output response from any collection of design
parameters has a multivariate normal distribution, which defines a Gaussian process. This
multivariate normal distribution has a mean µ1n, where 1n being the vector of ones of
k length. The multivariate normal distribution also contains a covariance matrix that is
proportional to a correlation matrix with a specific structure that allows the points to form
a smooth surface. The covariance is:

cov(y) = σ2R(X,θ) (2)

where σ2 is the variance which is the proportionality constant between the covariance
matrix and the correlation matrix. The matrix R(X,θ) represents the correlation matrix and
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is a function of hyperparameters θ and design parameters. The elements of the correlation
matrix can be estimated using the relation [37]:

rij = exp

(
−

D

∑
t=1
θt
(
xit − xjt

)2
)

(3)

In Equation (3), θt ≥ 0 (t = 1, 2, . . . , D) the term rij specifies the correlation between
the output responses at any two points. The correlation matrix is built so that the distance
between any two different locations in the input domain is inversely proportional to the
correlation of their outputs. In specifically, as the distance between the two input locations
approaches zero, the correlation increases to one, and as the distance approaches infinity,
the correlation decreases to zero.

The prediction equation to evaluate the value of an output response at other sets of
design parameters is given as follows [38]:

ŷ(x) = µ̂+ rT
(

x,
^
θ

)
R−1

(
X,

^
θ

)
(y− µ̂1n) (4)

where rT = [r(x1, x), r(x2, x), . . . , r(xn, x),] and the values for
^
θ and µ̂ are used in Equation (4)

after estimating the maximum likelihood estimates of parameters µ and θ. Figure 2 shows
the DACE based optimization methodology implemented in this paper for the multi-
response optimization of MEMS accelerometer. The first step is to identify the main output
responses of the MEMS accelerometer to be optimized, which is followed by the selection
of the geometric design parameters and operating conditions with the specification of low
and high values for the design parameters. Since in the present study, the number of design
parameters is eight, thus a statistical Latin Hypercube Sampling (LHS) based technique
for the efficient sampling of the design points for the design parameters is implemented.
The output responses for each simulation run in the LHS-based design matrix are obtained
through Multiphysics FEM simulations. Based on the FEM simulation results for all the
design points in the LHS based design matrix, a Gaussian process regression (GPR) analysis
is performed and metamodels for all the output responses are obtained. The analysis of
these metamodels for the output responses gives a detailed insight into the effect of the
individual design parameters and their interaction on the output responses. The GPR
analysis allows to analyze a single output response considering the design parameters but
to simultaneously optimize all the output responses with respect to the design parameters,
an objective function has been defined and a desirability function based approach has
been implemented. Finally, the optimized values of the geometric design parameters and
corresponding output responses are verified through FEM simulations. If the predicted
values from the optimization results are not within 95% confidence interval, then it is
recommended to return to the step of generating sample data space with more data points
using LHS to obtain a more accurate response surface.
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Figure 2. Flowchart for the DACE based optimization methodology.

3.2. Design Parameters and Their Levels

Table 1 shows the design parameters with respective low and high levels considered
for the DACE based optimization of MEMS accelerometer. The design parameters are
coded as XI for i = 1, 2, . . . , 8. The low and high levels of the design parameters are
based on the geometric configuration of design, operating environmental conditions, and
microfabrication process constraints. Figure 1 shows the dimensions of the T-shape spring
in terms of lengths and width and represents the design parameters X2, X3, and X4. For
the design parameter X4, the minimum width that can be set for a beam having a length
greater than 100 µm is 6 µm as per the SOIMUMPs process constraint. The proposed
MEMS accelerometer is to be optimized for measuring the input acceleration in the range
of ±1 g to ±25 g.

Table 1. Design parameters for the MEMS accelerometer design optimization.

Code Design Parameters Low Level High Level

X1 Overlap length of comb 150 µm 250 µm
X2 Length of suspension beam 1 400 µm 500 µm
X3 Length of suspension beam 2 400 µm 500 µm
X4 Width of suspension beam 6 µm 8 µm
X5 Input acceleration 1 g 25 g
X6 Operating temperature 233.15 K 373.15 K
X7 Operating pressure 100 Torr 760 Torr
X8 Frequency ratio 0.1 0.5
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The MEMS accelerometers for most of the applications, especially in space applications
are required to operate in the temperature range of −40 ◦C (233.15 K) to 100 ◦C (373.15 K).
Therefore, the low and high levels for the design parameter operating temperature (X6) are
kept in this range. The range for design parameter operating pressure (X7) is kept 100 Torr
(sub-atmospheric pressure) for a low level to 760 Torr (atmospheric pressure) for a high
level. This range is selected to analyze the dependency of noise and other output responses
of the MEMS accelerometer on the operating pressure. The last design parameter X8 is
the frequency ratio (FR), which is the ratio of any frequency value (lower than natural
frequency) to the obtained natural frequency of the specific design run.

3.3. Latin Hypercube Sampling (LHS) Based Space Filling Design

The selection of design space for computer experiments is based on two basic prin-
ciples: (a) any combination of design parameters should not appear more than once in
the design space since replication is only required in physical experiments to account
for random errors and (b) the different combinations of design parameters should cover
the whole region of the design space, so that different behaviors of output responses in
different areas of the design space can be analyzed [39]. This is also because due to the
complex nature of computer simulations, the response behavior may change across the
design space. The space-filling designs are generally used for DACE due to the evenly
spread of design points throughout the design space. Among various types of space-filling
designs, the Latin hypercube sampling (LHS) approach is most widely used. The LHS
creates the design space for design parameters by maximizing the minimum distance
between any two design points and the design points evenly cover the whole design space.
This ensures enough degree of freedom to estimate both the linear and quadratic effects of
design parameters and minimize the discrepancy between the observed values. For the
LHS and other space-filling design, it is recommended that the number of simulation runs
must be at least 10X, where X is the number of design parameters [26]. Table S1 shows the
LHS based design matrix for the design parameters considered for the optimization of the
MEMS accelerometer.

3.4. FEM Modelling of 2-DoF MEMS Accelerometer

The output responses, corresponding to the LHS based design matrix, are obtained
through FEM simulations in CoventorWare®® software. The MEMS accelerometer is
meshed using three-dimensional (3D) solid tetrahedral 739,599 elements with a total
number of 272,580 elements for the central proof mass and elements for the mechanical
suspension beams. A fine mesh is used for the mechanical suspension beams, with multiple
elements along the thickness, as shown in Figure 3. The material properties of thin film
Silicon are included as input in the FEM analysis with Young’s Modulus of 169 GPa, Poisson
ratio of 0.29, and density of 2300 kg/m3 [36].

Sensors 2021, 21, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. 3D meshed model of the MEMS accelerometer. 

The natural frequency of the MEMS accelerometer is obtained through modal analy-
sis in the CoventorWare MemMech module. The proof mass displacement, corresponding 
to an input acceleration, is obtained for each simulation run using harmonic analysis and 
considering the air damping effect. In the dual-axis MEMS accelerometer design, both the 
squeeze and slide air film damping result in energy dissipation. For an input acceleration, 
the squeeze film air damping occurs between the stator and rotor combs in the active sense 
axis, and a slide film air damping occurs between the two sets of combs in the inactive 
axis. In the present work, for each simulation run, the value of air damping is first com-
puted by using the CoventorWare DampingMM module and subsequently used in the 
harmonic analysis. In the FEM analysis, the gas rarefaction effects are considered for each 
simulation run since the dominant airflow regime is slip flow for an air gap of 2.5 µm 
between the stator and rotor combs of the MEMS accelerometer. For each simulation run 
in the design matrix, the computed values of squeeze number and Reynolds number are 
in the range of 10 3 thus air compressibility and inertial damping effects are ignored. A 
detailed description of modelling of thin film air damping effects in capacitive sensing 
combs is given by the authors in [40,41]. 

For a bias voltage of 2.25 V to the parallel capacitive sensing plates, coupled field 
electric-structural analysis is performed to find the value of pull-in voltage. The capaci-
tance change for each simulation run is obtained through the CoventorWare MEMS+ 
module. Based on the FEM analysis based on natural frequency and quality factor, the 
value of BNEA for each simulation run, at a given operating temperature, is obtained by 
using the following relation [42]. 

BNEA = 4K T⍵m Q  (5)

where K  is the Boltzmann constant, T is the operating temperature, ⍵  is the natural 
frequency, mp is the value of proof mass, and Q is the quality factor. 

4. Development of GP Based Metamodels for the Output Responses 
For the LHS based design matrix, with corresponding output responses obtained 

through FEM simulations (Table S1), the Gaussian process model is fitted to obtain the 
metamodels for the output responses. For each output response, the value of hyperpa-
rameter 𝛉 is obtained for each design parameter by minimizing the negative log-likeli-
hood and the values are reported in Table 2. These values are used in Equation (3) to 
control the length scale and smoothness of modelled Gaussian surface for each output 
response. After fitting the Gaussian process model, the predictive values for the output 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 3D meshed model of the MEMS accelerometer.



Sensors 2021, 21, 7242 8 of 22

The natural frequency of the MEMS accelerometer is obtained through modal analysis
in the CoventorWare MemMech module. The proof mass displacement, corresponding
to an input acceleration, is obtained for each simulation run using harmonic analysis and
considering the air damping effect. In the dual-axis MEMS accelerometer design, both the
squeeze and slide air film damping result in energy dissipation. For an input acceleration,
the squeeze film air damping occurs between the stator and rotor combs in the active
sense axis, and a slide film air damping occurs between the two sets of combs in the
inactive axis. In the present work, for each simulation run, the value of air damping is first
computed by using the CoventorWare DampingMM module and subsequently used in
the harmonic analysis. In the FEM analysis, the gas rarefaction effects are considered for
each simulation run since the dominant airflow regime is slip flow for an air gap of 2.5 µm
between the stator and rotor combs of the MEMS accelerometer. For each simulation run
in the design matrix, the computed values of squeeze number and Reynolds number are
in the range of 10−3 thus air compressibility and inertial damping effects are ignored. A
detailed description of modelling of thin film air damping effects in capacitive sensing
combs is given by the authors in [40,41].

For a bias voltage of 2.25 V to the parallel capacitive sensing plates, coupled field
electric-structural analysis is performed to find the value of pull-in voltage. The capacitance
change for each simulation run is obtained through the CoventorWare MEMS+ module.
Based on the FEM analysis based on natural frequency and quality factor, the value of
BNEA for each simulation run, at a given operating temperature, is obtained by using the
following relation [42].

BNEA =

√
4KBTωn

mpQ
(5)

where KB is the Boltzmann constant, T is the operating temperature, ωn is the natural
frequency, mp is the value of proof mass, and Q is the quality factor.

4. Development of GP Based Metamodels for the Output Responses

For the LHS based design matrix, with corresponding output responses obtained
through FEM simulations (Table S1), the Gaussian process model is fitted to obtain the
metamodels for the output responses. For each output response, the value of hyperparam-
eter θ is obtained for each design parameter by minimizing the negative log-likelihood
and the values are reported in Table 2. These values are used in Equation (3) to control
the length scale and smoothness of modelled Gaussian surface for each output response.
After fitting the Gaussian process model, the predictive values for the output response are
obtained based on Equation (4) and interactions between design parameters for each output
response are also estimated. Table 3 lists the values for interaction between significant
design parameters for each output response.

Table 2. Obtained values for hyperparameter θ after fitting the Gaussian process model.

Output Responses
Design Parameters

X1 X2 X3 X4 X5 X6 X7 X8

Natural frequency (Y1) 4.23 × 10−6 5.52 × 10−6 9.74 × 10−5 0.36 0 0 0 0
Proof mass

displacement (Y2) 0 0 8.26 × 10−5 0.34 0.01 0 0 1.24

Pull-in voltage (Y3) 6.29 × 10−5 1.23 × 10−5 5.49 × 10−5 0.14 1.49 × 10−5 4.29 × 10−6 6.18 × 10−9 2.19
Capacitance change (Y4) 2.19 × 10−5 1.01 × 10−6 0.000026 0.1235 0.0018 7.66 × 10−7 3.82 × 10−8 0.88

BNEA (Y5) 0.000142 0 0 0 0 5.26 × 10−5 6.03 × 10−6 0
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Table 3. Significant design parameters interactions for the output responses.

Output Responses
Significant Design Parameters Interaction

Design Parameters Interaction Value

Natural frequency (Y1) X3X4 0.005
Proof mass displacement (Y2) X4X5 0.031

Pull-in voltage (Y3) X1X4 0.004
Capacitance change (Y4) X4X5 0.038

BNEA (Y5) X1X7, X6X7 0.007, 0.007

4.1. Significant Design Parameters and Interaction Analysis for Natural Frequency (Y1)

From the Gaussian process model analysis, the most significant interaction is between
the design parameters X3 and X4 for the natural frequency with a value of 0.005, as given
in Table 3. Figure 4 shows the 3D response surface plot for the natural frequency of the
MEMS accelerometer with respect to design parameters X3 and X4. The response surface
plot is obtained using GP based metamodel and the value of all other design parameters
are kept at their mean value. The result shows that the natural frequency is more sensitive
to the change in X4 in comparison to X3. Moreover, with X4= 8 µm the natural frequency is
much more sensitive to change in the X3 value in comparison to when X4= 6 µm.
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4.2. Significant Design Parameters and Interaction Analysis for Proof Mass Displacement (Y2)

The maximum interaction value is between the two design parameters X4 and X5 for
the output response proof mass displacement. Figure 5 shows the 3D surface plot for the
proof mass displacement with respect to the design parameters X4 and X5 with all other
design parameters at their mean value. The plot shows that for input acceleration above
20 g, the proof mass displacement becomes more sensitive to the change in the suspension
beam width. Moreover, the proof mass displacement shows a linear increase in the value
with the increase in the input acceleration.
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4.3. Significant Design Parameters and Interaction Analysis for Pull-In Voltage (Y3)

For the output response pull-in voltage, the design parameters interaction value is
highest between X1 and X4. Figure 6 shows the 3D surface plot for the interaction analysis
between these two design parameters on the pull-in voltage value. The plot shows that the
pull-in voltage is more sensitive to the change in design parameter X4 in comparison to
X1. Moreover, the effect of change in X4 value from 6 to 8 µm has less effect on the pull-in
voltage value when X1 is equal to 250 µm in comparison to when X1 value is 150 µm.
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4.4. Significant Design Parameters and Interaction Analysis for Capacitance Change (Y4)

As per the GP model analysis, the interaction between two design parameters X4 and
X5 for the capacitance change has a maximum magnitude with a value of 0.038. The 3D
surface plot in Figure 7 shows that when X4 is at a high level of 8 µm the effect of change
in X5 on capacitance change is less in comparison to when X4 is at a low level of 6 µm.
Moreover, the effect of change in X4 on the capacitance change is more when X5 is at a high
value of 25 g in comparison to its low value of 1 g.
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4.5. Significant Design Parameters and Interaction Analysis for BNEA (Y5)

For the output response BNEA, the design parameters that have a significant effect
on the output response BNEA are X1, X6, and X7, respectively. The two design parameter
interactions X1X7 and X6X7 are comparable to each other with values 0.007285 and 0.007235,
respectively, for the output response BNEA. Figure 8a shows the interaction plot of design
parameters X1 and X7 for the BNEA. The results show that BNEA increases linearly with
an increase in the X1 from 150 µm to 250 µm. This can be attributed to the fact that with
the increase in the overlap value the air damping increases which subsequently decreases
the quality factor. From Equation (5), it is clear that a decrease in the quality factor leads to
an increase in the BNEA value. The effect of an increase in X7 from a low value of 100 Torr
to the atmospheric air pressure of 760 Torr has a highly non-linear effect on the BNEA
value for the MEMS accelerometer. Figure 8b shows the interaction plot of the design
parameters X6 and X7 for the BNEA. The results show that the BNEA increases linearly
with an increase in the design parameter X6 value from 250 K to 375 K.
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4.6. Prediction Accuracy of the Fitted GP Metamodels

The prediction accuracy of the developed GP based metamodels for the output re-
sponses is analyzed by estimating the mean absolute error (MAE), root mean square error
(RMSE), and correlation coefficient I for each response. The MAE, RMSE, and R for an
output response can be calculated as follows [43,44]:

MAE =
1
k

k

∑
i=1

∣∣∣yoi − ypi

∣∣∣ (6)

RMSE =

√√√√ 1
k

k

∑
i=1

(
yoi − ypi

)2
(7)
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R =
k ∑k

i=1 yoi × ypi −∑k
i=1 yoi ∑k

i=1 ypi√[
k ∑k

i=1 yoi
2 −

(
∑k

i=1 yoi

)2
]
×
[

k ∑k
i=1 ypi

2 −
(

∑k
i=1 ypi

)2
] (8)

where yoi is the actual observed value for an output response for the ith run of the sim-
ulation design matrix and ypi is the predicted value of output response for the ith run.
The MAE gives an estimation of the mean of the absolute errors for each simulation run,
whereas RMSE gives a measure of the standard deviation of the residuals and depicts that
how far the predicted points are from the fitted linear regression line. The smaller the MAE
and RMSE values are, the better the points fit actual data values. The R-value close to one
indicates that the linear relationship between the observed and the predicted values is
positive, and the points lie nearly along a fit line. Table 4 lists the values of MAE, RMSE,
and R for the output responses. These values suggest that the developed metamodels for
the output responses are accurate in predicting the output responses.

Table 4. Prediction accuracy estimates for the fitted GP metamodels.

Output Responses MAE RMSE R

Natural frequency (Y1) 29.64 Hz 41.19 Hz 0.998
Proof mass displacement (Y2) 0.024 µm 0.034 µm 0.981

Pull-in voltage (Y3) 0.085 V 0.134 V 0.997
Capacitance change (Y4) 10.178 fF 14.05 fF 0.996

BNEA (Y5) 0.019 µg/
√

Hz 0.029 µg/
√

Hz 0.973

5. Multi-Response Optimization
5.1. Optimization Objective Function

The first step in the multi-response optimization of the proposed MEMS accelerometer
design is to define the desired optimization objective function, for a given set of constraints
for the design parameters. The objective function for the MEMS accelerometer is given
as follows:

Minimize—Natural frequency (Y1)
Maximize—Proof mass displacement (Y2)
Maximize—Pull-in voltage (Y3)
Maximize—Capacitance change (Y4)
Minimize—BNEA (Y5)
such that
150 µm ≤ X1 ≤ 250 µm
400 µm ≤ X2 ≤ 500 µm
400 µm ≤ X3 ≤ 500 µm
6 µm ≤ X4 ≤ 8 µm
X5 = 25 g
X6 = 300 K
X7 = 760 Torr
0.1 ≤ X8 ≤ 0.5

(9)

The value of the design parameter X5 is set to a maximum input acceleration of 25 g.
Similarly, the design parameters X6 and X7 are set to the atmospheric air pressure and
room temperature of 760 Torr and 300 K, respectively.

5.2. Desirability Function Based Simultaneous Multi-Response Optimization

Various techniques have been reported in the literature to simultaneously optimize
multiple output responses, including the distance function approach [45], loss function
approach [46], and desirability function approach [47]. The desirability function approach
was initially proposed by Harrington [48] in the form of exponential functions and later
modified by Derringer and Suich [47] and Del Castillo et al. [49]. In this approach, the
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estimated value for each output response is transformed to a scale free value (di(y i(x)))
which is termed as desirability. The di(y i(x)) value is scaled to be between 0 and 1 with 0
and 1 being the least and most optimal values, respectively. The overall desirability func-
tion is defined by taking the geometric mean of the individual desirability value for each
output response. The desirability functions proposed by Derringer and Suich [47] contain
non-differentiable target points and hence only search methods can be used for optimiza-
tion. Later, Del Castillo et al. [49] proposed alternative piece-wise continuous desirability
functions that account for non-differentiable points, and hence more efficient gradient-
based algorithms can be applied to obtain the optimal solution. The non-differentiable
desirability function for an output response is given as follows:

di(yi(x)) =


a0 + b0yi(x) if L < yi(x) ≤ T− δ
f(yi(x)) if T− δ ≤ yi(x) ≤ T + δ

a1 + b1yi(x) if T + δ ≤ yi(x) ≤ U
0 otherwise

(10)

where L, U, and T represent the lower, upper, and target values for an output response, re-
spectively. The term δ = (U− L)/50 defines the small range around the non-differentiable
point. The terms a0, a1, b0, and b1 are constants and a detailed discussion to find the
values of these constants are given in Del Castillo et al. [49]. The function f(yi(x)) is the
polynomial approximation function that corrects for the non-differentiable points and is
given as follows:

f(yi(x)) = A + Byi(x) + Cyi(x)
2 + Dyi(x)

3 + Eyi(x)
4 (11)

A, B, C, D, and E are constant parameters. For simultaneous optimization of all the
responses, a function named as global desirability is defined by taking the geometric mean
of all the individual desirability values for the output responses and is given as follows:

D =

(
k

∏
i=1

dzi
i

) 1
∑ zi

=
(
dz1

1 × dz2
2 × dz3

3 × . . .× dzk
k

) 1
∑ zi (12)

where k is the number of output responses to be optimized and zi (0 < zi < 1) reflects
the importance of each output response relative to others. The importance value (zi) for
each output response is scaled so that they sum up to one for all the responses.

The optimization of the desirability function is generally carried out using either
search or gradient-based algorithms [47,49]. The search algorithm-based optimization is a
derivative-free approach and can be applied for the optimization of desirability functions
whose derivative does not exist. The search algorithm-based optimization requires the
functions to have continuous first derivatives and is a more efficient and widely used
method. The multi-response optimization of the desired objective function for the proposed
2-DoF MEMS accelerometer is performed using a gradient descent algorithm. Figure 9
shows the optimal values for the design parameters along with their individual desirability
values. Figure 10 shows the individual desirability values for the output responses and
corresponding optimized predicted values for each response. The maximum value of
overall desirability obtained is 0.688 with a predicted value of 3037.37 Hz for the natural
frequency, 0.9029 µm for the proof mass displacement, 6.7618 V for the pull-in voltage,
676.213 fF for the capacitance change, and 0.8061 µg/

√
Hz for the BNEA.



Sensors 2021, 21, 7242 15 of 22

Sensors 2021, 21, x FOR PEER REVIEW 15 of 22 
 

 

value of overall desirability obtained is 0.688 with a predicted value of 3037.37 Hz for the 
natural frequency, 0.9029 µm for the proof mass displacement, 6.7618 V for the pull-in 
voltage, 676.213 fF for the capacitance change, and 0.8061 µg/√Hz for the BNEA. 

 
Figure 9. The optimized values of design parameters along with their individual desirability. 

 
Figure 10. The predicted values of the output responses along with their individual desirability. 

5.3. Verification of Predicted Values for the Output Responses 
The desirability function based predicted values for the output responses are further 

verified through FEM simulations to validate both the metamodel and desirability func-
tion based optimization approach for the proposed MEMS accelerometer design. The 
MEMS accelerometer is modelled by using the optimized geometric design parameter val-
ues shown in Figure 9. 

5.3.1. Natural Frequency Analysis 
The predicted optimized value of the natural frequency is verified through FEM 

based simulation in the CoventorWare MemMech module. Figure 11 shows the natural 

Figure 9. The optimized values of design parameters along with their individual desirability.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 22 
 

 

value of overall desirability obtained is 0.688 with a predicted value of 3037.37 Hz for the 
natural frequency, 0.9029 µm for the proof mass displacement, 6.7618 V for the pull-in 
voltage, 676.213 fF for the capacitance change, and 0.8061 µg/√Hz for the BNEA. 

 
Figure 9. The optimized values of design parameters along with their individual desirability. 

 
Figure 10. The predicted values of the output responses along with their individual desirability. 

5.3. Verification of Predicted Values for the Output Responses 
The desirability function based predicted values for the output responses are further 

verified through FEM simulations to validate both the metamodel and desirability func-
tion based optimization approach for the proposed MEMS accelerometer design. The 
MEMS accelerometer is modelled by using the optimized geometric design parameter val-
ues shown in Figure 9. 

5.3.1. Natural Frequency Analysis 
The predicted optimized value of the natural frequency is verified through FEM 

based simulation in the CoventorWare MemMech module. Figure 11 shows the natural 

Figure 10. The predicted values of the output responses along with their individual desirability.

5.3. Verification of Predicted Values for the Output Responses

The desirability function based predicted values for the output responses are further
verified through FEM simulations to validate both the metamodel and desirability function
based optimization approach for the proposed MEMS accelerometer design. The MEMS
accelerometer is modelled by using the optimized geometric design parameter values
shown in Figure 9.

5.3.1. Natural Frequency Analysis

The predicted optimized value of the natural frequency is verified through FEM based
simulation in the CoventorWare MemMech module. Figure 11 shows the natural frequency
of the MEMS accelerometer with the corresponding mode shape. The natural frequency
value obtained through simulation is 3038.1 Hz, which lies within the 95% confidence
prediction interval i.e., 2980 Hz ≤ Y1 = 3038.1 Hz ≤ 3090 Hz.
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5.3.2. Frequency Response Analysis

The predicted value of the output response proof mass displacement is verified by
using the harmonic analysis in the CoventorWare MEMS+ module. Figure 12 shows the
frequency response curve for the MEMS accelerometer at an input acceleration of 25 g.
The results show that at frequency ratio (X8) of 0.5, the displacement amplitude of the
proof mass is 0.898 µm. lies within the 95% prediction confidence prediction interval,
i.e., 0.891 µm ≤ Y2 = 0.898 µm ≤ 0.915 µm. The X8 = 0.5 corresponds to an operational
bandwidth of 1519 Hz. However, the MEMS accelerometers are generally designed for
operational bandwidth of 0–450 Hz. Figure 12 shows that for X8 = 0.15 with operational
bandwidth of 0–450 Hz, the proof mass displacement amplitude is relatively linear with a
maximum value of 0.688 µm for the proof mass displacement.
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5.3.3. Pull-In Voltage Analysis

Figure 13 shows the bias voltage vs. proof mass displacement graph for the final
optimized MEMS accelerometer design. The results show that the maximum bias volt-
age that can be applied to the stator and rotor sensing combs must be less than the
maximum pull-in value of 6.79 V. This pull-in voltage value is in close agreement with
a predicted value of 6.76 V and lies within the 95% confidence prediction interval, i.e.,
6.36 V ≤ Y3 = 6.79 V ≤ 7.16 V.
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5.3.4. Capacitance Change Analysis

For the verification of the predicted capacitance change for the final optimized MEMS
accelerometer design, the accelerometer model developed in the CoventorWare MEMS+
module is interfaced with MATLAB Simulink. A bias voltage of 2.25 V is applied between
the proof mass and stator electrodes, since the proposed accelerometer is designed to be
interfaced with the commercial capacitive to voltage conversion readout IC, MS3110 [50].
An input acceleration of 25 g at X8 = 0.5, i.e., 1519 Hz is given as an input to the MEMS
accelerometer, as shown in Figure 14a. Figure 14b,c show the corresponding gap and
anti-gap capacitance. The net change in capacitance is 694 fF which is close to the
predicted value of 676.2 fF and lies within the 95% confidence prediction interval, i.e.,
618 fF ≤ Y4 = 694 fF ≤ 735 fF. For X8 = 0.15, i.e., an input acceleration frequency of 450 Hz,
the net change in capacitance for the MEMS accelerometer is 523 fF.
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5.3.5. Estimation of Brownian Noise Equivalent Acceleration (BNEA)

For the estimation of BNEA, the MEMS 2-DoF accelerometer with optimal parameters
is first subjected to damping analysis in the CoventorWare DampingMM module to obtain
squeeze and slide film damping coefficients. The operating air pressure and temperature
are set at room conditions, i.e., 300 K and 760 Torr. These coefficients are then used to
estimate the value of BNEA based on Equation (5). The value of BNEA is estimated to be
0.805 µg/

√
Hz which is close to the predicted value of 0.8061 µg/

√
Hz and lies within the

95% confidence interval, i.e., 0.797 µg/
√

Hz ≤ Y5 = 0.805 µg/
√

Hz ≤ 0.815 µg/
√

Hz.

6. Discussion

The capacitive MEMS accelerometers are multiphysics sensors involving complex in-
teractions between the electrical–mechanical–fluidic domains. Table 5 shows a comparison
of different capacitive MEMS accelerometer design and analysis approaches presented
in the literature. Most of the MEMS accelerometer design analysis and optimization ap-
proaches involve the traditional varying one or two design factors at a time and observing
its effect on a specific output response. In most cases, the design analysis is only focused
on the geometric design parameters. However, the performance of capacitive MEMS
accelerometers is strongly dependent on the sensor operating conditions including air pres-
sure and temperature. The MEMS accelerometer operating temperature and air pressure
have a strong influence on the air damping and hence on the dynamic response of these
sensors. The design analysis and optimization of multiphysics MEMS devices in general
and capacitive MEMS accelerometers, in particular, requires analyzing the output responses
related to different physics domains simultaneously with respect to both geometric design
parameters and device operating conditions.

Table 5. Comparison of the proposed optimization methodology for capacitive MEMS accelerometers with that presented
in the literature.

Reference Optimization
Approach Design Factor(s) Output Response(s)

Simultaneous
Optimization of

Output Responses

Mohammed et al. [13] One design factor Geometric parameters Differential capacitance No
Keshavarzi and Hasani

[20] Two design factors Geometric parameters Capacitance sensitivity No

Ramakrishnan et al.
[21] Traditional DOE Geometric parameters Mechanical displacement,

stress, bandwidth No

Li et al. [22] One design factor Geometric parameters Capacitance sensitivity No

Shi et al. [51] Two design factors Geometric parameters Mechanical sensitivity,
stress, natural frequency No

Martha et al. [52] Two design factors Geometric parameters Pull-in voltage,
capacitance sensitivity No

This work Combined DACE and
GP Modelling

Geometric parameters,
Operating conditions

Natural frequency,
mechanical displacement,

capacitance sensitivity,
BNEA, pull-in voltage

Yes

One of the important performance parameters for MEMS accelerometers is voltage
sensitivity which is dependent on the capacitive to voltage readout electronics to estimate
the voltage sensitivity of the optimized MEMS accelerometer, the behavioral model of
the accelerometer is interfaced with the commercially available capacitance to voltage
convertor Universal Readout ICTM MS3110 [50] in MATLAB Simulink environment. This
readout circuitry is capable of measuring both single and differential capacitance with a
resolution of 4 aF/

√
Hz. Figure 15 illustrates the integration of 2-DoF MEMS accelerometer

behavioral model with MS3110. The working principle of the IC for the measurement of
differential capacitance is based on charge amplification, followed by sample and hold,
a low-pass frequency filter, and a buffer amplifier. A bias voltage of 2.25 V is applied



Sensors 2021, 21, 7242 19 of 22

between the proof mass and stator electrodes of the MEMS accelerometer. For an input
acceleration along X-axis, the capacitance mismatch between the input capacitors, the
difference CS1 −CS2 is zero and ∆C will be equal to the difference between the capacitors
Cap1 and Cap3 as obtained in the capacitance change analysis section. The feedback
capacitor CF value is adjusted to 3.2 pF to keep the output voltage in the range of 0.5 to
4 V. Figure 16 shows the effect of change in input acceleration on the output voltage of the
readout interface circuit. The graph shows that the maximum and minimum values for
output voltage are 3.93 and 0.573 V respectively with a voltage sensitivity of 65.4 mV/g for
the final optimized MEMS accelerometer design.
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7. Conclusions

In this paper, a simulation-based design optimization approach for the MEMS ac-
celerometer is presented by using DACE based design space sampling and development of
metamodels for output responses of interest using GP modelling. The DACE based LHS
sampling allows to cover the whole design space of the MEMS accelerometer by using only
10X simulation runs, where X = 8 is the number of design parameters. Moreover, combined
DACE based sampling and GP modelling allows to analyze the interaction between the
design parameters and their effect on the output responses simultaneously instead of con-
ventional varying one factor at a time based optimization approach. The output responses
of the MEMS accelerometer including natural frequency, proof mass displacement, pull-in
voltage, capacitance change, and BNEA are obtained using FEM and behavioral model
simulations for each simulation run in the LHS sampling design matrix. The Gaussian
process regression is used for developing the metamodel for each output response which
allowed to analyze the effect of design parameters and their interaction on the output
responses in detail. The accuracy of the developed metamodels for predicting the output
responses is proved by estimating the statistical parameters. An optimization objective
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function for the MEMS accelerometer is defined, and simultaneous optimization of the
output responses is carried out using a combined desirability function and gradient-based
algorithm. The predicted optimal values of the output responses are verified through FEM
simulation and the obtained values showed a close agreement with the prediction. The
optimized values of output responses for the MEMS accelerometer are natural frequency of
3036.37 Hz, proof mass displacement of 0.903 µm at ±25 g, pull-in voltage value of 6.762 V,
output capacitance change of 676.213 fF at ±25 g, and BNEA of 0.8061 µg/

√
Hz. Based

on the optimized values of the proof mass displacement and capacitance change and for
an operational bandwidth of 0–450 Hz, the mechanical, capacitance, and voltage sensitiv-
ity of the MEMS accelerometer are 0.027 µm/g, 22.9 fF/g, and 65.4 mV/g, respectively.
The DACE based optimization technique for the multi-response optimization of MEMS
accelerometer using Gaussian process regression overcomes the limitations of traditional
DoE based optimization and can be implemented for multiphysics MEMS devices with
complex geometric configurations. In the future, the application of DACE based optimiza-
tion methodology considering the microfabrication process uncertainties and size effects
can be investigated for the reliability-based optimization of the MEMS accelerometers.
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