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Chromosome conformation capture (3C)-based assays1 have 
become widely used to generate genome-wide chromatin 
interaction maps2. Analysis of chromatin interaction maps 

has led to detection of several features of the folded genome. Such 
features include precise looping interactions (at the 0.1–1 Mb 
scale) between pairs of specific sites that appear as local dots in 
interaction maps. Many of such dots represent loops formed by 
cohesin-mediated loop extrusion that is stalled at convergent 
CCCTC-binding factor (CTCF) sites3–5. Loop extrusion also pro-
duces other features in interaction maps such as stripe-like patterns 
anchored at specific sites that block loop extrusion. The effective 
depletion of interactions across such blocking sites leads to domain 
boundaries (insulation). At the megabase scale, interaction maps of 
many organisms including mammals display checkerboard patterns 
that represent the spatial compartmentalization of two main types 
of chromatin: active and open A-type chromatin domains, and inac-
tive and more closed B-type chromatin domains6.

The Hi-C protocol has evolved over the years. While initial pro-
tocols used restriction enzymes such as HindIII that produces rela-
tively large fragments of several kilobases6, over the last 5 years Hi-C 
using DpnII or MboI digestion has become the protocol of choice 
for mapping chromatin interactions at kilobase resolution3. More 
recently, Micro-C, which uses MNase instead of restriction enzymes 
as well as a different cross-linking protocol, was shown to allow 
generation of nucleosome-level interaction maps7–9. It is critical to 
ascertain how key parameters of these 3C-based methods, includ-
ing cross-linking and chromatin fragmentation, quantitatively 

influence the detection of chromatin interaction frequencies and 
the detection of different chromosome folding features that range 
from local looping between small intra-chromosomal (cis) ele-
ments to global compartmentalization of megabase-sized domains. 
Here, we systematically assessed how different cross-linking and 
fragmentation methods yield quantitatively different chromatin 
interaction maps.

Results
We explored how two key parameters of 3C-based protocols, 
cross-linking and chromatin fragmentation, determine the abil-
ity to quantitatively detect chromatin compartment domains and 
loops. We selected three cross-linkers widely used for chromatin: 
1% formaldehyde (FA), conventional for most 3C-based protocols; 
1% FA followed by incubation with 3 mM disuccinimidyl glutarate 
(the FA + DSG protocol); and 1% FA followed by incubation with 
3 mM ethylene glycol bis(succinimidylsuccinate) (the FA + EGS 
protocol) (Fig. 1a). We selected four different nucleases for chro-
matin fragmentation: MNase, DdeI, DpnII and HindIII, which 
fragment chromatin in sizes ranging from single nucleosomes to 
multiple kilobases. Combined, the three cross-linking and four 
fragmentation strategies yield a matrix of 12 distinct protocols (Fig. 
1b). To determine how performance of these protocols varies for 
different states of chromatin we applied this matrix of protocols to 
multiple cell types and cell cycle stages. We analyzed four different 
cell types: pluripotent H1 human embryonic stem cells (H1-hESCs), 
differentiated endoderm (DE) cells derived from H1-hESCs, fully  
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differentiated human foreskin fibroblast (HFF) cells (12 protocols 
for each), and HeLa-S3 cells (9 protocols). We analyzed two cell 
cycle stages: G1 and mitosis, in HeLa-S3 cells (9 protocols for each; 
Fig. 1). Each interaction library was then sequenced on a single lane 
of a HiSeq4000 instrument, producing ~150–200 million uniquely 
mapping read pairs (Supplementary Table 1). We used the Distiller 
pipeline to align the sequencing reads, and pairtools and cooler10 
packages to process mapped reads and create multi-resolution 
contact maps (Methods). Given that the density of restriction sites 
for DdeI, DpnII and HindIII fluctuates along chromosomes, we 
observed different read coverages in raw interaction maps obtained 
from datasets using these enzymes (Extended Data Fig. 1h). These 
differences were removed after matrix balancing11.

We first assessed the size range of the chromatin fragments pro-
duced after digestion by the 12 protocols for HFF cells (Methods). 
Digestion with HindIII resulted in 5–20-kb DNA fragments; 
DpnII and DdeI produced fragments of 0.5–5 kb; and MNase 
protocols included a size selection step to ensure that the liga-
tion product involved two mononucleosome-sized fragments 
(~150 bp) (Extended Data Fig. 1). Different cross-linkers did not 
affect the size ranges produced by the different nucleases, although 
DSG cross-linking lowered digestion efficiency slightly (Extended 
Data Fig. 1b).

All 3C-based protocols can differentiate between cell states. We 
first assessed the similarity between the 63 datasets by global and 
pairwise correlations using HiCRep and hierarchical clustering 
(Extended Data Fig. 1c)12,13. We found that the datasets are highly 
correlated and cluster primarily by cell type and state and then by 
cell type similarity, for example H1-hESCs and H1-hESC-derived 
DE cells cluster together; and the most distinct cluster is formed 
by mitotic HeLa cells. MNase protocols show slightly lower correla-
tions with Hi-C experiments.

Extra cross-linking yields more intra-chromosomal contacts.  
Given that chromosomes occupy individual territories, intra- 
chromosomal (cis) interactions are more frequent than inter- 
chromosomal (trans) interactions14. The cis : trans ratio is  
commonly used as an indicator of Hi-C library quality given that 
inter-chromosomal interactions are a mixture of true chromatin 
interactions and interactions that are the result of random liga-
tions14,15. For all enzymes and cell types, we found that the addi-
tion of DSG or EGS to FA cross-linking decreased the percentage 
of trans interactions (Fig. 2a for HFF and Extended Data Fig. 2a for 
H1-hESC, DE, HeLa-S3).

Regarding intra-chromosomal interactions, we noticed two 
distinct patterns. First, digestion into smaller fragments increased 
short-range interactions. MNase digestion generated more interac-
tions between loci separated by less than 10 kb, whereas digestion 
with either DdeI, DpnII or HindIII resulted in a relatively larger 
number of interactions between loci separated by more than 10 kb 
(Fig. 2a,b for HFF and Extended Data Fig. 2a,b for DE, H1-hESC, 
HeLa-S3). Second, P(s) plots showed that the addition of either 
DSG or EGS resulted in a steeper decay in interaction frequency 
as a function of genomic distance for all fragmentation protocols. 
Moreover, for a given chromatin fragmentation level, additional 
cross-linking with DSG or EGS reduced trans interactions, as 
shown for HFF cells and all other cell types and cell stages stud-
ied (Fig. 2c,d and Extended Data Fig. 2c). The addition of DSG or 
EGS could have reduced fragment mobility and the formation of 
spurious ligations, resulting in a steeper slope of the P(s). We note 
a difference in slopes for data obtained with different cell types and 
cell cycle stages, which could reflect state-dependent differences in 
chromatin compaction.

Random ligation events between un-cross-linked, freely dif-
fusing fragments lead to noise that is mostly seen in trans and 
long-range cis interactions. Experiments that use DpnII and 
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additional cross-linkers have a general decrease in trans con-
tacts, while uncovering a stronger trans compartmental pattern  
(Fig. 2e). Additionally, the comparison of trans interaction frequen-
cies to interactions between mitochondrial and nuclear genomes, 
given that these interactions can result only from random ligations 
(Extended Data Fig. 2d), showed that random ligations between 
genomic and mitochondrial DNA were the lowest when chroma-
tin was fragmented with HindIII, and were generally higher when 
chromatin was fragmented into smaller segments. Additional DSG 
or EGS cross-linking reduced random ligation in experiments using 
DpnII or DdeI. We could not use this noise metric for experiments 
using MNase because MNase completely degrades the mitochon-
drial genome.

Fragment size and cross-linking affect compartment strength. 
Visual inspection of interaction matrices (binned at 100-kb resolu-
tion) suggested that the contrast between the domains that com-
prise the A and B compartments can vary between protocols. For 
instance, for HFF cells cross-linked with only FA, interaction matri-
ces obtained with MNase digestion displayed a relatively weak com-
partment pattern, whereas those obtained with HindIII digestion 
had much stronger patterns (Fig. 3a).

To investigate compartmentalization and determine the posi-
tions of A and B compartments, we used eigenvector decomposi-
tion6,11 for all cell states except for mitotic cells, given that they do not 
display compartmentalized chromosomes16. Correlation between 
compartment profiles of all experiments showed that the greatest 
difference in profiles can be attributed to cell type (Extended Data 

Fig. 3a). Within each cell type, positions of compartment domains 
obtained with different protocols were highly similar (Spearman 
correlation > 0.8; Extended Data Fig. 3a).

Compartment strength analysis using saddle plots (Methods11,17,18) 
revealed three important trends. First, protocols that generate larger 
fragments (for example using HindIII; Fig. 3b,c) and protocols that 
include additional DSG or EGS cross-linking produced quantita-
tively stronger compartment patterns (Fig. 3c and Extended Data 
Fig. 3b–e) for all four cell types. Second, the different cell types 
differed in compartment strength: HFF cells displayed the stron-
gest compartment pattern, while H1-hESCs displayed the weakest 
compartment pattern regardless of the protocol used. This could be 
related to differences in chromatin state and/or cell cycle distribu-
tion between the cell types. Last, compartment strength was much 
stronger in cis than in trans. Furthermore, some protocols, including 
the conventional Hi-C protocol (cross-linked with FA and digestion 
with DpnII) and MNase-based protocols (Micro-C, regardless of 
cross-linking protocol) did not detect enrichment of B–B interac-
tions between chromosomes (Extended Data Fig. 3). Such preferred 
B–B interactions were detected only when Hi-C was performed with 
HindIII (Extended Data Fig. 3d,e). Additionally, trans preferential 
A–A interactions were more frequent than trans preferential B–B 
interactions for all protocols and cell types. In summary, compart-
ment strength was stronger both in cis and in trans, when protocols 
produce larger fragments or use additional cross-linking.

Fragment size and cross-linking determine loop detection. Of 
all of the structural Hi-C features, the detection of loops depends 
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most on sequencing depth. We applied conventional Hi-C using FA 
and DpnII digestion (FA–DpnII); Hi-C using DSG in addition to 
FA cross-linking and DpnII digestion (FA + DSG–DpnII); and the 
standard Micro-C protocol (FA + DSG–MNase) to two cell types, 
H1-hESC and HFFc6, and sequenced these libraries to a depth of 
2.4–3.9 billion valid interactions. HFFc6 is a subclone of HFF cells 
and is used by the 4D Nucleome Consortium19. Interaction maps 
of data obtained from these ‘deep’ datasets showed quantitative dif-
ferences in interactions for both H1-hESC and HFFc6 (Extended 
Data Fig. 4a,b). As compared with the conventional Hi-C protocol, 
the use of additional DSG cross-linking and finer fragmentation 
produced contact maps with more contrast and more pronounced 
focal enrichment of specific looping contacts. We re-implemented 

HICCUPS to identify looping interactions that appear as dots3,8 
(Methods).

First, we compared the number of loops detected in individual 
and merged biological replicates for the deeply sequenced protocols. 
We observed that the number of loops detected with protocols that 
cross-link chromatin with only FA was more sensitive to sequenc-
ing depth and less consistent between replicates compared with the 
number of loops detected using protocols that cross-linked with 
FA + DSG (Extended Data Fig. 4c,d). We used the lists of loops 
that were detected in merged replicates for subsequent analyses. In 
H1-hESCs we detected 3,951 loops with the FA–DpnII protocol, 
12,396 loops with the FA + DSG–DpnII protocol, and 22,507 loops 
with the FA + DSG–MNase protocol (Extended Data Fig. 5a). For 

a

b

c

Chr12, 100-kb bins, 40–80 Mb 

A–A

B–B

A–A

B
–B

A–A

A–B

B–A

P
C

1

PC1

FA–MNase FA–DdeI FA–DpnII FA–HindIII

FA–MNase FA–DdeI FA–DpnII FA–HindIII

A

B

2

4

6

8

10

12

0
0 2 4 6 8 10 12

1

0

–1

–2.5

–4

1

0

–1

2.94

1.91

5.42

3.96

5.99

3.74

10.19

7.95

PC1

H1-hESCDEHFF HeLa S3-NS Cis
FA–MNase

FA + DSG–MNase

FA + EGS–MNase

FA–DdeI

FA + DSG–DdeI

FA + EGS–DdeI

FA–DpnII

FA + DSG–DpnII

FA + EGS–DpnII

FA–HindIII

FA + DSG–HindIII

FA + EGS–HindIII

Trans
FA–MNase

FA + DSG–MNase

FA + EGS–MNase

FA–DdeI

FA + DSG–DdeI

FA + EGS–DdeI

FA–DpnII

FA + DSG–DpnII

FA + EGS–DpnII

FA–HindIII

FA + DSG–HindIII

FA + EGS–HindIII

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

A–A A–A

Fig. 3 | Fragment size and cross-linking affect compartment strength. a, Interactions (log transformed) for HFF cells obtained after cross-linking with FA 
only and digestion with MNase, DdeI, DpnII and HindIII, respectively. Principal component 1 (PC1) values of the genomic region are displayed below the 
figure. b, Saddle plots of genome-wide interaction maps for data shown in a. The signal of A–A and B–B compartmentalization in cis interactions become 
stronger with increasing fragment size. c, Quantification of the compartment strength using saddle plots of cis and trans interactions for 12 protocols 
applied to HFF cells, 9 protocols to non-synchronized HeLa-S3 (HeLa-S3 NS) NS, 12 protocols to DE cells, and 12 protocols to H1-hESCs. The y axis 
represents the strongest 20% of B–B interactions and the x axis represents the strongest 20% of A–A interactions, normalized by the bottom 20% of A–B 
interactions; that is, y = top(B–B)/bottom(A–B) and x = top(A–A)/bottom(A–B).

Nature Methods | VOL 18 | September 2021 | 1046–1055 | www.nature.com/naturemethods 1049

http://www.nature.com/naturemethods


Analysis NaTurE METHoDS

HFFc6 these numbers were 13,867, 22,934 and 36,988, respectively 
(Fig. 4a). To investigate the properties of detected loops, we compared 
loops that were called in individual or multiple protocols. Although 
a large fraction of loops was detected by all three protocols, we found 
that the protocols with extra cross-linking and finer fragmentation 
(FA + DSG–MNase) detected a large set of additional loops (Fig. 4a).

When we aggregated the interaction data for the various subsets 
of loops, we observed a focal increase in interaction frequency for 
all subsets of loops for all datasets, even for data obtained with pro-
tocols in which that subset of loops was not detected as significantly 
enriched (Fig. 4b for HFFc6 cells and Extended Data Fig. 5b for 
H1-ESCs). Quantifying the strength of the different subsets of loops 
detected by one or multiple protocols, we found that loops detected 
by all three protocols were the strongest, while loops detected only 
by the FA + DSG–MNase protocol were relatively weak.

We then defined a consensus set of loops that were detected in 
all datasets and used this set to analyze the data obtained with the 
matrix of 12 protocols described in Fig. 1 that differ in cross-linking 
and fragmentation strategies. We observed a gradual increase in 
average loop strength with decreasing fragment size and after addi-
tion of DSG or EGS (Extended Data Fig. 5d,e).

To explore this in another way, we quantified the strengths 
of each loop in the sets of consensus and union loops and found 
that the majority of loops were strengthened by additional DSG 
cross-linking (Fig. 4c, left panel) and by digestion with MNase 
as compared with DpnII (Fig. 4c, middle). Loops were strongest 
when additional cross-linkers and fragmentation with MNase were 
applied (Fig. 4c, right plot). A similar trend is also observed in 
HFFc6 cells (Extended Data Fig. 5c). We conclude that the use of 
additional cross-linkers and enzymes that fragment chromatin into 
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smaller fragments independently contribute to the loop detection 
and strength.

A looping interaction is defined by a pair of frequently interact-
ing loci or anchors. When anchors engage in multiple looping inter-
actions with other anchors, the number of anchors will be smaller 
than twofold the number of loops5. We compared the number of 
anchors as a function of the number of loops detected in deeply 
sequenced datasets for HFFc6 cells (Fig. 5a). We found that they 
were proportional to each other at a factor of 2 in the FA–DpnII 
experiment, but not in the experiments with improved loop detec-
tion (FA + DSG–DpnII and FA + DSG–MNase). This suggests that 
many of the newly identified loops involved anchors that were also 
detected with FA–DpnII (Fig. 5a and Extended Data Fig. 6a). In 
other words, many additionally detected loops are arranged along 
stripes emanating from the same anchors.

To further investigate this we directly determined the number of 
loops that a given anchor is engaged in as detected by different pro-
tocols. For each anchor, we subtracted the number of loops detected 
using the FA–DpnII protocol from the number of loops detected 
using the FA + DSG–DpnII or the FA + DSG–MNase protocol. We 
found that using extra cross-linkers as well as finer fragmentation 
increased the number of detectable loops (Fig. 5b,c and Extended 
Data Fig. 6b,c) in two ways: first, more loops are detected per 
anchor, and second, additional anchors are detected.

We split loop anchors into two categories: anchors detected with 
more than one protocol, and anchors detected with only one pro-
tocol. We observed that anchors detected with at least two proto-
cols were engaged in multiple loops (loop ‘valency’ > 1). In contrast, 
anchors that were detected with only one protocol mostly had a loop 
valency of 1 (Extended Data Fig. 6d,e). Interestingly, for H1-hESCs 
the majority of additional loops detected with the FA + DSG–
MNase protocol (62%) involve two anchors not detected with other 
protocols. For HFFc6 cells this was only 21%, indicating that most 
new loops shared at least one anchor with loops detected with  
other protocols.

We investigated factor binding (CTCF and cohesin (SMC1), 
YY1 and RNA PolII) and chromatin state (H3K4me3, H3K27ac) 
at the two categories of loop anchors. We used previously pub-
lished datasets20,21 and new data generated using a variety of tech-
niques (CUT&RUN22, CUT&Tag23, ChIP-Seq and ATAC-Seq24). 
Some loop anchors were detected with all protocols, and in the 
example shown these correspond to sites bound by CTCF and 
cohesin (Fig. 5d). Other loop anchors that were detected only with 
the FA + DSG–MNase protocol did not correspond to CTCF and 
cohesin-bound sites, but were enriched in H3K27ac and H3K4me3 
(Fig. 5d). Possibly, the ability of different protocols to detect vari-
ous loop anchors is related to factor binding and chromatin state. 
To investigate this across the whole genome we aggregated CTCF, 
SMC1, YY1 and RNA PolII binding data and histone modification 
data (H3K4me3 and H3K27ac) at loop anchors detected with all 
protocols or with only FA + DSG–MNase (Fig. 5e). Interestingly, in 
HFFc6 cells we found that FA + DSG–MNase-specific loop anchors 
were less enriched for CTCF and SMC1 but were more enriched for 
H3K4me3 and H3K27ac compared with the loop anchors that were 
detected by all three protocols (Fig. 5e and Extended Data Fig. 6f).

Next, we examined the predicted candidate cis-regulatory ele-
ments (cCREs) that are located at shared loop anchors across the 
three deep datasets and at loop anchors detected only with the 
FA + DSG–MNase protocol. We used cCRE predictions from the 
Encyclopedia of DNA Elements (ENCODE) for H1-hESCs and 
HFFc6 cells25. We found that the majority of the shared anchors 
had cCREs but only a small proportion of these cCREs were pre-
dicted promoter or enhancer elements without a CTCF site (5.2% 
for HFFc6 cells, 9.8% for H1-ESCs; Fig. 5f and Extended Data  
Fig. 6g). In contrast, half of the FA + DSG–MNase-specific anchors 
had predicted cCREs and for this subset the number of predicted 

promoter or enhancer elements without a CTCF site is higher com-
pared with loop anchors detected with all protocols (21% for HFFc6 
cells, 30% for H1-ESCs; Fig. 5f and Extended Data Fig. 6g). The 
FA + DSG–DpnII-specific loop anchors show similar enrichments 
to the FA + DSG–MNase-specific anchors.

Finally, we compared the chromatin organization at CTCF- 
enriched loop anchors with respect to the orientation of the CTCF- 
binding motif. Remarkably, using CUT&Tag or CUT&RUN 
data we found an asymmetric distribution of signal for all factors  
(Fig. 5g), including CTCF (CUT&Tag data). Both CTCF and cohe-
sin signals were skewed towards the inside of the loop. We noted 
that the CUT&Tag data were generated with an antibody against the 
N terminus of CTCF (Fig. 5g). We also analyzed CUT&RUN data 
that were generated with an antibody directed against the C termi-
nus of CTCF (Extended Data Fig. 6h) and observed signal enrich-
ment skewed at CTCF sites towards the outside of the loop. These 
observations are consistent with the orientation of CTCF binding 
to its motif and interactions between the N terminus of CTCF with 
cohesin on the inside of the loop26. The stronger enrichment of 
H3K4me3 and H3K27ac on the inside of the loop is intriguing, but 
the mechanism of this asymmetry is still unknown.

Insulation quantification is robust to experimental variations. 
Next we investigated chromatin insulation, that is, the reduced 
interaction probability across domain boundaries27–29. Loop anchors 
often form domain boundaries given that they represent sites at 
which cohesin-mediated loop extrusion is blocked. To identify sites 
of insulation using the previously described insulation metric30, we 
performed three separate analyses.

First, we compared the boundary strength as detected with the 
deep datasets obtained with the FA–DpnII, FA + DSG–DpnII and 
FA + DSG–MNase protocols in HFFc6 cells. The distribution of 
the boundary strengths was bimodal: for each dataset we identified 
a relatively large set of very weak boundaries, and a smaller set of 
strong boundaries (Extended Data Fig. 7a). Insulation at the weak 
boundaries was very small, and was possibly due to noise (Extended 
Data Fig. 7d). Focusing on the strong boundaries, we aggregated 
insulation profiles at three points: loop anchors detected with each 
of the three deep datasets; strong boundaries; and loop anchors at 
strong boundaries (Extended Data Fig. 7b). Insulation was very 
similar for each of the three deep datasets, indicating that the dif-
ferent protocols performed similarly in the quantitative detection of 
strong insulation sites. In general, insulation at strong boundaries 
was stronger than at loop anchors, possibly because of the stringent 
threshold for boundary detection.

Second, we investigated whether insulation strength depends on 
sequencing depth. We compared two biological replicates, one with 
~150 million interactions (matrix data, Extended Data Fig. 7c) and 
the other with 2.5 billion interactions (deep data, Extended Data 
Fig. 7a) for data obtained with the FA–DpnII, FA + DSG–DpnII 
and FA + DSG–MNase protocols. Deeper sequencing reduced the 
relative number of weak boundaries, suggesting that these were due 
to noise. The majority (>85%) of strong boundaries are detected 
in both deep data and the less deeply sequenced data obtained 
with the matrix of 12 protocols, and the insulation scores of these 
shared strong boundaries were highly correlated across all datasets 
(r > 0.80) (Extended Data Fig. 7c).

Last, we investigated the number and the strength of the bound-
aries detected using data obtained with the matrix of 12 protocols 
for HFF cells, H1-hESCs, DE cells and the 9 protocols for HeLa-S3 
cells. Insulation strength at boundaries detected with each protocol 
was very similar (Extended Data Fig. 7d). We observed the same 
results for H1-hESCs (Extended Data Fig. 7e–h).

We found a positive correlation between boundary strength and 
the number of protocols that detected that boundary (Extended 
Data Fig. 7i,j). Focusing on the set of boundaries that were detected 
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by at least half of the protocols, we then investigated how insulation 
varied for data obtained with the matrix of 12 protocols. We found 
that insulation strength was very similar for data obtained with all 
of the protocols (Extended Data Fig. 7k). Similarly, we detected only 
minor variations in insulation when insulation was aggregated at 
the set of loop anchors detected by all three deep datasets using data 
obtained with the matrix of 12 protocols. In summary, insulation 
detection and quantification was robust to variations in protocol 
(Extended Data Fig. 7l).

Hi-C 3.0 detects both compartments and loops. We showed that 
additional cross-linkers strengthen the compartment signal and 

loop enrichments. Additionally, compartments were strongest for 
experiments that have longer fragments, and loops were better 
detected when the chromatin was fragmented into smaller frag-
ments. We considered whether a single protocol could be designed 
to optimally capture both compartments and loops. We tested the 
effect of digestion with both DdeI and DpnII after cross-linking 
with FA + DSG (FA + DSG–DdeI + DpnII, referred to as ‘Hi-C 3.0’). 
We observed that using two enzymes further shortened the frag-
ment size compared with individual enzyme digestion (Extended 
Data Fig. 8a,b). Applying this protocol to HFFc6 cells, we generated 
two deeply sequenced biological replicates (3.3 billion valid interac-
tions combined). For comparison, we also generated a dataset using 
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only DdeI digestion (FA + DSG–DdeI; 2.7 billion valid interactions) 
in addition to the deeply sequenced libraries digested with only 
DpnII or MNase described above.

We found that the FA + DSG–DdeI + DpnII protocol affected 
the distance-dependent contact probability (Fig. 6a). Compared 
with data obtained by single DdeI or DpnII digests, in the data 
obtained with the FA + DSG–DdeI + DpnII protocol the contacts 
increased for loci separated by less than 10 kb, making the results 
from this protocol more similar to results obtained with protocols 
using MNase digestion. However, longer distance contacts more 
closely resembled data obtained with protocols using single restric-
tion enzymes than data obtained with protocols using MNase. 
Combined, this protocol improved the short-range signal without 
loss of the long-range signal (Fig. 6b).

We found that the majority of the loops detected with FA + DSG–
DdeI + DpnII overlapped with those detected with FA + DSG–MNase 
(Fig. 6c). Loop anchors detected in both protocols had stronger 
CTCF and cohesin enrichment, whereas protocol-specific anchors 
(for both FA + DSG–DdeI + DpnII and FA + DSG–MNase) were 
more enriched for H3K4me3 and H3K27ac (Extended Data Fig. 8c). 
Loop strength increased compared with data obtained with protocols 
that use a single restriction enzyme. We found ~6,000 more loop-
ing interactions than with either single DpnII or single DdeI diges-
tion (Fig. 6d). Furthermore, the average enrichment of contacts at 
these looping interactions was also higher for data obtained with the 
double digestion protocol. Nonetheless, the MNase library remained 
superior in detecting loops, both in number and in contact enrich-
ment (Fig. 6e). Importantly, when we investigated compartmental 
interactions we found that smaller restriction fragments did not 
result in a loss of quantitative detection of preferential compartmen-
tal interactions (Fig. 6f). In addition, the FA + DSG–DdeI + DpnII 
double-digest protocol allows for the efficient detection of both loops 
and compartments in a single protocol (Fig. 6g,h).

Finally, we tested how compartment strength and loop detec-
tion changes for various sequencing depths. We compared experi-
ments from H1-hESC and HFFc6 deep datasets and sampled ten 
times, resulting in a range from 200 million to 2 billion reads. 
First, we found that compartment identifications are similar for 
all read depths (Spearman correlation > 0.9) (Extended Data Fig. 
9a,b). Second, we observed that the compartment strength does 
not change for different read depths (Extended Data Fig. 9c). And 
last, more loops are detected as the number of reads increases 
(Extended Data Fig. 9d). Importantly, at all read depths the number 
of detected loops increases with finer fragmentation and additional 
cross-linking.

Discussion
We observed that fragmentation level and cross-linking chem-
istry influenced detection of chromatin loops and compartmen-
talization. Loop detection was improved when chromatin was 
cross-linked with additional (DSG) cross-linking and cut into small 
fragments. Loops detected with such protocols were more enriched 
for cis elements such as enhancers and promoters as compared 
with sets of loops detected with the conventional Hi-C protocol. 
However, this comes at the cost of a reduced ability to quantitatively 
detect compartmentalization in cis and in trans. Quantification 
of compartmentalization improved with longer fragments such 
as those produced with DpnII in the conventional Hi-C protocol. 
Compartment strength improved with additional cross-linkers or 
when chromatin was digested with HindIII. We showed that Hi-C 
3.0 using two restriction enzymes (DpnII and DdeI) and additional 
DSG cross-linking combined the strengths of the MNase-based 
Micro-C protocol to detect loops and the Hi-C protocols in detect-
ing stronger compartments.

Fragmentation level and cross-linking chemistry determine 
assay performance by affecting the level of noise due to random 

ligation events in datasets14. We find that smaller fragments result 
in more random ligation events, possibly due to the low number of 
cross-links per fragment for small fragments, leading to a higher 
mobility and increased random ligations during the assay. Random 
ligation events diminish when additional cross-linking is used or 
when chromatin is fragmented into larger fragments. This results in 
a decrease in inter-chromosomal interactions and steeper P(s) plots. 
Improved signal-to-noise ratios allowed better detection of loops, 
compartments and more bona fide inter-chromosomal interactions.

Detection of compartmentalization strength is improved when 
protocols are used that produce relatively long fragments and 
include additional cross-linking. Possibly, compartmental inter-
actions are more difficult to capture than looping interactions 
that are closely held together by cohesin complexes. Recently, we 
found that interfaces between compartment domains appear rela-
tively unmixed31. Longer fragments or extra cross-linkers may be 
required to more efficiently capture contacts across these interfaces. 
Interestingly, cell type-specific differences in strength of compart-
mentalization are observed only with some protocols. Conventional 
Hi-C (FA + DpnII) suggests that compartmentalization strength is 
quite similar in H1-ESCs, HeLa-S3 cells, DE cells and HFF cells. 
However, when Hi-C is performed with additional cross-linkers 
and/or with restriction enzymes that produce longer fragments, 
HFF and HeLa-S3 cells have stronger compartmentalization, while 
the compartmentalization strength for H1-ESCs and DE cells 
are unaffected. This suggests that quantitative differences in cell 
type-specific chromosome organization can be missed or underes-
timated depending on the 3C-based protocol.

Insights into the influence of experimental parameters of chro-
matin interaction data led us to test a single Hi-C protocol (Hi-C 
3.0), that can be used for better detection of both loops and compart-
ments. Hi-C 3.0 produces shorter fragments than those in conven-
tional Hi-C, but not as short as in the nucleosome-sized fragments 
in Micro-C. Hi-C 3.0 allows detection of thousands more loops 
compared with conventional Hi-C, and stronger compartmentaliza-
tion than Micro-C. Depending on the objective of the study, inves-
tigators may choose different protocols: Micro-C for loop detection, 
or Hi-C 3.0 for detection of both loops and compartments. Hi-C 3.0 
may be a good compromise protocol for many studies. Finally, we 
recommend always using FA + DSG (or EGS) cross-linking.

The deeply sequenced Hi-C, Micro-C and Hi-C 3.0 datasets we 
produced for H1-ESCs and HFFc6 cells will be useful resources 
for the chromosome folding community given that these cell lines 
are widely used for method benchmarking and analysis by the 4D 
Nucleome project19. Furthermore, the comprehensive collection 
of chromatin interaction data generated with the matrix of the 12 
3C-based protocol variants for each cell line can also be a valuable 
resource for benchmarking computational methods for data analy-
sis, given their different cross-linking distances and chemistry, frag-
ment lengths and noise levels.
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Methods
cLIMS: a laboratory information management system for C-data. cLims is a 
web-based lab information management system tailored to 3C experiments. It can 
be used to organize, store and export metadata of various experiment types such as 
Hi-C, 5C, ATAC-Seq and so on. The metadata organization is compatible with 4D 
Nucleome (4DN) Data Coordination and Integration Center (DCIC) standards, 
and cLIMS can be used to export data to 4DN DCIC and Gene Expression 
Omnibus (GEO) systems with one click.

For the matrix project, we had increasing levels of detail in metadata, a 
growing number of experiments, long time periods between data creation and 
submission and many people working on the same datasets, hence cLIMS enabled 
the information to be properly maintained. The details included cell lines, assays, 
treatments, sequencing and contributor information. This will also facilitate 
experiment reproducibility.

cLIMS was developed using the Django web framework on the back end 
and HTML5 and Javascript libraries on the front end. It is run on a PostgreSQL 
database and Apache web server and can be hosted on major Linux distributions.

Cell line culture and fixation. HFFc6 cells. HFFc6 cells were cultured according 
to 4DN SOP (https://data.4dnucleome.org/biosources/4DNSRC6ZVYVP/). 
Cells were grown at 37 °C under 5% CO2 in 75 cm2 flasks containing DMEM, 
supplemented with 20% heat-inactivated FBS. For sub-culture, cells were rinsed 
with 1× DPBS and detached using 0.05% trypsin at 37 °C for 2–3 min. Cells were 
typically split every 2–3 d at a 1:4 ratio and collected while sub-confluent, to ensure 
that they would not overgrow.

H1-hESC. The hESCs (H1, WiCell, WA01, lot no. WB35186) were cultured in 
mTeSR1 media (StemCell Technologies, 85850) under feeder-free conditions on 
Matrigel H1-hESC-qualified matrix (Corning, 354277, lot no. 6011002)-coated 
plates at 37 °C and 5% CO2. H1 cells were fed daily with fresh mTeSR1 media and 
passaged every 4–5 d using ReLeSR reagent (StemCell Technologies, 05872). Cells 
were dissociated into single cells with TrypLE Express (Thermo Fisher, 12604013).

Fixation protocol. The final collection of 5 million HFFc6 and H1-hESC cells 
was performed after washing twice with Hank’s Buffered Salt Solution (HBSS) 
before cross-linking in HBSS with 1% FA for 10 min at room temperature. FA 
was quenched with glycine (128 mM final concentration) at room temperature 
for 5 min and on ice for an additional 15 min. Cells were washed twice with DPBS 
before pelleting and flash freezing with liquid nitrogen into 5 million aliquots. 
Alternatively, FA-fixed cells were centrifuged at 800×g and subjected to additional 
cross-linking with either 3 mM DSG or EGS, freshly prepared and diluted from 
a 300 mM stock in DMSO, for 40 min at room temperature. DSG and EGS 
cross-linked cells were both quenched with 0.4 M glycine for 5 min and washed 
twice with DPBS, supplemented with 0.05% BSA, before flash freezing with liquid 
nitrogen into 5 million aliquots.

Hi-C protocol. Chromosome conformation capture was performed as described 
previously and we refer to Belaghzal et al.33 for a step-by-step version similar to this 
protocol. The optimizations of cross-linkers are described above.

Micro-C-XL protocol. The Micro-C XL protocol was adopted from Hsieh et al. and 
Krietenstein et al.7,8.

Size range of chromatin fragments produced after digestion. Cells were cross-linked, 
lysed and digested as with the Hi-C protocol (see above). Then, cross-links 
were reversed and DNA was isolated as in Hi-C, but without ligation and biotin 
incorporation. DNA was loaded on an Advanced Analytical Fragment Analyzer 
(Agilent) for size range analysis, and the data were analyzed using PROsize3 
software (Agilent). PROsize3 traces were exported separately as 4 × 8 bins (32 total) 
in ranges of 40–500, 500–1,300, 1,300–8,000 and 8,000–100,000 bp. Size ranges 
of potential restriction sites (hg38) were identified using cooltools genome digest 
(https://cooltools.readthedocs.io/en/latest/cli.html?highlight=enzyme#cooltools- 
genome-digest).

CUT&Tag protocol. Samples were processed as previously described23 with 
few modifications. In brief, approximately 100,000 cells per sample were 
permeabilized in the wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM 
Spermidine, 1× Protease inhibitor cocktail), and then cells were coupled with 
activated concanavalin A-coated magnetic beads for 10 min at room temperature. 
Pelleted beads were resuspended in antibody buffer (Mix 8 μl 0.5 M EDTA 
and 6.7 µl 30% BSA with 2 ml Dig-wash buffer) with 1:100 dilution of SMC1 
(Bethyl, cat. no. A300-055A) or CTCF antibody (Active motif, cat. no. 61311) 
and incubated overnight at 4 °C on a rotator. The next day, the pelleted bead 
complex was incubated with 1:50 dilution of secondary antibody (guinea pig 
α-rabbit antibody, cat. no. ABIN101961) in Dig-Wash buffer (20 mM HEPES pH 
7.5, 150 mM NaCl, 0.5 mM Spermidine, 1× Protease inhibitor cocktail, 0.05% 
Digitonin) and incubated at room temperature for 30 min on a rotator. After 
two washes in Dig-Wash buffer, 1:250 diluted pAG-Tn5 adapter complex in 
Dig-300 buffer (20 mM HEPES pH 7.5, 300 mM NaCl, 0.5 mM Spermidine, 1× 

Protease inhibitor cocktail, 0.05% Digitonin) were added to the bead complex 
and incubated at room temperature for 1 h. After two washes in Dig-300 buffer, 
beads were resuspended in 300 µl Tagmentation buffer (20 mM HEPES pH 
7.5, 300 mM NaCl, 0.5 mM Spermidine, 1× Protease inhibitor cocktail, 0.05% 
Digitonin, 10 mM MgCl2) and incubated at 37 °C for 1 h 45 min. Samples 
underwent Proteinase K treatment and extraction of tagmented DNA using 
phenol : chloroform : isoamyl alcohol (25:24:1). In preparation for Illumina 
sequencing, 21 µl DNA was mixed with 2 µl universal i5, 2 µl uniquely barcoded 
i7 primer, and 25 µl NEBNext High-Fidelity 2X PCR Master mix. The sample was 
placed in a thermocycler with a heated lid using the following cycling conditions: 
72 °C for 5 min, 98 °C for 30 s, 14 cycles of 98 °C for 10 s and 63 °C for 30 s, with a 
final extension at 72 °C for 1 min and hold at 4 °C. Post-polymerase chain reaction 
(PCR) clean-up was performed by adding 1.1× volume Ampure XP beads and 
incubating for 15 min at room temperature, washing twice gently in 80% ethanol, 
and eluting in 30 µl 10 mM Tris pH 8.0. The final library samples were paired-end 
sequenced on Nextseq500.

CUT&RUN protocol. CUT&RUN raw data (fastq files) of H1-hESC are 
downloaded from Janssens et al.20 and raw files of HFFc6 are generated in the 
laboratory of S. Henikoff using the protocol developed by Skene and Henikoff22.

ATAC-Seq protocol. We have followed a published protocol to perform H1-hESC 
ATAC-Seq experiments. The protocol details have been described previously.34

ATAC-Seq experiments on HFFc6 cells were performed following a previously 
published protocol.24 In brief, 50,000 cells per experiment were washed and lysed 
using a lysis buffer (0.1% NP-40, 10 mM Tris-HCl pH 7.4, 10 mM NaCl and 
3 mM MgCl2). Lysed cells were then transposed using the Nextera DNA library 
prep kit (Illumina, FC-121–1030) for 30 min at 37 °C, immediately followed by 
DNA collection using Qiagen MinElute columns (Qiagen, 28004). Appropriate 
cycle numbers for amplification were determined for each sample individually 
using quantitative PCR. Finally, primers were removed using AMpure XP beads 
(Beckman Coulter, A63881) prior to 2 × 50-bp paired-end sequencing.

Data analysis. Chromosome capture data processing. The Distiller pipeline (https://
github.com/mirnylab/distiller-nf) is used to process Hi-C and Micro-C datasets. 
First, sequencing reads were mapped to hg38 using bwa mem with flags-SP. 
Second, mapped reads were parsed and classified using the pairtools package 
(https://github.com/mirnylab/pairtools) to produce 4DN-compliant pairs files. 
We removed PCR and optical duplicates using the positions of aligned reads with 
2 bp flexibility. Next, pairs were filtered using mapping quality scores (MAPQ > 30) 
on each side of aligned chimeric reads, binned into multiple resolutions, and 
low-coverage bins were removed. Finally multi-resolution cooler files were 
created using the cooler package10 (https://github.com/mirnylab/cooler.git). We 
normalized contact matrices using the iterative correction procedure from Imakaev 
et al.11. Interaction heatmaps were created using the ‘cooler show’ command from 
the cooler package.

HiCRep correlations. We used HiCRep to do distance-corrected correlations12 
of the various protocols and cell states. Correlation is calculated in two steps. 
First, interaction maps are stratified by genomic distances and the correlation 
coefficients are calculated for each distance separately. Second, the reproducibility 
is determined by a novel stratum-adjusted correlation coefficient statistic (SCC) by 
aggregating stratum-specific correlation coefficients using a weighted average. We 
correlated 50-kb binned individual chromosomes between protocols and averaged 
the correlations across all chromosomes.

Cis and trans ratio. Trans percent is calculated by dividing the total interactions 
between chromosomes by the sum of the interactions within and between 
chromosomes (trans/cis + trans). Distance-separated cis interactions are calculated 
by dividing the total interactions within a specified distance of the chromosomes 
by the sum of interactions within and between the chromosomes (cis of specific 
distance/cis + trans). Pairtools provides statistics for the numbers of interactions 
captured within and between chromosomes.

P(s) plots. P(s) plots describe the decay of the average probability of contact 
between two regions on a chromosome as a function of the genomic separation 
between them.

As per best practice, scaling is typically computed for each chromosomal 
arm of the genome before being aggregated. To obtain the extent of each 
chromosomal ar the sizes of the chromosomes and the positions of their 
associated centromeres must be obtained. The sizes of the chromosome were 
obtained using the fetch_chromsizes function that is found in the bioframe 
library (https://github.com/open2c/bioframe/blob/master/bioframe/io/resources.
py#L61), and the starts and ends of the centromere were obtained from bioframe 
using the function fetch_centromeres (https://github.com/open2c/bioframe/
blob/master/bioframe/io/resources.py#L109). The results of these two functions 
were combined to create a single list containing the extents of each chromosomal 
arm of the human hg38 genome. For all libraries except those made from 
HeLa-S3 cells, all chromosome arms were used in the scaling calculation. For 
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HeLa libraries we excluded the chromosomes with translocations and used only 
chromosomes 4, 14, 17, 18, 20 and 21.

We used the diagsum function from the cooltools library (https://github.com/
open2c/cooltools/blob/master/cooltools/expected.py#L541) to calculate scaling. 
This function takes in a cooler, extracts the table of non-zero read-counts across 
the genome (known as the pixel table) and calculates the sum of read-counts as a 
function of distance from the main diagonal. It also simultaneously calculates the 
total number of possible counts obtainable at a given distance (called valid pairs) 
based on masking of the region due to balancing and other user-provided criteria. 
Additionally, this function can also transform the read-counts obtained from the 
pixel table before aggregating the result. This is done by passing the appropriate 
user-defined function to the ‘transforms’ parameter of diagsum.

To obtain the scaling plots shown in the paper, for each library, the diagsum 
function was applied on the 1-kb cooler associated with the library. The 
recommended resolution to calculate scalings is 1 kb because it allows us to 
observe variations at the finest scales. Along with the cooler, the extents of the 
chromosomal arms were also provided using the regions argument. A transform 
(named ‘balanced’) was also applied to the data to convert raw read-counts to 
balanced read-counts. This was done by multiplying the count value with the 
associated row and column weights obtained from balancing the cooler.

The resulting output is a single table with four relevant columns: ‘region’, which 
describes which chromosome arm a specific row was obtained from; ‘diag’, which 
refers to the genomic separation at which the data were aggregated; ‘balanced.
sum’, which is the sum of read-counts for that given region and genomic separation 
after they were transformed by the balanced transform; and ‘n_valid’, which is 
the number of possible valid pairs at a given distance (as described earlier). The 
individual column values were aggregated over the different arms and then further 
aggregated into logarithmically spaced bins of genomic separation. Finally, the 
balanced.sum column was divided by the n_valid column to create the ‘balanced.
avg’ column, which is a measure of the average number of contacts across the 
genome for a given genomic separation. The curves shown in the main text are the 
balanced.avg values plotted as a function of diag for the different libraries.

In addition to the interaction decay within a chromosome, interaction between 
different chromosomes can also be quantified. This is done using the blocksum_
asymm function in cooltools (https://github.com/open2c/cooltools/blob/master/
cooltools/expected.py#L820), which uses a very similar methodology. Two sets of 
regions are provided to blocksum_asymm, and then balanced.sum and n_valid 
are calculated for every pair of regions (entire chromosomes in this case). Given 
that the interactions are between two chromosomes there is no notion of genomic 
separation between two regions. Balanced.avg is calculated in the same manner 
as above and the mean of this value is visualized as horizontal dashed lines in the 
main text figures.

Average slope of scaling. To magnify small variations between the different libraries, 
we calculated derivative curves from the scaling curves. Derivative curves 
represent the rate of change of scaling curves as observed on a log–log scale. 
These are computed by taking the log of scaling data (both x and y), calculating 
the finite difference measure of the slope and then smoothing that value with a 
Gaussian kernel. The smoothing function used is gaussian_filter1d from the SciPy 
library (with a spread of 1). The smooth finite difference values can be plotted as 
a function of distance, as is the case for Fig. 6b. Alternatively, the average value of 
this derivative is calculated and correlated with other features (as in Fig. 2c,d).

Genome coverage analysis. For genome-wide coverage analysis, the mapped 
read pairs were split into two individual files and the read coverage at respective 
bins (genome-wide at 100-kb bins) was computed with the BEDTools coverage 
(v2.29.2) function. The read density was normalized to reads per million to 
compare between samples with different total read-counts and subsequently 
to reads per 1 kb to compare between annotations with different bin sizes. The 
compartment associations were extracted from HindIII compartment calls using 
the respective cell types.

Compartment analysis. We assessed compartments using eigenvector 
decomposition on observed-over-expected contact maps at a resolution of 100 kb 
separated for each chromosomal arm using the cooltools package-derived scripts. 
The eigenvector that has the strongest correlation with gene density is selected, 
then the A and B compartments were assigned based on the gene density profiles 
such that the A compartment has a high gene density and the B compartment has 
a low gene density profile11. Spearman correlation (Extended Data Fig. 3a) was 
used to correlate the eigenvectors of different experiments performed with various 
protocols and cell states. Saddle plots were generated as follows: the interaction 
matrix of an experiment was sorted based on the eigenvector values from lowest to 
highest (B to A). Sorted maps were then normalized for their expected interaction 
frequencies; the upper left corner of the interaction matrix represents the strongest 
B–B interactions, the lower right represents the strongest A–A interactions, and 
the upper right and lower left represent B–A and A–B, respectively. To quantify the 
saddle plots we took the strongest 20% of B–B interactions and the strongest 20% 
of A–A interactions, normalized by the bottom 20% of A–B interactions; that is, 
y = top(B–B)/bottom(A–B) and x = top(A–A)/bottom(A–B). Saddle quantification 

was used to create the scatter plots in Fig. 3c and heatmaps in Extended Data Fig. 
3 that compare A and B compartments for all cell types. Both scatter plots and 
heatmaps in Fig. 3 and Extended Data Fig. 3 were created using the Matplotlib 
package from Python.

Identification of chromatin loops. The cooltools call-dots function (https://
github.com/open2c/cooltools/blob/master/cooltools/cli/call_dots.py), a 
re-implementation of HICCUPS3, was used to detect the chromatin loops that 
are reflected as dots in the interaction matrix. We used the following parameters 
to call the loops: fdr = 0.1, diag_width = 10000000, tile_size = 5000000, and 
max-nans-tolerated 4. We called dots in deep data at resolutions of both 5 kb and 
10 kb, using MAPQ > 30 pairs and merged the results using the criteria given by 
Rao et al.3 In brief, to merge 5-kb and 10-kb loop calls, both the reproducible 
5-kb calls and the unique 10-kb calls were kept. Unique 5-kb calls were kept if 
the genomic separation of the region was <100 kb or if the dots were particularly 
strong (that is, more than 100 raw interactions per 5-kb pixel). More detailed 
explanations for dot calling are given by Rao et al. and Krietenstein et al.3,8.

Comparison of loops detected in different protocols. BEDTools intersect35 was 
re-implemented to overlap two-dimensional (2D) loops between protocols. Given 
that loop calls are fundamentally 2D data, they need to be processed for use with 
BEDTools (which operate on one-dimensional (1D) data).

Each loop call consists of six coordinates: chrom1, start1, end1, chrom2, 
start2 and end2. Given that chrom1 is always the same as chrom2 for loop 
calls, we ignored these two columns and reduced our space to four coordinates. 
Furthermore, to account for errors in the positioning of the loop during the loop 
calling, we introduced the following margin of error around the called region 
(typically 10 kb):

pos1 = (start1 + end1)/2; start1 = (pos1 − 5 kb); end1 = (pos1 + 5 kb)

pos2 = (start1 + end1)/2; start2 = (pos1 − 5 kb); end2 = (pos2 + 5 kb).

To overlap the two lists, we performed two separate 1D overlaps with BEDTools 
and then merged the results. To this end, every entry on each list is given a unique 
loop identification. Using BEDTools overlap on each dimension of the loop list, we 
obtained a pair of loop identifications (one from each list) that were used to track 
which pairs of dots overlapped along both dimensions. Thus only pairs of dots with 
overlaps in both dimensions are merged and outputted.

Upset plots. Upset plots were created for overlapping loops using the following R 
package: https://cran.r-project.org/web/packages/UpSetR/vignettes/basic.usage.
html.

Quantification of chromatin loops. We created the loop pileups using 
notebooks from the hic-data-analysis-bootcamp notebook (https://github.com/
hms-dbmi/hic-data-analysis-bootcamp/blob/master/notebooks/06_analysis_
cooltools-snipping-pileups.ipynb). The pileups were done at a resolution of 5 kb 
and with a 50-kb extension on each side of the loop. To quantify the loop strength, 
first, we created an interaction matrix of 50 × 50 kb, centered around the loop. 
Then, we calculated the intensity of the loop by dividing the average of a 3 × 3 
square in the middle of the interaction matrix by the average of its neighboring 
pixels: upper left, upper middle, upper right; middle right; and lower right 
(Supplementary Fig. 1).

This quantification of loop enrichment using its local background was also 
done to identify the loops. These quantifications are shown in Fig. 4b,c and 
Extended Data Fig. 5b–e.

Anchor analysis. We concatenated the genomic positions of the left and the right 
anchors for each loop to create a 1D anchor list for each deep dataset (FA–DpnII, 
FA + DSG–DpnII, FA + DSG–MNase), derived from both H1-hESC and HFFc6 
cell lines.

We used BEDTools merge35 with the parameters ‘–c 1 -o count’ to remove 
redundant anchors (based on their genomic position) and to find the number 
of merged anchors at each genomic location. The number of merged anchors 
in a given genomic locus reflected loop valency at this anchor. Using BEDTools 
multiinter (https://bedtools.readthedocs.io/en/latest/content/overview.html) we 
identified the anchors that were shared in one, two or three protocols (Fig. 5a–c 
and Extended Data Fig. 6a–e).

CUT&RUN, CUT&Tag and ChIP-Seq analysis. CUT&RUN data (HFFc6 
H3K4me3, HFFc6 H3K27ac, H1-hESC CTCF, H1-hESC H3K4me3, H1-hESC 
H3K27ac) were generated in the laboratory of S. Henikoff and can be found on the 
4DN Data Portal (https://data.4dnucleome.org/). CUT&Tag data (HFFc6 CTCF, 
HFFc6 SMC1) were generated in the laboratory of R. Maehr at the University of 
Massachusetts Medical School. Finally, ChIP-Seq data were downloaded from 
ENCODE. We processed raw fastq files for CUT&RUN and CUT&Tag data 
and downloaded already processed bigwig and peak lists for ChIP-Seq data. We 
mapped and processed the fastq files using nf-core ATAC-Seq36 pipelines. BWA 
was used for mapping the fastq files to the hg38 reference genome; MACS2 (with 
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default parameters) was used to find the enriched peaks, and BEDTools intersect 
was subsequently used to identify the loop anchors from these enriched peaks.

We found the anchors that intersected the three protocols (FA–DpnII, 
FA + DSG–DpnII, FA + DSG–MNase) and the FA + DSG–MNase-specific 
anchors using BEDTools intersect. We extracted the open chromatin (ATAC-Seq 
peak) regions located at these anchors and then aggregated the average signal 
enrichments of CTCF, SMC1, H3K4me3, H3K27ac, YY1 and RNA PolII. Deeptools 
was used to create the enrichment profiles in Fig. 5e and Extended Data Fig. 6f 
(ref. 37). We downloaded the lists of cCREs for H1-hESCs and HFFc6 cells from 
ENCODE25 and overlapped these cCREs with the intersected anchor list and 
the FA + DSG–MNase anchor list, again using BEDTools intersect. Finally we 
separated them based on the cCRE categories.

To compare the anchor-specific enrichments shown in Fig. 5g and Extended 
Data Fig. 6h, we used the loop lists of FA–DpnII, FA + DSG–DpnII and FA + DSG–
MNase. We identified enriched convergent CTCF sites located at these loop 
anchors and compared the enrichments of CTCF, SMC1, H3K4me3, H3K27ac, 
YY1 and RNA PolII per anchor. To obtain convergent CTCF sites, we selected 
anchor 1 (left anchor) to overlap with CTCF sites that had a ‘+’ orientation and a 
CTCF peak, and anchor 2 (right anchor) to overlap with CTCF sites that had a ‘–’ 
orientation. We plotted convergent CTCF sites located at anchor 1 and anchor 2 
for FA–DpnII, FA + DSG–DpnII and FA + DSG–MNase in both HFFc6 cells and 
H1-hESCs (Fig. 5f and Extended Data Fig. 6h).

For HFFc6 cells, we used CUT&Tag data generated with an antibody against 
the N terminus of CTCF. For H1-hESCs, we used CUT&RUN data generated with 
an antibody against the C terminus of CTCF. Given that CTCF motifs are known 
to locate at the N terminus of the CTCF protein26, the orientation of the CTCF 
enrichments differed between the datasets from CUT&Tag and CUT&RUN.

Insulation score. We calculated diamond insulation scores using cooltools (https://
github.com/open2c/cooltools/blob/master/cooltools/cli/diamond_insulation.
py) as implemented from Crane et al.30. We defined the insulation and boundary 
strengths of each 10-kb bin by detecting the local minima of 10-kb binned data 
with a 200-kb window size. We used the cooltools function diamond-insulation 
with the parameters –ignore-diags 2, –window-pixels 20. We separated weak and 
strong boundaries using the mean insulation score of each protocol (that is, weak 
boundaries < mean < strong boundaries). Given that diamond insulation pipelines 
cannot differentiate between compartment boundaries and insulation boundaries, 
we manually removed the compartment boundaries before any further analysis. 
Therefore the depth in local minima here is a result of strong insulation strength 
not a compartment switch. Next, we aggregated the insulation strength of the deep 
datasets at loop anchors, strong boundaries, and loop anchors located at the strong 
boundaries using scripts from the hic-data-analysis-bootcamp notebook (https://
github.com/hms-dbmi/hic-data-analysis-bootcamp/blob/master/notebooks/06_
analysis_cooltools-snipping-pileups.ipynb). For both deep and matrix data we 
used only strong boundaries for further analysis because they reflected the true 
boundaries across protocols. Given that the position of insulation boundaries 
was often offset by one or two bins between protocols, we extended the boundary 
bin by 10 kb on each side (30 kb total) in each protocol. We then used BEDTools 
multiinter (https://bedtools.readthedocs.io/en/latest/content/overview.html) to 
count the boundaries that were found in one or more protocols within the cell type. 
We defined our stringent boundary list as the boundaries that were shared in at 
least 50% of the matrix protocols within each cell type and used these boundary 
lists for further comparisons. In heatmaps, we used the average insulation strength 
of these boundaries per protocol (Extended Data Fig. 7k). To create the heatmaps 
in Extended Data Fig. 7l, we used the loop anchors that were shared between the 
three protocols that were deeply sequenced: FA + DpnII, FA + DSG–DpnII and 
FA + DSG–MNase in both H1-hESCs and HFFc6 cells.

Loop quantification for specific genomic separations. To quantify the loop strengths 
for HFFc6 deep datasets described in Fig. 6d (FA–DpnII, FA + DSG–DpnII, 
FA + DSG–DdeI, FA + DSG–DdeI + DpnII, FA + DSG–MNase), first we separated 
the loops based on their genomic separations into 100-kb bins, starting from 
70 kb (that is, 70–170 kb, 170–270 kb,…970–1,070 kb), because 70 kb was the 
smallest detectable loop size, and then plotted the number of loops detected in 
each distance interval (Fig. 6d). Given that the number of detected loops in these 
genomic separations was different for each library, we sampled 1,000 loops for 
each distance from the FA + DSG–DdeI + DpnII dataset to quantify the loop 
enrichments of the five libraries (Fig. 6e). If the number of loops at a specified 
distance is smaller than 1,000 we use the entire loop set at this distance.

Finally, to create Fig. 6h,i we sampled 2,000 loops from each HFFc6 deep 
dataset (FA–DpnII, FA + DSG–DpnII, FA + DSG–DdeI, FA + DSG–DdeI + DpnII, 
FA + DSG–MNase), combined them and then quantified the loop strength of 

the total 10,000 loops in these deep datasets (Fig. 6h) and in the matrix datasets 
described in Fig. 1a (Fig. 6i). Loop enrichments were quantified as described in the 
Quantification of Chromatin Loops section.

Sampling experiment. We combined two biological replicates for the deep 
datasets obtained with each of the protocols. We then sampled 10 experiments 
with different numbers of interactions (valid pairs): 200 million reads, 
400 million,…1,800 million, 2 billion reads. For each sample we then called and 
quantified compartment strength and loops, exactly as described above.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available at GEO under accession number GSE163666. Supplementary 
Table 1 lists datasets accessible through the 4DN data portal including 4DN 
accession numbers. Source data are provided with this paper.

Code availability
Scripts and notebooks used in this paper can be accessed at https://github.com/
dekkerlab/matrix_paper
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | DNA fragmentation and clustering of correlation (HiCRep). a,b. Cumulative distribution of the lengths of fragmented DNA 
obtained from fragment analyzer data in HFF cells stratified for different cross-linkers (a) and restriction enzymes (b). Gray lines indicate all datasets, 
colored lines indicate data obtained with the indicated nuclease/cross-linkers. c-g. Hierarchical clustering of HiCRep correlations for: all protocols 
comparing cell states (c), synchronized HeLa-S3 G1 cells (dark green) and non-synchronized HeLa-S3 cells (light green) (d), synchronized HeLa-S3 mitotic 
cells (e), H1-hESC and H1-hESC derived DE cells (f), 12 protocols applied to HFF cells (g). One color key is indicated for all of the heatmaps. h. Genome 
coverage of data generated using MNase, DdeI, DpnII and HindIII. The read density was normalized to reads per million, separated by the coverage in A 
and B compartments (Methods).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cis and trans contact frequency differ between protocols. a. The number of valid pairs in each of the 12 protocols applied to H1-
hESC, DE, HeLa-S3-NS, HeLa-S3-G1 and HeLa-S3-M cells partitioned by genomic distances. b. Distance dependent contact probability of 12 protocols 
ordered as in (a), partitioned by fragmenting nucleases used (gray lines indicate all datasets, colored lines indicate datasets generated with the nucleases 
indicated for each plot). c. The relationship between the trans percent and the average slope of the distance dependent contact probability for the 12 
protocols ordered as in Extended Data Fig. 2a. d. Quantification of protocol introduced noise as defined by inter-mitochondrial interactions (chrM with 
chr1-22), normalized by intra-mitochondrial (chrM with chrM) interactions.
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Extended Data Fig. 3 | Quantitative compartment detection differ between protocols. a. Hierarchical clustering of Spearman correlations of Eigenvectors 
(PC1) for 63 protocols. Clustering shows strong correlations between compartments from data obtained with varying protocols applied to the same cell 
types and weaker correlations for data obtained with the same protocols applied to different cell types. b–e. A-A and B-B compartment strength of saddle 
plots for fixation versus enzyme stratified by cell state: DE (b), H1-hESC (c), HeLa-S3-NS (d), HFF (e). For each cell type, saddle plot quantification was 
done for cis and trans reads separately.
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Extended Data Fig. 4 | FA+DSG cross-linking produces reproducible chromatin loops. a. Interaction heatmaps (log transformed) of experiments for 
H1-ESC cells obtained from the following cross-linker-enzyme combinations (from left to right): FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase. b. 
Interaction heatmaps of protocols specified in Extended Data Fig. 4a for HFFc6 cells. c.Upset plots of loops detected with different replicates for H1-hESC 
show: 1) total number of loops detected in Replicate 1, Replicate 2 and merged replicates on the right side (gray bars), 2) number of loops detected in 
the one, two or three experiments shown in black bars. Loops found with only one or multiple experiments are highlighted and connected with black 
dots. Here Upset plots investigate the consistency of loops between each of the replicates and combined replicates for FA-DpnII, FA+DSG-DpnII and 
FA+DSG-MNase in H1-hESC. d. Upset plots (as explained in Extended Data Fig. 4c) of loops detected with different replicates for HFFc6 cells.
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Extended Data Fig. 5 | Fine fragmentation and DSG cross-linking improves loop detection. a. Loops for HFFc6 shows the 1) total number of loops 
detected with FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase(gray bars, right side), 2) number of overlapping loops detected (black bars). Overlapping 
loops are connected with black dots. b. Pileups of the loops from Fig. 4a. Numbers represent signal enrichment over local background (Methods). c. 
Individual loop strength (as in panel b) between protocol pairs in HFFc6. Protocols (left to right): FA-DpnII v/s FA+DSG-DpnII, FA+DSG-DpnII v/s 
FA+DSG-MNase and FA-DpnII v/s FA+DSG-MNase. Plots display two sets of looping interactions - Union (red squares) and Intersection (blue circles) 
from the three protocols. Color scale represents density of loop interactions. d,e.Aggregated loop strengths of intersection loop set from matrix of 12 
protocols (described in Fig. 1a) for H1-hESC (d), and HFFc6 (e).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Finer fragments lead to detection of Promoter-Enhancer loops. a. H1-hESC loops versus loop anchors. Expected for anchors in one 
loop: y=2x b,c. FA-DpnII loops subtracted from FA+DSG-DpnII (b) or FA+DSG-MNase (c) Union of loops detected at the same anchors. d,e. Valencies of 
loop anchors for H1-hESC (d), HFFc6 (e) from FA-DpnII, FA+DSG-DpnII, FA+DSG-MNase. FA-DpnII is used as a guiding example. Categories are: anchors 
from 1 protocol (FA-DpnII), anchors from 2 protocols (FA-DpnII and either FA+DSG-DpnII or FA+DSG-MNase) and anchors from all 3 protocols. f. CTCF, 
SMC1, H3K4me3 and H3K27ac enrichments at loop anchors for all protocols (intersection) or FA+DSG-MNase alone in H1-hESC.Average enrichments 
centered on open chromatin regions within anchor coordinates. g. Top: cCREs from common and FA+DSG-MNase specific loop anchors (Extended Data 
Fig. 5f). Bottom: stratified percentage of Promoter-Enhancer cCREs without CTCF enrichment. h. Enrichment of CTCF, SMC1, H3K4me3 and H3K27ac for 
left (Anchor1) and right (Anchor 2) anchor in H1-hESC using FA-DpnII, FA+DSG-DpnII or FA+DSG-MNase.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Insulation quantification is robust to experimental variations. a-d. Rows: HFFc6 deep data from FA-DpnII (top), FA+DSG-DpnII 
(middle) and FA+DSG-MNase (bottom). Columns: boundary strength distributions with strength threshold (a) (Methods), pileups in FA-DpnII, FA+DSG-
DpnII and FA+DSG-MNase for aggregate insulation scores at loop anchors (left), strong insulation boundaries (middle) and loop anchors colocalizing 
with strong insulation boundaries (right) (b). Left panel: boundary strength distribution of matrix data (Fig. 1a) for FA-DpnII, FA+DSG-DpnII and FA+DSG-
MNase. Right panel:correlation of strong boundaries between deep and matrix data for FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase (c). Aggregate 
insulation profile of weak and strong boundaries from matrix data for HFFc6 for cross-linkers and nucleases (d). e–h. H1-hESC data displayed like Extended 
Data Fig. 7a-d. i. Number of boundaries (y-axis) stratified by number of protocols (1 to 12; see Fig. 1a) wherein a given boundary was detected (x-axis). 
j. Insulation strength of boundaries stratified as in (i). k. Mean insulation strength for boundaries detected in at least half of protocols for various cross-
linkers and enzyme combinations of H1-hESC, DE, HFF and HeLa-S3-NS (Methods). l. Mean insulation strength of loop anchors detected in all three deep 
protocols for both HFFc6 and H1-hESC, averaged for 12 protocols of H1-hESC and HFF.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Hi-C 3.0 performs similar to Micro-C. a. Fragment size distributions from Fragment Analyzer for specified protocols. b. Cumulative 
distributions of fragmented DNA in HFF cells stratified for cross-linking agents (top row) or restriction enzymes (bottom row). Dashed lines in each of 
the panels represent expected fragment size distribution from in silico digestion of hg38 for enzymes indicated. Gray lines represent all data from all other 
enzymes (columns). c. Comparison of CTCF, SMC1, H3K4me3 and H3K27ac enrichments at loop anchors centered at open chromatin regions. Open 
chromatin regions (ATAC Seq) located within the anchor coordinates were used to center the average enrichments. Anchors were separated into sets 
detected by FA+DSG-DdeI+DpnII, FA+DSG-MNase or both. d. Percentage of cCREs and promoter-enhancer elements located at loop anchors specific to 
FA+DSG-DdeI+DpnII, FA+DSG-MNase or shared between them.
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Extended Data Fig. 9 | Sequencing depth impact loop detection but not compartmentalization. a. Spearman correlation of the eigenvectors for different 
sequencing depths in H1-hESC. Each point represents one sampled experiment. X-axis shows the sequencing depth (200 M reads-2B reads) and the 
y- axis shows the correlation of the eigenvectors for each depth with the eigenvector of the experiment with 2 Billion reads. The bottom plot shows the 
zoomed correlations. b. Compartment strength of A compartment for experiments with different read depths quantified in cis and trans for H1-hESC. c. 
Compartment strength of B compartment for experiments with different read depths quantified in cis and trans for H1-hESC. d. # of loops detected in 
experiments with different read depths in H1-hESC. e-f. Analysis that is shown in a-d repeated for experiments performed in HFFc6 cells.
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