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Abstract: Over the past three decades, a range of mosquito-borne viruses that threaten public and
veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have
highlighted the Culex pipiens species complex as being critical for the maintenance of a number of
these viruses. This species complex contains morphologically similar forms that exhibit variation
in phenotypes that can influence the probability of virus transmission. Critical amongst these is
the choice of host on which to feed, with different forms showing different feeding preferences.
This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to
humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been
demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across
Europe adds another level of complexity to virus transmission. A range of molecular methods based
on DNA have been developed to enable discrimination between morphologically indistinguishable
forms, although this remains an active area of research. This review provides a comprehensive
overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens
in Europe, and how this influences arbovirus transmission.
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1. Introduction

Mosquitoes are responsible for the biological transmission of a wide diversity of arboviruses
(arthropod-borne viruses) that cause diseases in humans, companion animals and livestock [1].
Among the approximately 3500 mosquito species currently recognised worldwide [2,3], only a small
number play a primary role in the transmission of arboviruses. The species that do fulfil this role
tend to have adopted a degree of anthropophilic behaviour and occur at high abundance and in close
proximity to susceptible hosts, primarily through exploitation of larval development sites created
by humans.

In Europe, the recent emergence of mosquito-borne arboviruses has focused attention on
identifying the species of mosquito that drive pathogen transmission. This phenomenon has occurred
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simultaneously with the incursion and establishment of several exotic and highly invasive species
of mosquito associated with globalised trade. Several species of the Aedes genus have become
established following importation and are a notable biting nuisance [4]. Significantly, they change the
epidemiological status of the region with respect to the occurrence of vector-borne disease. The first
incursion into Europe of Aedes albopictus (Skuse, 1895) was reported in Albania in 1979 [5], followed
by Italy in 1990 [6]. The ability of this mosquito to exploit container habitats to breed in urban areas,
produce diapausing eggs in temperate regions, and successfully expand through transportation in
vehicles along highway systems, has facilitated its movement to more than 28 European countries and
its establishment throughout large parts of the Mediterranean Basin [7], with a subsequent spread
north. Similarly, since 2005 [8], populations of Ae. aegypti (Linnaeus, 1762) have been reported on the
Portuguese island of Madeira and are expanding in the Black Sea region [9]; populations of Ae. japonicus
(Theobald, 1901) have become widely established throughout Germany and have been reported from
other countries such as Belgium and The Netherlands; and Ae. koreicus (Edwards, 1917) has been
reported from Belgium and Italy [10,11]. The involvement of Ae. albopictus in the local transmission of
arboviruses previously considered to be exotic, such as chikungunya virus (CHIKV) in Italy [12], is
now a major concern for European public health. This species may furthermore facilitate emergence
and re-emergence of other viruses including dengue virus (DENV).

In contrast, invasive species of mosquito appear to have had only a limited impact on the
transmission of arboviruses that have a longer history of circulation in Europe. The highest profile of
these is West Nile virus (WNV), which has been present in this region for at least twenty years.
In southern Europe WNV has been detected in the indigenous mosquito species Culex pipiens
(L. 1758) [13–16], which plays a primary role in transmission [17]. This observation has been supported
by laboratory studies that demonstrated susceptibility to infection in Cx. pipiens and isolated virus
in saliva from fully susceptible individuals. Transmission rates of between 37% and 47% have been
reported for populations in Italy where the virus is endemic [18], compared to 33% for populations
tested from The Netherlands [19], suggesting that WNV could emerge in northern Europe.

There is no evidence that WNV has reached mosquito populations north of countries surrounding
the Mediterranean Sea or south-east Europe, despite the presence of Cx. pipiens in many of these areas.
However, the related flavivirus, Usutu virus (USUV), was detected in southern Europe around the same
time as WNV, and has emerged in northern European countries including Germany, The Netherlands
and Belgium [20]. The principal vector for USUV is also Cx. pipiens and thus the reason for the absence
of WNV in northern Europe is not fully understood, but among other factors may be related to the
behaviour and distribution of different Cx. pipiens populations across Europe.

Previous reviews have considered the ecology of Cx. pipiens [21,22], current and future threats of
mosquito-borne diseases across Europe [23,24] and the influence of a changing climate on vector-borne
disease [25–27]. This review starts by presenting an overview of key arboviral threats to Europe, with
focus on those for which Cx. pipiens is a vector. It then provides an updated overview of the literature
relating to the taxonomy, ecology and behaviour of this important mosquito in Europe and examines
future directions for research in these areas.

1.1. Viruses Associated with Transmission by Culex pipiens

At least ten arboviruses of medical and veterinary importance that are thought to be primarily
transmitted by mosquitoes are currently circulating in Europe (Table 1). Culex pipiens has been
shown to play a critical role in the transmission of three of these viruses. Conversely, there is no
evidence that Cx. pipiens has contributed to the transmission of viruses such as DENV and CHIKV.
Furthermore, experimental evidence overwhelmingly indicates that Cx. pipiens is refractory to Zika
virus transmission [28–36], although some results are conflicting [37,38].
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Table 1. Mosquito-borne viruses of medical and veterinary importance circulating in Europe,
after [23,24,39–43]. Involvement of Culex pipiens is highlighted using bold typeface.

Virus Primary Vertebrate Hosts Principal Vectors Medical/Veterinary
Importance

Batai virus
(Bunyaviridae)

Pigs, horses, ruminants, and
isolations from wild birds.

Anopheles maculipennis s.l.,
Anopheles claviger (Meigen,
1804), Coquillettidia richiardii
(Ficalbi, 1889)

Mild illness in sheep/goats.
Influenza-like illness in
humans.

Chikungunya virus
(Togaviridae)

Humans as primary reservoirs
during epidemics.
Non-human reservoirs include
monkeys, rodents and birds.

Aedes aegypti, Aedes albopictus

Fever, joint pain (also chronic),
occasional neurological
involvement with some deaths
reported.

Dengue virus
(Flaviviridae) Humans. Aedes aegypti, Aedes albopictus

Serotype 1 recorded from
Europe. Cases range from
asymptomatic to severe
haemorrhagic fever.

Inkoo virus
(Bunyaviridae) Mountain hares. Aedes communis

(De Geer, 1776)
Influenza-like illness in
humans.

Lednice virus
(Bunyaviridae)

Birds, primarily of the
order Anseriformes. Culex modestus (Ficalbi, 1889) Unknown, avian fatalities not

recorded.

Sindbis/Sindbis-like
viruses (Togaviridae)

Birds (Passeriformes),
occasionally rodents
and amphibians.

Culex pipiens, Culex torrentium
(Martini, 1925), Culiseta
morsitans (Theobald, 1901),
Coquillettidia richiardii, Aedes
communis, Aedes excrucians
(Walker, 1856), Aedes cinereus
(Meigen, 1818) and Anopheles
hyrcanus s.l.

Sporadic illness in birds,
including mortality in
chickens. Fever, malaise and
potentially chronic arthritis in
humans, no mortality.

Snowshoe hare virus
(Bunyaviridae)

Snowshoe hare,
voles, lemmings.

Aedes cinereus, Aedes vexans
(Meigen, 1830), Aedes
communis, Aedes punctor
(Kirby, 1837), Aedes cataphylla
(Dyar, 1916), Culiseta inornata
(Williston, 1893) and Culiseta
impatiens (Walker, 1848)

Non-fatal encephalitis in
horses. Fever and occasional
CNS involvement in humans.

Tahyna virus
(Bunyaviridae)

Brown hares,
hedgehogs, rodents. Aedes vexans

Influenza-like illness in
humans with occasional CNS
involvement.

Usutu virus
(Flaviviridae)

Birds, particularly
the Passeriformes.

Culex spp. including
Culex pipiens

Avian mortality recorded in
several species. Limited
neuroinvasive cases reported
from Italy.

West Nile virus
(Flaviviridae)

Wild birds. Mammals
including horses and humans
incidental hosts.

Culex pipiens, Culex modestus,
Coquillettidia richiardii

Limited avian mortality in
Europe, equine febrile illness
with ~25% mortality. Severe
neurological disease in <1%
human infections.

1.1.1. Emergence of West Nile Virus in Europe

West Nile virus causes a febrile illness in both humans and horses that generally resolves without
complications [44,45]. In a small proportion of cases (usually <1%), infected individuals develop more
serious clinical symptoms and signs including encephalitis, meningitis and paralysis, followed by
death in severe cases. The first isolation of WNV from the West Nile district of Uganda by Smithburn
and co-workers is well documented [46]. Serum prepared from a blood sample taken from a febrile
individual was inoculated into mice from which virus was isolated. Following its discovery, research
in the 1950s in Africa identified an enzootic transmission cycle involving multiple bird species as
natural reservoirs for the virus and mosquitoes as the primary vector group [47].

The majority of countries in sub-Saharan Africa have reported evidence of WNV presence, either
through isolation of the virus or through seroprevalence studies [48]. North African countries including
Egypt [49], Morocco [50] and Algeria [51] have also reported evidence of WNV. Due to its association
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with birds, avian migratory behaviour has been considered the most likely means for the translocation
of WNV from Africa to northern latitudes [52]. Repeated emergence of WNV in Israel, Italy, France
and Spain correspond to bottlenecks of major flyways of migratory birds travelling north as they avoid
the Mediterranean Sea, or cross at its narrowest points [53].

West Nile virus has caused sporadic outbreaks of disease in southern Europe in both humans
and horses [54]. Phylogenetic analysis has demonstrated at least eight distinct lineages of WNV, of
which two, lineages 1 and 2, circulate in Europe [55]. The most significant epidemic occurred in south
eastern Romania with a focus in the capital, Bucharest. Almost 400 cases of encephalitis and 17 deaths
were reported in 1996, with further cases reported in subsequent years [56]. The Danube delta was
considered the potential site of introduction but with transmission in an urban setting. Interest in
WNV was also stimulated by its emergence in North America in 1999, initiating a major epidemic
outbreak and highlighting its epidemic potential in other countries [57]. The virus caused numerous
cases of disease in birds, particularly North American crows (Corvus brachyrhynchos), domestic horses
and humans. A wide range of indigenous mosquito species were found to be infected with WNV [58],
however, the Cx. pipiens complex was considered to be the principal vector [59,60].

During the first decade of the 21st century, there was an increase in the number of detections of
WNV outbreaks in Europe. It remains unclear if this phenomenon was due to more frequent annual
re-introduction of WNV or a greater focus on surveillance in the Mediterranean Basin. The successful
overwintering of virus in mosquito populations in Italy between 2008 and 2011 was a notable
epidemiological shift [61]. The virus causing the outbreaks in Italy and in other countries was identified
as belonging to WNV lineage 1 [62]. West Nile virus lineage 2 was first detected in Hungary during 2004
and then spread west and south, reaching Greece prior to 2010. The outbreak in Greece was notable for
involving a high number of human cases, including 33 deaths attributed to the infection [14]. Mosquito
species from the genus Culex, Aedes and other mosquito genera have been shown to transmit WNV
under experimental conditions but the epidemiological significance for natural virus transmission is
unclear [63].

1.1.2. Emergence of Usutu Virus in Europe

Usutu virus was first detected in Europe in dead blackbirds (Turdus merula) collected following a
wild bird die-off event in Tuscany, Italy, in 1996 [64]. A later emergence in 2001 is better documented
due to a highly visible die-off of birds around Vienna, Austria. Submission of blackbirds, great
gray owls (Strix nebulosa) and a barn swallow (Hirundo rustica) resulted in detection of virus by
histopathology and reverse transcription polymerase chain reaction (RT-PCR) [43]. Usutu virus has
emerged in countries across southern Europe and it has subsequently spread north across western and
central Europe [65,66]. A small but growing number of documented cases of human infection with
USUV have been recorded, although these have often been in patients with additional underlying
health conditions [67,68]. However, most cases of USUV infection appear to be asymptomatic [69].

Phylogenetic analysis using complete USUV genomes suggests that there have been multiple
introductions of the virus into Europe over the past 50 years and that migrating birds are the most
likely mechanism of translocation over long and short distances [20]. Culex pipiens originating from a
colony established in the Netherlands have been shown experimentally to be highly susceptible to
infection with USUV when compared to WNV, although the ecoform status of the mosquitoes used
was not explored [19].

1.1.3. Sindbis Virus in Europe

Sindbis virus (SINV) was first isolated from a pool of Cx. pipiens and/or Culex univittatus
(Theobald, 1901) mosquitoes collected from the Sindbis health district, 30 km north of Cairo, Egypt [70].
Infection causes a rash and long-lasting polyarthritis that has been recognised in northern Europe for
decades [23,71]. It is known colloquially as Ockelbo disease in Sweden, Pogosta disease in Finland and
Karellian fever in Russia. In South Africa it has been reported to cause disease in horses [72]; SINV
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infection in horses or other domestic animals has not been observed in Europe, possibly due to a lack of
surveillance. The virus circulates between birds and mosquitoes with occasional spill over into human
populations [73]. Phylogenetic analysis of SINV suggests that there is long distance translocation of
the virus, possibly through bird migration [74].

Experimental studies have shown that a range of mosquito species present in Scandinavia are
capable of transmitting SINV but that Culex torrentium (Martini, 1925) demonstrated higher infection
and transmission rates than Cx. pipiens [75,76]. Subsequent field studies have shown higher rates of
SINV infection in wild caught Cx. torrentium than in other species [77] and this is now considered
the most important vector species. Although Cx. torrentium is found across Europe and the Middle
East, few cases of SINV are reported outside of northern Europe, and are limited to occasional virus
isolations [78]. The susceptibility to infection of Cx. torrentium for WNV or USUV has not been
defined [79].

1.1.4. Other Viruses Transmitted by Culex Mosquitoes

The other Culex-transmitted viruses detected in Europe include Lednice virus (LEDV) and
Rabensberg virus (RABV). LEDV, a bunyavirus, was isolated from Culex modestus (Ficalbi, 1889)
in the Czech Republic in 1963 [80]; this mosquito remains the only known vector [81]. RABV is a
more recent isolation from the Czech Republic and is a virus related to WNV. It was first isolated from
pools of Cx. pipiens collected in 1997 from South Moravia near the border with Austria [82]. Batai
virus (BATV) was originally detected in Culex gelidus (Theobald, 1901) in Malaysia in 1955 [24], but in
Europe it has been associated with Anopheline species [83].

1.2. Culex pipiens Taxonomy

The taxonomy of the Cx. pipiens complex remains a much debated subject due to the morphological
similarity between some species and the varied behaviours exhibited within species [84–87]. The first
description of Cx. pipiens is attributed to Carl Linnaeus in 1758. The complex (or assemblage [86])
of species includes Cx. pipiens, Cx. quinquefasciatus (Say, 1823), Cx. australicus (Dobrotworsky and
Drummond, 1953) and Cx. globocoxitus (Dobrotworsky, 1953) with varied geographical distribution
that has been modified by the translocation of species between continents [88]. Additionally, some
authors include the sibling species Cx. torrentium in taxonomic studies of the complex owing to its
similar morphology and larval ecology [85,89]. Within the species Cx. pipiens there are two ecoforms
(sometimes called biotypes) recognised, pipiens (L.) and molestus (Forskål, 1775), based primarily
on ecological and behavioural traits. The term molestus was first introduced by Petrus Forskål who
recognised the species during an expedition to Egypt and the Arabian Peninsula. The behavioural and
physiological traits reported as broadly separating the two forms are summarised in Table 2.

Evidence from several studies of European Cx. pipiens populations has indicated that
ecoform molestus is a distinct species separate from ecoform pipiens and arose from a single
speciation event [85,90,91]. This contrasts with the alternative theory that molestus populations
arose from repeated and independent colonisations of underground habitats by aboveground pipiens
populations [92–94]; other studies have shown equivocal results [95].
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Table 2. Comparative summary of the behavioural and physiological traits of Culex pipiens ecoforms.

Ecoform
Trait

Mating Egg-Laying
Requirements

Blood-Feeding
Preference

Habitat
Associations Overwintering

form pipiens Eurogamous (mating
requires open spaces)

Anautogenous
(blood meal required
for first egg batch)

Primarily birds Rural and urban,
aboveground

Heterodynamic
(undergoes diapause)

form molestus Stenogamous (can mate
in confined spaces)

Autogenous (no
blood meal required
for first egg batch)

Birds and
mammals

Principally urban,
aboveground and
underground

Homodynamic (active
throughout the year)

Herein, we use the following terms: (1) “Cx. pipiens complex” when referring to the group
as a whole, (2) “Cx. pipiens” when referring to specimens separated from Cx. torrentium but no
further, (3) “pipiens” and “molestus” in reference to the ecoforms, and (4) “pipiens/molestus” and
“pipiens/quinquefasciatus” in reference to hybrid forms where appropriate.

1.3. Delineation of Species, Ecoforms and Hybrids

Differences in the structure of the male genitalia can be used to distinguish members of the
complex [85]. However, the lack of distinguishing morphological features to separate females adds
complication to the identification of surveillance trap catches where females are usually the target.
The presence or absence of behavioural traits such as autogeny (Table 2) have been used to identify
between the forms; however, this approach is not a consistently reliable method for separating the
ecoforms. Furthermore, demonstrating autogeny in wild-caught populations is labour intensive,
requiring the collection and rearing of larvae, and is therefore impractical for large scale screening.
This has led to the development of several molecular techniques for differentiating the two ecoforms
and their hybrids (Table 3).

Initial differentiation techniques were aimed at identifying polymorphisms at 20 loci in order to
differentiate above and belowground breeding populations associated with the London Underground,
and to examine gene flow [92]. This method was developed to include sequence comparison of up to
11 concatenated sequences to enable phylogenetic distinction of the two ecoforms [85]. An alternative
approach compared polymorphic microsatellite markers amplified to generate fingerprints for
autogenous and anautogenous populations [90,96]. Subsequent methodologies have largely been based
on the polymerase chain reaction (PCR), DNA sequencing or restriction fragment length polymorphism
(RFLP) (Table 3). Many of these have focused on a single locus to distinguish between the two forms,
particularly the CQ11 locus [97] (Figure 1). This end-point PCR approach is often preceded by the use
of a multiplex PCR to separate Cx. torrentium from Cx. pipiens [98] (Figure 1), although identification
via comparative wing morphometrics can be used for this [99]. In a further modification, fluorescent
probes have been developed that selectively bind to the polymorphisms within the same real-time PCR
amplification [100]. Some authors have expressed caution in using only a single diagnostic marker
for the identification of the Cx. pipiens complex [101,102], and advocate the use of multiple targets for
maximum taxonomic clarity. For example, although a nucleotide substitution from G to A at the 3rd
position of the 68th codon of the COI gene was reported as being diagnostic for form molestus over
form pipiens [91], this finding was not replicated in a subsequent UK study that targeted the same
region [103]. In an attempt to avoid differences between assays, a recent study employed a combined
four-point approach to characterising Mediterranean Cx. pipiens populations, using assays targeting
the CQ11, ace-2, COI and Wolbachia (wPip) infection typing markers [102].
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Table 3. Common methods used for the species delineation of the Culex pipiens complex.

Method Target Primer Sequences Identification Output References

Gel electrophoresis
Electrophoreticpolymorphisms
in various genetic targets, often
enzymes

n/a
Provides estimates of genetic
differentiation between populations in
target genes

[40,92]

Multiplex end-point PCR ace-2
FOR ACEtorr 5′-TGCCTGTGCTACCAGTGATGTT-3′

FOR ACEpip (5′-GGAAACAACGACGTATGTACT-3′)
REV B1246s (5′-TGGAGCCTCCTCTTCACGG-3′)

Cx. pipiens complex: Cx. pipiens, Cx.
quinquefasciatus, Cx. p. pallens, Cx.
australicus, Cx. torrentium, Cx. pervigilans,
Cx pipiens/Cx. quinquefasciatus hybrids

[98]

CQ11
FOR CQ11F (5′-GATCCTAGCAAGCGAGAAC-3′)
REV pipCQ11R (5′-CATGTTGAGCTTCGGTGAA-3′

REV molCQ11R (5′-CCCTCCAGTAAGGTATCAAC-3′
Cx. pipiens form pipiens and
form molestus [97]

PCR-DNA sequencing
COI FOR LCO1490 (5′-GGTCAACAAATCATAAAGATATTGG-3′)

REV HCO2198 (5′-TAAACTTCAGGGTGACCAAAAAATCA-3′)
Enables universal identification to
species level with comparison to
sequence database

[104]

COI FOR TY-J-1460 (5′-TACAATCTATCGCCTAAACTTCAGCC-3′)
REV UEA10 (5′-TCCAATGCACTAATCTGCCATATTA-3′) [105–107]

PCR-RFLP

COI FOR COIF (5′-TTGAGCTGGA- ATAGTTGGAACTT -3′)
REV COIR (5′- CCTCCAATTGGATCAAAGAATGA-3′)

Cx. pipiens form pipiens and form
molestus, Cx. torrentium [91]

ace-2 FOR F1457 (5′-GAGGAGATGTGGAATC CCAA-3′)
REV B1246 (5′-TGGAGCCTCCTCTTCACGG C-3′)

Cx. pipiens, Cx. quinquefasciatus and
their hybrids [108]

Wolbachia pipientis markers,
ank2, pk1

ank2 FOR (5′-CTTCTTCTGTGAGTGTACGT-3′)
ank2 REV (5′-TCCATATCGATCTACTGCGT-3′)
pk1 FOR (5′-CCACTACATTGCGCTATAGA-3′)
pk1 REV (5′-ACAGTAGAACTACACTCCTCCA-3′)

Five groups of W. pipientis: wPip-I
to wPip-V [102,109]

Real-time PCR

CQ11

FOR Culex pipiens (5′-GCGGCCAAATATTGAGACTT-3′)
REV Culex pipiens (5′-CGTCCTCAAACATCCA-GACA-3′)
Probes
Cx. pipiens all (59-Cy55-GGAACATGTTGAGCTTCGGK-BBQ-1-39
Cx. pipiens pipiens form pipiens (5′-JOE-GCTTCGGTGAAGGT
TTGTGT-BHQ1-3′)
Cx. pipiens pipiens form molestus (5′-Rox-TGAACCCTCC
AGTAAGGTATCAACTAC-BHQ2-3′)

Collectively enables separation Cx.
pipiens and its ecoforms and hybrids,
plus Cx. torrentium

[110]

ace-2

FOR Cx. torrentium (5′-GACACAGGACGACAGAAA-3′)
REV Cx. torrentium (5′-GCCTACGCAACTACTAAA-3′)
Probe
Cx. torrentium (5′-FAM-CGAT-GATGCCTGTGCTACCA-3BHQ1-3′)
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Table 3. Cont.

Method Target Primer Sequences Identification Output References

CQ11

FOR Cx_pip_F (5′-GCGGCCAAATATTGAGACTTTC-3′)
REV Cx_pip_R (5′-ACTCGTCCTCAAACATCCAGACATA-3′)
Probes
Cpp_mol_P (5′-FAM-TGAACCCTCCAGTAAGGTA-MGB-3′)
Cpp_pip_P1 (5′-VIC-CACA CAAAYCTTCACCGAA-MGB-3′)
Cpp_pip_P2 (5′-VIC- ACACAAACCTTCATCGAA-MGB-3′)

Collectively enables separation Cx.
pipiens and its ecoforms and hybrids,
plus Cx. torrentium

[100] (modified
from Rudolf
et al. [110])

ace-2

FOR Cx_tor_F (5′-CTTATTAGTATGACACAGGACGACAG AAA-3′)
Cx_tor_R (5′-GCATAAACGCCTACGCAACTACTAA-3′)
Probe
Cx_tor_P (5′-FAM-ATGATGCCTGTG CTACCA-MGB-3′)

Int. J. Environ. Res. Public Health 2018, 15, x  8 of 32 
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Figure 1. Gel images showing discrimination between (a) Culex torrentium/Culex pipiens [M = φX174 marker, 1 = negative control, 2 = Cx. pipiens, 3 = Cx. torrentium]
and (b) Cx. pipiens form pipiens, Cx. pipiens form molestus and hybrid forms [M = φX174 marker, 1 = negative control, 2 = form pipiens, 3 = form molestus,
4 = pipiens/molestus hybrid].
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An alternative approach to species delineation is the application of matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). While this application
is still in relative infancy, it has been used for the identification of various vector groups [111–113]
and in future it may be possible to use this to define ecoforms of Cx. pipiens based on changes in
protein expression.

1.4. Distribution and Hybridisation

Culex pipiens is widely distributed across Eurasia and further afield [22,90]. Our understanding of
the local and regional distribution of its ecoforms has, however, developed only relatively recently,
aided by the increasing use of molecular species delineation methods. There remains, however, a poor
understanding of the relationship between the genetics of the ecoforms and their phenotype [103].
Initial evidence indicated a fairly consistent separation between the habitats of each ecoform: the
ubiquitous pipiens ecoform was associated with natural and artificial aboveground habitats across rural
and urban areas and the molestus form was found in urban underground habitats [22]. Particularly in
northern Europe, this habitat distinction was believed to serve as a barrier to hybridisation between
the forms and this was supported by limited success in breeding between forms under laboratory
conditions [90,92].

Present evidence, however, suggests that this habitat separation is far less rigid, with
cross-breeding experiments and analysis of genetic markers from field and colony specimens indicating
that inter-breeding populations of pipiens and molestus can be found sympatrically in both above- and
belowground urban habitats, as well as in rural and semi-rural areas [100,103,110,114–119]. Indeed,
natural hybrid pipiens/molestus forms have now been reported from at least 12 European countries
(Figure 2a) with reported rates of hybridisation of up to 25.7% [116]. The relative abundance of each
of the forms and hybridisation rates have been found to vary across latitudes, with the proportion of
molestus populations relative to pipiens increasing from northern to southern latitudes [120]. To add
further complexity, hybridisation of Cx. pipiens with Cx. quinquefasciatus has been reported from the
Mediterranean Basin (Figure 2b) [102,121,122], despite sympatric populations of these species existing
without hybridisation in East Africa [123].

The occurrence of natural hybrid populations has important consequences for the risks of
pathogen transmission [124]. Changes to mosquito host preference, vector competence, the occurrence
of autogeny and the ability to forgo diapause and continue reproduction through the winter months
may all alter virus transmission dynamics. This may have contributed to the persistence of WNV
in Romania during the 1990s where the presence of mosquitoes indoors and in flooded basements
were considered risk factors for human infection [125]. Additionally, the strains of the endosymbiont
Wolbachia pipientis associated with Cx. quinquefasciatus and the different ecoforms of Cx. pipiens
differ [102], and the impact of such differences on vector competence is not fully understood. Studies
of Cx. pipiens populations in Portugal demonstrated that gene flow occurred predominantly from
the molestus to the pipiens form [119]. Asymmetric gene flow in this fashion could alter feeding
preferences of Cx. pipiens from an ornithophilic to mammalophilic feeding preference, as demonstrated
in the USA [126]. The vector competence of molestus populations to WNV in The Netherlands was
lower (6–10%) than that of pipiens (0–32%) and hybrid (0–14%) forms [127]. In this context, gene
flow from pipiens to molestus could result in increased vector competence and thus may be equally
important in influencing local pathogen transmission dynamics.

Culex torrentium has also been reported from many countries across Europe (Figure 3) where
its larvae are often found in sympatry with Cx. pipiens [89,114,128,129]. In many studies little
morphological separation is performed [79], thus masking the true distribution of the two species.
Initially believed to be a rare European species [130], Cx. torrentium is now recognised to be widespread
in northern and central regions of Europe [79,89]. When compared with Cx. pipiens, these species form
an apparent contrasting gradient of abundance: in northern regions Cx. torrentium dominates, in central
Europe both species exist in similar proportions, and in southern Europe Cx. pipiens is the dominant
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species and Cx. torrentium is rarely reported [89]. The current distribution of Cx. torrentium may reflect
a range expansion, perhaps in response to favourable anthroponotic environmental changes [110], but
the misidentification of females as Cx. pipiens prior to the widespread use of molecular analyses may
have hindered information on its distribution.
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1.5. Culex pipiens Blood-Feeding Behaviour

A critical behavioural trait relevant to arthropod-borne virus transmission is a vector’s host feeding
pattern. Host selection determines the exposure of a mosquito to pathogens and its involvement in
enzootic, zoonotic or anthroponotic transmission cycles [131]. Host selection by mosquitoes is a complex
phenomenon, influenced by an interplay of genetic and environmental factors [132]. The latter includes
the local and seasonal presence of vertebrate hosts [133], host defensive behaviour against biting [134]
and the presence of pathogens in the arthropod, host, or both, which may influence rates of vector-host
contact [135–139]. Evidence for preferential feeding on specific hosts may be derived from studies that
identify the blood meal hosts of wild-caught engorged mosquitoes, or semi-field or laboratory tests
offering a choice of feeding from different hosts [132].

The pipiens ecoform is considered to be almost exclusively ornithophilic (bird-feeding), whilst
the molestus ecoform feeds on other mammalian hosts, including humans [140,141] (Table 2). Here,
we collated data from 29 European studies identifying the blood meals of Cx. pipiens (Table 4).

Table 4. Blood-feeding hosts of Culex pipiens in Europe. Some hosts are non-native to Europe owing to
collections in, or close to, captive animal parks.

Order Family Genus Species Common Name Locations References

Mammals

Mammal,
unidentified - - - Russia [142]

Artiodactyla
Bovidae

Capra hircus Goat Spain (Canary Islands) [143]

Ovis aries Sheep Portugal, Turkey [117,144,145]

Bos taurus Cow Portugal, Turkey, Italy,
Spain, Germany [144–149]

Cervidae Capreolus capreolus Roe deer Germany [148]

Suidae Sus scrofa Wild boar Italy, Germany, Spain [146–148]

Carnivora

Canidae Canis lupus familiaris Dog Spain, Turkey, Italy,
Germany, UK [145–148,150–154]

Felidae Felis catus Domestic cat Spain, Czech Republic,
Switzerland, Italy [146,150,152,155,156]

Felis silvestris Wildcat Spain [147]

Herpestidae Herpestes ichneumon Egyptian
mongoose Spain [150]
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Table 4. Cont.

Order Family Genus Species Common Name Locations References

Chiroptera Vespertilionidae Nyctalus noctula Common Noctule Czech Republic [155]

Eulipotyphla Erinaceidae Erinaceus europaeus European
hedgehog Italy [146]

Lagomorpha Leporidae Oryctolagus cuniculus Rabbit UK, Germany, Spain [147,148,157,158]

Lepus granatensis Granada hare Spain [147]

Perissodactyla Equidae Equus caballus Horse France, Italy, Spain [146,147,159]

Primates Hominidae Homo sapiens Human

UK, Spain, Portugal,
Czech Republic,
Switzerland, Turkey, Italy,
Russia, Germany

[142,144–150,152,
154–156,160–162]

Rodentia
Caviidae Cavia porcellus Guinea pig Sweden [163]

Muridae Rattus rattus Rat Spain [147]

Reptiles

Reptile
unidentified - - - Spain, Italy [161,164]

Anura
Ranidae Rana sp. Frog Czech Republic [155]

Hylidae Hyla arborea European tree frog Czech Republic [155]

Squamata Lacertidae Podarcis muralis Common wall
lizard Italy [146]

Lacerta sp. Frog Italy [146]

Birds

Bird, unidentified - - -
UK, Spain, Switzerland,
France, Russia, Portugal,
Sweden

[117,142,151,156,159,
160,162–166]

Accipitriformes Accipitridae

Hieraaetus pennatus Booted eagle Turkey [145]

Buteo buteo Buzzard Turkey [145]

Neophron percnopterus Egyptian vulture Switzerland [156]

Accipiter nisus Eurasian
sparrowhawk Switzerland, Italy [146,156]

Circus aeruginosus Western marsh
harrier Czech Republic [155]

Anseriformes Anatidae

Cygnus atratus Black swan Spain [151]

Anas sp. Duck Czech Republic [155]

Anas crecca Eurasian teal Spain [147]

Tachyeres pteneres Flightless
steamerduck Switzerland [156]

Anas strepera Gadwall Czech Republic [155]

Anser sp. Goose Czech Republic [155]

Anser albifrons
Greater
white-fronted
goose

Czech Republic [155]

Anser anser Greylag goose Czech Republic [155]

Anas platyrhynchos Mallard
Portugal, Czech Republic,
Switzerland, Italy,
Germany

[144,146,148,155,156]

Cairina moschata Muscovy duck Spain, Portugal, Italy [144,146,150]

Branta sandvicensis Nene Spain [151]

Charadriiformes
Laridae

Larus ridibundus Black-headed gull Spain [147]

Larus fuscus Lesser
black-backed gull Portugal [144]

Burhinidae Burhinus oedicnemus Eurasian
stone-curlew Spain [147]

Columbiformes Columbidae

Streptopelia decaocto Eurasian collared
dove

Spain, Switzerland,
Turkey, Italy

[145–147,150,152,156,
161,164,167]

Columba livia Rock dove UK, Spain, Italy [146,147,154,161]

Columba oenas Stock dove UK [168]

Columba palumbus Wood pigeon Spain, Italy, UK [146,152,168]
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Table 4. Cont.

Order Family Genus Species Common Name Locations References

Falconiformes Falconidae Falco tinnunculus Common kestrel Portugal [144]

Galliformes

Phasianidae

Gallus gallus Chicken
Spain, Portugal,
Switzerland, Italy,
Russia, UK

[144,146,147,149,151,
152,156,161,162,168]

Pavo cristatus Common peacock Switzerland [156]

Phasianus colchicus Common pheasant Czech Republic, Italy [146,155]

Coturnix coturnix Common quail Czech Republic [155]

Alectoris rufa Red-legged
partridge Spain [150]

Alectoris rufa Red-legged
partridge Spain [147]

Meleagris gallopavo Turkey Portugal, Italy [144,146]

Numididae Numida meleagris Helmeted
guineafowl Italy [146]

Gruiformes

Gruidae

Grus sp. - Spain [151]

Grus grus Common crane Spain [150]

Anthropoides virgo Demoiselle crane Switzerland [156]

Rallidae
Rallus aquaticus Water rail Czech Republic [155]

Gallinula chloropus Common moorhen Italy [146]

Passeriformes Acrocephalidae
Acrocephalus
scirpaceus

Eurasian reed
warbler Czech Republic [155]

Hippolais polyglotta Melodious warbler Portugal, Spain [144,147]

Alaudidae
Galerida cristata Crested lark Spain, Turkey, Portugal [144,145,147,150]

Alauda arvensis Eurasian skylark UK [168]

Corvidae

Corvus corone Carrion crow Switzerland [156]

Garrulus glandarius Eurasian jay Turkey [145]

Pica pica Eurasian magpie Czech Republic,
Switzerland, Turkey, Italy [145,146,155,156,161]

Cyanopica cooki Iberian magpie Portugal [144]

Cyanocorax chrysops Plush-crested jay Switzerland [156]

Emberizidae
Miliaria calandra Corn bunting Portugal [144]

Emberiza citrinella Yellowhammer Czech Republic, Germany [148,155]

Fringillidae

Serinus canaria Atlantic canary Portugal [144]

Fringilla coelebs Common chaffinch Czech Republic [155]

Carduelis chloris European
greenfinch Spain, Italy [146,151]

Serinus serinus European serin Italy [167]

Carduelis chloris Greenfinch Spain [147]

Hirundinidae
Hirundo rustica Barn swallow Czech Republic, UK [155,168,169]

Delichon urbica House martin Portugal, Czech Republic,
Italy, Germany [144,148,155,167]

Locustellidae Bradypterus
tacsanowskius

Chinese bush
warbler Portugal [144]

Motacillidae

Anthus pratensis Meadow pipit Spain, UK [147,168]

Motacilla alba Pied wagtail Czech Republic,
Switzerland [155,156]

Motacilla flava Yellow wagtail UK [168]

Muscicapidae Erithacus rubecula European robin Italy, Germany [148,167]

Oriolidae Oriolus oriolus Eurasian golden
oriole Italy [146]

Paridae
Cyanistes caeruleus Blue tit Portugal, Czech Republic,

Switzerland, Germany [144,148,149,155,156]

Parus major Great tit Switzerland, Italy, UK [146,156,169]
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Table 4. Cont.

Order Family Genus Species Common Name Locations References

Passeridae

Passer montanus Eurasian tree
sparrow Italy [146]

Passer domesticus House sparrow
Spain, Portugal,
Switzerland, Italy, UK,
Germany

[144,146–152,156,161,
164,167,168]

Sturnidae
Sturnus sp. - Spain [147]

Sturnus vulgaris European starling Spain, Czech Republic,
Italy, UK [146,150,155,161,168]

Sylviidae

Sylvia sp. - Spain [147]

Sylvia communis Common
whitethroat

Portugal, Czech Republic,
Germany [144,148,155]

Sylvia atricapilla Eurasian blackcap Czech Republic, Italy [146,155]

Sylvia borin Garden warbler Portugal [144]

Sylvia melanocephala Sardinian warbler Portugal, Spain [144,147,150]

Turdidae
Turdus merula Blackbird

Spain, Portugal, Czech
Republic, Switzerland,
Italy, UK, Germany

[144,146–150,152,155,
156,161,164,167–169]

Turdus philomelos Song thrush Czech Republic, Germany [148,155]

Pelecaniformes Ardeidae

Nycticorax nycticorax Black-crowned
night heron Portugal, Italy, Spain [144,146,147]

Bubulcus ibis Cattle egret Spain [147]

Ardea cinerea Grey heron Czech Republic, UK [155,168]

Ixobrychus minutus Little bittern Spain [147]

Ardeola ralloides Squacco heron Spain [147]

Piciformes Picidae Jynx torquilla Eurasian wryneck Italy [146]

Psittaciformes

Cacatuidae Nymphicus
hollandicus Cockatiel Portugal [144]

Psittacidae
Myiopsitta monachus Monk parakeet Spain [152]

Cyanoliseus patagonus Patagonian conure Switzerland [156]

Sphenisciformes Spheniscidae Spheniscus humboldti Humboldt's
penguin Switzerland [156]

Strigiformes

Tytonidae
Tyto alba Barn owl UK [168]

Tyto alba guttata Dark-breasted barn
owl UK [168]

Strigidae Athene noctua Little owl Turkey, Italy [145,146]

Asio otus Long-eared owl UK, Portugal, Spain [147,149,168]

Suliformes Sulidae Morus bassanus Northern gannet Portugal [144]

Collectively, these data show feeding of Cx. pipiens on a wide range of hosts encompassing
mammals (eight orders, 12 families and 17 species), birds (14 orders, 33 families, 82 species) and
reptiles (two orders, three families, three species). Eight of these studies identified specimens to
ecoform, and three of these [117,147,149] successfully collected blood-fed specimens of both ecoforms
and their hybrids, identified by sequence analysis of the CQ11 locus. Collectively, these latter three
studies identified both ecoforms and their hybrids as feeding on both mammals and birds. Interestingly,
all found that birds were highly utilised by the pipiens and molestus ecoforms plus their hybrids
(Figure 4), with no significant differences in feeding preference between the forms. These results
contrast with findings in the USA showing that specimens with a higher proportion of molestus
ancestry fed more frequently on humans [170,171]. Reasons for these disparate findings may lie with
geographic or seasonal differences in host availability, the relatively low sample sizes inherent with
the challenges of collecting blood-fed specimens, or with differences in the microsatellite markers used
to identify the forms in each study.

Relatively few manipulative comparisons of host selection, whereby mosquitoes are offered
choices to feed on different hosts, have been carried out with Cx. pipiens under field, semi-field or
laboratory conditions. Preferential attraction was recorded towards chicks by the pipiens ecoform, to
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humans by the molestus ecoform, and intermediate feeding behaviour in pipiens/molestus hybrids
from field-collected populations in Chicago, USA [126]. Choice tests can be an effective method to
compare feeding preferences between individual hosts, but to our knowledge, these have not been
conducted to compare the ecoforms and hybrids of European populations of Cx. pipiens.

Field studies collecting mosquitoes attempting to feed on live human or animal baits can also
greatly contribute to our understanding of host preference [172]. Several field studies have reported
human-biting Cx. pipiens; studies in Portugal [149] and the UK [173] collected both pipiens and
molestus ecoforms by human landing catch. Although the study in Portugal identified human blood
in one engorged pipiens female [149], the specimens collected by human landing catch in both studies
did not contain blood to permit confirmation of human feeding. However, this collection method is
considered the gold-standard approach for assessing mosquito-human contact rates, with mosquito
feeding (or at least probing) assumed to occur after landing [172]. Combining these field data with
laboratory choice tests and, although challenging, with blood meal studies that are coupled with
comprehensive surveys of vertebrate hosts in the sample area to assess the impact of host availability,
will contribute further to our understanding of host selection and preference of members of the
Culex pipiens complex. However, studies where wild mosquitoes are offered a choice of host are very
rare and findings such as those reported above could therefore represent opportunistic feeding rather
than a true preference.
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2. Future Research Directions

Our understanding of the Cx. pipiens complex has expanded rapidly in recent years, but there
remain many intriguing and as yet unexplored questions concerning their biology and ecology. Below
we highlight four areas of research important to defining the impact of Cx. pipiens on present and
future virus transmission in Europe.

(1) What factors lead to successful arbovirus transmission by populations of Culex pipiens?

The distribution of Culex-transmitted arboviruses is not uniform across Europe. Identification
of the different factors that lead to successful transmission of viruses and those that preclude
virus emergence are critical to understanding this distribution. Northern Europe has seasonally
abundant populations of Cx. pipiens that appear to support transmission of USUV but not WNV [174].
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This suggests environmental and climatic factors alone cannot explain the absence of WNV from
countries such as Germany, Poland, The Netherlands and the United Kingdom. In North America,
Culex species, including Cx. pipiens, enabled rapid spread of West Nile virus across the continent with
no apparent barriers. Expanding upon recent work [120] investigating the distribution of the ecoforms
of Cx. pipiens across Europe is essential to furthering our understanding of the relationship between
the ecoforms and their hybrids with current arbovirus distribution patterns. Furthermore, as many
important arboviruses exist in bird-mosquito-bird transmission cycles, identifying hotspots of high
mosquito and resident and migratory bird populations will enable better targeting of interventions in
advance of a novel virus introduction. Such hotspots may include rural wetland areas [168,175] but
could, increasingly, include more urbanised areas [176–178]. At the level of the mosquito, there remain
many questions regarding the complex interplay of genetic and environmental factors that influence
vector competence and mosquito-virus-host interactions. These include the extrinsic incubation
period, viral adaptivity, mosquito and host immunity and mosquito behaviour. In reference to
the latter, newly-emerged Australian ecoform molestus females preferentially delay blood-feeding
until after laying their first egg batch [179]. If such high levels of obligatory autogeny exist in
European populations, this would not only provide a highly beneficial population survival mechanism
but may influence the transovarial maintenance of virus through several generations. Finally, the
survival of virus in overwintering Cx. pipiens is likely a critical factor involved in the maintenance
of transmission cycles in Europe; a recent study detected WNV RNA in overwintering Cx. pipiens
in the Czech Republic [180]. Further investigation of the factors influencing overwintering survival,
post-hibernation emergence, and subsequent dispersal of Cx. pipiens and its ecoforms, as conducted
elsewhere [181,182], will improve our understanding of the role of overwintering in virus maintenance,
particularly in regions of Europe that experience colder winters.

(2) What are the potential impacts of a changing environment?

That climate changes are occurring and will impact both native and non-native arthropod
fauna worldwide is well established. The potential influences on arthropod-borne pathogens have
been explored [25–27], although the specific effects will vary considerably according to mosquito
species biology and the region concerned [183]. Anthroponotic changes influencing the structure
of the environment may be equally important in altering mosquito populations at the local or
regional scale [184,185]. For example, the creation of urban wetlands as part of sewage treatment
works [178] could increase available eutrophic habitat particularly suitable for ecoform molestus [85].
Increasing urbanisation could provide additional container habitats suitable for existing urban
mosquito populations, or facilitate an adaptive shift by other species towards the utilisation of urban
habitats, as evidenced by an increasing urban population of Anopheles plumbeus (Stephens, 1828) in
various parts of north-western Europe [176,177,186,187]. Urban centres could be at further risk of
vector-borne disease if existing temperature rises were compounded by the urban heat island effect
in such locations, although the precise effects of this phenomenon on pathogen transmission risk are
likely to be complex [185,188]. The storage of water during periods of drought could additionally
provide increased urban habitat for mosquito breeding [189], whilst the reversion of arable land to
wetlands could provide further habitat for Culex mosquitoes and provide a location where grazing
animals come into contact with migratory birds [175].

(3) What are the key factors influencing rates of hybridisation?

The variable rates of hybridisation in European populations between sympatric populations
of pipiens and molestus ecoforms indicate the existence of multiple barriers to hybridisation that
extend beyond simple allopatric reproductive isolation. Although in parts of Europe hybridisation
rates are low, rates in southern Europe may approach those reported from northern Africa [122,190].
To what extent reproductive barriers are behavioural, such as environmental requirements for swarm
formation or specificity of matched wing beat frequencies [191,192], or intrinsic, for example mediated
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by commensal Wolbachia strains and cytoplasmic incompatibility [109,193], is currently unknown.
Furthermore, although human-mediated transport of mosquitoes may facilitate long-distance species
translocation and provide opportunities for hybridisation aboveground [121], to what extent are
belowground molestus populations able to disperse within and beyond their existing habitats?
Approaches such as the use of mark-release-recapture aided by fluorescently- or immune-marked
insects [194,195] in belowground systems could, for example, reveal the dispersal potential of
form molestus.

(4) How do the olfactory responses to semiochemicals of host and environmental origin differ?

Furthering the understanding of the responses of the Cx. pipiens complex to volatile compounds
produced by vertebrate hosts, nectar sources and larval habitats will facilitate the development of novel
repellents, attractants and more optimal approaches to surveillance and control. To date, the olfactory
responses of Culex species to host odours have been investigated for Cx. quinquefasciatus [196,197],
and to flower odours in ecoform pipiens [198] and molestus [199]. However, directly comparative
studies of the olfactory responses between the ecoforms have not been conducted, and paired trap
comparison studies comparing above- and belowground collections remain unexplored. Recent
work has shown that ecoforms pipiens and molestus, plus their hybrids, were collected in similar
ratios by BG-Sentinel and Mosquito Magnet Liberty Plus traps [120]. However, Cx. torrentium was
found to be under-represented in CDC light trap catches in Germany and Sweden in comparison to
Cx. pipiens [200,201] and although the authors did not molecularly identify specimens to ecoform, these
results illustrate the need for further field investigation using other trap types.

In summary, it is vital that data on members of the Cx. pipiens complex is collected from countries
across Europe and at a range of geographic scales that reflect different ecological zones. Comparisons
should also be made between urban and rural populations and those in intermediate areas. Habitat
differences may be more important in influencing distribution and hybridisation rates than broader
latitudinal trends [118,120]. Studies conducted at the regional, national and pan-European level will
provide critical data to model trends in mosquito biology and virus transmission, and to better inform
regional approaches to surveillance and control. However, these large-scale studies cannot replace
targeted field-based studies which are critical to understand the factors influencing transmission at the
level of the vector and its hosts in different local habitats. Finally, although these research questions
span several fields, it has become increasingly clear that future studies should, insofar as is possible,
identify Cx. pipiens to the level of both species and ecoform. The continued decrease in costs and
increase in the speed of molecular identification approaches will no doubt greatly contribute towards
this goal.

3. Conclusions

Current evidence from across Europe highlights the importance of the Cx. pipiens complex in
the current and potential future transmission of important medical and veterinary arboviruses. It is
therefore imperative that a concerted effort be made between research and governmental agencies
across Europe to better target future sampling efforts to answer the remaining questions concerning
the ecology and genetics of mosquito and pathogen that influence this association.

Surveillance for mosquito-borne viruses in mosquito populations varies widely across Europe [17].
Extensive surveillance is conducted in northern Italy where cases of WNV occur annually in an attempt
to detect virus in mosquitoes populations [202]. This offers the opportunity for public health authorities
to warn health professionals before the occurrence of human disease. Both Germany and Switzerland
conduct extensive surveillance to detect invasive mosquitoes and the emergence of virus infections.
This has proven useful in mapping the spread of USUV across Europe. In the majority of countries
across Europe, however, surveillance is reactive in response to disease outbreaks or changes in the
mosquito population [203].
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The extent of the distribution of the specific forms of Cx. pipiens is just beginning to be defined.
However, evidence indicates that latitudinal differences in the distribution of Cx. pipiens forms and
their hybrids, together with the distribution of the sibling species Cx. torrentium, may influence
the transmission dynamics of arboviruses in Europe. However, the picture is more complicated
than simply this fact and will include the effect of different environmental conditions on the life
cycle and behaviour of the mosquitoes, as well as intrinsic factors such as vector competence.
In addition, despite the importance of this species in current and potential pathogen transmission,
increasing our understanding of how species complexes as a whole function within an ecosystem to
contribute to pathogen transmission is vitally important. For example, Rift Valley fever virus outbreaks
involve multiple species that act sequentially depending on environmental circumstances. Therefore,
maintenance of surveillance approaches that target a wide range of mosquito species should be used.

Current evidence continues to support the importance of birds as a major blood-meal host for
Cx. pipiens across Europe. However, there is considerable evidence from blood meal and host-baited
studies that ecoform pipiens can also take blood meals from humans and other mammals. Conversely,
ecoform molestus also feeds to a considerable extent on birds, in many cases to the same degree as the
pipiens ecoform. Therefore, it may be necessary to take a broader view and consider the potential for
both ecoforms to act as enzootic and bridge vectors of medically important arboviruses.
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Appendix

References used for the production of maps showing country-level presence of the following species:

Culex pipiens ecoform pipiens/Culex pipiens ecoform molestus hybrids (Figure 2a)

• Austria [114]
• Belgium [204]
• France [102]—hybrids reported from a colony strain originally collected in France
• Germany [110]
• Greece [119,205]
• Italy [118,120]
• Netherlands [100,115,120]
• Portugal [117,149]
• Serbia [206]—methodology used for identification unclear.
• Spain [116,147,207]
• Sweden [120]
• United Kingdom [101,103]

Culex pipiens/Culex quinquefasciatus hybrids (Figure 2b):

• Greece [102,121]

Culex torrentium (Figure 3)

• Albania [208]
• Austria [114,209]
• Belarus [209]
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• Belgium [89,204,210]
• Czech Republic [89,209]
• Denmark [89,209]
• Estonia [209]
• Finland [89,209,211,212]
• France [209,213]
• Germany [85,89,110,209]
• Hungary [209,214]
• Italy [209]
• Lithuania [209,215]
• Luxembourg [201,216]
• Moldova [217]
• Montenegro [209]
• Netherlands [89]
• Norway [209]
• Poland [128,209]
• Portugal [209,218]
• Romania [209,219]
• Serbia [220]
• Slovakia [209,221]
• Spain [222,223]
• Sweden [79,89,209]
• Switzerland [89,209]
• Turkey [224]
• Ukraine [209]
• United Kingdom [89,209]
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