

DOI: 10.1093/femsle/fnac043 Advance access publication date: 6 May 2022 Research Letter – Pathogens & Pathogenicity

The VirF₂₁:VirF₃₀ protein ratio is affected by temperature and impacts Shigella flexneri host cell invasion

Eva Skovajsová¹, Bianca Colonna², Gianni Prosseda [©]², Mikael E. Sellin [©]¹, Maria Letizia Di Martino [©]1,*

¹Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden

²Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy

*Corresponding author: Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden. Tel: +46722092710; E-mail: ml.dimartino@imbim.uu.se

One sentence summary: The ratio of the two virulence-regulatory proteins $VirF_{21}$: $VirF_{30}$ increases at low temperature and can dictate the invasive properties of Shigella flexneri.

Editor: Olga Ozoline

Abstract.

Shigella spp, the etiological agents of bacillary dysentery in humans, have evolved an intricate regulatory strategy to ensure finetuned expression of virulence genes in response to environmental stimuli. A key component in this regulation is VirF, an AraClike transcription factor, which at the host temperature (37° C) triggers, directly or indirectly, the expression of > 30 virulence genes important for invasion of the intestinal epithelium. Previous work identified two different forms of VirF with distinct functions: VirF₃₀ activates virulence gene expression, while VirF₂₁ appears to negatively regulate virF itself. Moreover, VirF₂₁ originates from either differential translation of the virF mRNA or from a shorter leaderless mRNA (llmRNA). Here we report that both expression of the virF₂₁ llmRNA and the VirF₂₁:VirF₃₀ protein ratio are higher at 30°C than at 37°C, suggesting a possible involvement of VirF₂₁ in minimizing virulence gene expression outside the host (30° C). Ectopic elevation of VirF₂₁ levels at 37°C indeed suppresses Shigella's ability to infect epithelial cells. Finally, we find that the VirF₂₁ C-terminal portion, predicted to contain a Helix-Turn-Helix motif (HTH2), is required for the functionality of this negative virulence regulator.

Keywords: Shigella, virulence genes, regulation, infection, cell invasion, Shigellosis

Introduction

Enterobacterial pathogens coordinate the expression of virulence factors through complex regulatory networks in order to colonize and disseminate in the host gut epithelium. Shigella flexneri bacteria, facultative intracellular microbes causing bacillary dysentery in humans, have become paradigmatic for the study of virulence gene regulation. The expression and combined action of numerous virulence factors, mainly encoded on a large virulence plasmid (pINV), ultimately result in the invasion of colonic epithelial cells in the lower gut (Mattock and Blocker 2017). Subsequently, the bacteria multiply intracellularly and spread to adjacent cells, resulting in cell death and inflammatory destruction of the gut mucosa (Schroeder and Hilbi 2008, Arena et al. 2015). A crucial regulator of the Shigella infection process is VirF, an AraC-like transcription factor, responsible for the invasive phenotype (Di Martino et al. 2016a). The synthesis of VirF occurs when Shigella senses the transition from the external environment to the human host (Falconi et al. 1998, Prosseda et al. 2004). VirF then triggers a regulatory cascade involving the expression of virB and icsA genes (Tobe et al. 1993, Tran et al. 2011). VirB activates a second wave of virulence genes involved in the assembly of a type 3 secretion system (T3SS), its effectors (the ipa-spa operons), and a second AraC-like transcriptional activator, mxiE (Le Gall et al. 2005, Parsot 2005, Schroeder and Hilbi 2008). IcsA, on the other hand, promotes Shigella dissemination across adjacent cells through host actin polymerization (Bernardini et al. 1989, Lett et al. 1989). Finally, the master regulator VirF also activates some chromosomally located genes (e.g; the spermidine excretion complex MdtJI; the chaperones IbpA, HtpG, DnaK and the protease Lon) whose expression may optimize *Shigella*'s intracellular life style (Barbagallo et al. 2011, Leuzzi et al. 2015).

The activation of virF is a key event for the successful invasion and dissemination of Shigella within the host epithelium, and is therefore stringently regulated. A multitude of environmental signals (e.g. temperature, pH, osmolarity) affect virF expression through several regulatory mechanisms. Some of these mechanisms have been described at the molecular level, as the temperature-dependent expression of the virF gene (Falconi et al. 1998, Prosseda et al. 2004). At temperatures below 32°C (nonpermissive), the nucleoid-associated protein H-NS tightly binds two sites within the virF promoter. This prevents access of the RNA polymerase and therefore leads to virF transcriptional silencing. At the permissive host temperature (37°C), relaxation of an intrinsically-curved DNA region, located between the two H-NS binding sites, hampers H-NS binding and favors access of the nucleoid associated protein FIS to one of its binding sites (Falconi et al. 2001, Prosseda et al. 2004). This results in activation of virF transcription. VirF subsequently acts as an anti-silencer, counteracting H-NS-mediated repression on for example virB and icsA promoters. Besides direct binding to the icsA promoter, VirF also stimulates icsA expression by lowering the intracellular concen-

Received: December 22, 2021. Revised: Month 21, 2022. Accepted: May 4, 2022

[©] The Author(s) 2022. Published by Oxford University Press on behalf of FEMS. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. Low temperature (30°C) stimulates virF21 llmRNA expression and an increased VirF21: VirF30 protein ratio. (A) ß-Galactosidase activity of the virF-lacZ transcriptional fusion pRS-F(+205) containing the internal promoter for the leaderless mRNA. The analysis was performed in E.coli DH10b. pRS-F(+305) was used as a negative control. The ß-Galactosidase activity was determined after subculture at 30 or 37°C. The activity is reported in Miller Units and represents the mean and standard deviation of 7 (pRS-F(+305)) and 13 (pRS-F(+205)) biological replicates from 3 different experiments. Statistical significance, comparing the ß-Galactosidase activity of the pRS-F(+205) fusion at 30 or 37°C, was determined by Mann-Whitney U test, *P < 0.05. (B) Detection of VirF₃₀ and VirF₂₁ at 30° and 37°C in protein extracts of the Shigella M90T strain carrying virF-3xFT grown in LB medium. A representative western blot with serial dilutions of the protein extracts is shown. (C) Detection of VirF₃₀ and VirF₂₁ at 30°C in protein extracts of the Shigella M90T strain carrying virF-3xFT grown in LB medium. A representative western blot in which protein extracts were concentrated to facilitate quantification is shown. (D) Detection of $VirF_{30}$ and $VirF_{21}$ at 30° and 37°C in protein extracts of the Shigella M90T strain carrying virF-3xFT grown in M9 medium. A representative western blot with serial dilutions of the protein extracts is shown. (E) Detection of VirF₃₀ and VirF₂₁ at 30°C in protein extracts of the Shigella M90T strain carrying virF-3xFT grown in M9 medium. A representative western blot in which protein extracts were concentrated to facilitate quantification is shown. (F) The relative VirF₃₀ content in the Shigella M90T strain carrying virF-3xFT grown in LB at 30° and 37°C was determined by quantification of western blots of serially diluted samples. VirF₃₀ level at 30°C was set as 1. Shown is the mean and standard deviation of 3 independent experiments. (G) The relative VirF₃₀ content in the Shigella M90T strain carrying virF-3xFT grown in M9 medium at 30° and 37°C was determined by quantification of western blots of serially diluted samples. VirF₃₀ level at 30°C was set as 1. Shown is the mean and standard deviation of 4 independent experiments. (H) VirF21 levels in the Shigella M90T strain carrying virF-3xFT grown in LB at 30°C and 37°C were quantified from western blots of concentrated samples. VirF21 content was quantified in comparison with the VirF30 content. Shown is the mean and standard deviation of 8 (30°C) and 6 (37°C) independent experiments. Statistical significance was determined by a Mann Whitney U test, **P < 0.01. (1) VirF21 levels in the Shigella M90T strain carrying virF-3xFT grown in M9 medium at 30°C and 37°C were quantified from western blots of concentrated samples. VirF21 content was quantified in comparison with the VirF30 content. Shown is the mean and standard deviation of 5 independent experiments. Statistical significance was determined by Mann-Whitney U test, **P < 0.01.

Figure 2. Elevated expression of VirF₂₁ suppresses *Shigella* virulence at 37°C. **(A)** Western blot with VirF antibodies on extracts from a *Shigella* M90T $\Delta virF$ mutant and M90T strains harbouring pControl (empty vector) or pVirF₂₁, a plasmid carrying the virF₂₁ coding sequence under an inducible pTaq promoter. The strains were grown in the presence of increasing concentration of IPTG (0, 0.1, 0.25,

1 mM) to induce VirF21 expression. GroEL protein was detected and used as internal loading control. A loading control using the Stain free method is also shown. (B) (upper panel) % CR- colonies upon spreading of the indicated strains on CR plates containing increasing concentrations of IPTG (0, 0.1, 0.25, 1 mM) to induce VirF₂₁ expression. (bottom panel) % CR- colonies upon scraping and re-plating of the colonies obtained on the previous plates, onto new CR plates without IPTG selection. Data come from at least three replicates from two independent experiments. ~200-600 colonies/replicate were examined for the CR phenotype. (C) Invasion efficiency of the indicated Shigella M90T strains in sub-confluent Caco-2 cell layers. Cells were infected at MOI 100 for 1h, and analysed by selective plating of intracellular bacteria. Shown are CFU data expressed as the percentage of the inoculum retrieved in the intracellular population. Shown are CFU data for 7 (M90T pControl) and 9 (M90T △mxiD, M90T pVirF₂₁) biological replicates from 3 independent experiments. Bars represent mean and standard deviation. Statistical significance was determined by Mann Whitney U test, **P < 0.01.

tration of the antisense rna RnaG, known to cause premature icsA transcriptional termination (Tran *et al.* 2011).

In addition to temperature-dependent regulation of virF expression, several other regulatory mechanisms have been described, involving e.g. IHF (Porter and Dorman 1997), CpxA/R (Nakayama and Watanabe 1998), and EnvZ/OmpR (Bernardini et al. 1990), as well as specific post-transcriptional tRNA modifications (Durand et al. 1997, 2000, Hurt et al. 2007). More recently, a chromosomal LysR-like transcriptional regulator, YhjC, has been shown to activate virF expression, suggesting further cross-talk between chromosomal and pINV located genes (Li et al. 2021). Altogether, these factors contribute to reach a fine-tuned VirF threshold concentration, sufficient to activate virB and icsA expression and thereby trigger the Shigella host cell invasive program (Adler et al. 1989, Dagberg and Uhlin 1992, Prosseda et al. 1998).

Previously, the existence of an additional layer in the regulation of virF expression was discovered. The virF mRNA itself, through differential translation, in fact gives rise to two forms of VirF protein: VirF₃₀ (30 kDa) and VirF₂₁ (21 kDa). VirF₃₀ acts as primary activator of the virulence gene cascade, whereas VirF₂₁ appears to negatively autoregulate virF expression through direct promoter binding (Di Martino *et al.* 2016b). In addition, VirF₂₁ can originate also from a shorter, leaderless mRNA (llmRNA), transcribed from a gene-internal promoter (Di Martino *et al.* 2016b). While the molecular interactions of this regulatory loop were defined in the previous study, it had remained unknown which conditions affect VirF₂₁ expression and how this can impact Shigella's host cell invasive phenotype.

Here we characterized the conditions governing $virF_{21}$ llm-RNA expression and the overall VirF₂₁:VirF₃₀ protein ratio. We found that at 30°C, a common condition *Shigella* encounters during its extracellular (non-invasive) lifestyle, transcription of the $virF_{21}$ llmRNA from the internal promoter is favored and the VirF₂₁:VirF₃₀ protein ratio is elevated, as compared to the permissive host temperature of 37°C. Moreover, ectopically elevating VirF₂₁ levels at 37°C resulted in a marked and reversible block of the *Shigella* host cell invasive phenotype. The C-terminal part of VirF₂₁ was found to be required for this suppression. We discuss the possible connections between environmental sensing, the fitness costs of virulence gene expression, and VirF₂₁-dependent suppression of the host cell invasive program.

Material and methods

Bacterial strains and general procedures

Strains and plasmids used in this study are listed in Table S1. M90T is a S. *flexneri* serotype 5 strain (Sansonetti et al 1982). Strain M90T $\Delta virF$ carries a deletion of the *virF* gene (Leuzzi *et al.* 2015). Strain M90T νirF -3xFT carries the 3xFLAG tag sequence at the C-terminus of the pINV-encoded virF gene (Leuzzi *et al.* 2015). Strain M90T $\Delta mxiD$ carries a deletion of the *mxiD* gene and has been constructed using the one-step gene inactivation method (Datsenko and Wanner 2000), transforming M90T pKD46 with the PCR product obtained using plasmid pKD4 as template and the oligo pairs mxiD_delF/mxiD_delR (Table S2). The plasmids pControl (previously named pGIP7), pVirF₂₁ (previously named pAC-21), pRS-F(+205) and pRS-F(+305) were described previously (Di Martino *et al.* 2016b, Falconi *et al.* 2001).

The plasmids pVirF₂₁_I97N, pVirF₂₁_V108A, pVirF₂₁_V145T and pVirF₂₁_Y141stop were obtained by Gibson Assembly (Gibson *et al.* 2009), ligating *in vitro* synthesized PCR products (purchased from Genewiz) into the BamHI restriction site in pControl using the Gib-

Figure 3. The C-terminal HTH2 motif is required for VirF₂₁ function. (A) Schematic representation of the VirF₂₁ protein sequence, with relevant mutagenized amino acid positions indicated. (B) virF mRNA expression levels $(2^{-\Delta\Delta Ct})$ as a function of protein induction with 0.25 mM IPTG in *Shigella* M90T strains harbouring pControl, pVirF₂₁, pVirF₂₁_197N, pVirF₂₁_V108A, pVirF₂₁_V145T, or pVirF₂₁_Y141stop. Data come from 6–7 biological replicates from 3 independent experiment and were normalized to the virF expression in the M90T pControl strain. (C) VirF₂₁ protein levels detected by western blot as a function of IPTG induction (increasing concentration: 0, 0.1, 0.25, 1 mM) in *Shigella* M90T strains harbouring pControl, pVirF₂₁_V145T, or pVirF₂₁_Y141stop produces a smaller protein (~ 15kDa), since the last 39 aa in the C-terminal part are deleted. (D) VirF₂₁ protein levels detected by western blot in a *Shigella* M90T ΔmxiD mutant and in *Shigella* M90T strains harbouring pControl, pVirF₂₁_Y141stop plasmids in the presence of 0.25 mM IPTG. (E) Invasion efficiency of the indicated *Shigella* M90T strains in sub-confluent Caco-2 cell layers. Cells were infected at MOI 100 for 1h, and analysed by selective plating of intracellular bacteria. Shown are CFU data expressed as the percentage of the inoculum retrieved in the intracellular population. Shown are CFU data for 4 (ΔmxiD) and 6 (*Shigella* M90T strains harbouring pControl, pVirF₂₁, or pVirF₂₁, Y141stop plasmids) biological replicates from 2 independent experiments. Bars represent mean and standard deviation. Statistical significance was determined by Mann Whitney U test, ns = non significant, *P < 0.05, **P < 0.01.

son Assembly Cloning kit from NEB (#E5510S). Amino acid substitutions were adjusted according to the *Shigella* codon usage. The resulting plasmids were transformed into the wild-type M90T strain. Sequences of the PCR products used are listed in Table S2. Bacteria were routinely grown in LB medium at 37° C, unless otherwise specified. When required, strains were grown in M9 complete medium (M9 minimal medium supplemented with 10 mg/ml thiamine, 0.2% glucose, 0.5% casamino acids and 10 mg/ml nicotinic acid). When necessary, antibiotics were supplemented at the following concentrations: ampicillin, 50 µg/ml; chloramphenicol, 15 µg/ml; kanamycin, 50 µg/ml; streptomycin, 50 µg/ml. Plasmid DNA extraction, DNA transformation, electrophoresis, purification of DNA fragments and sequencing were performed as described previously (Green and Sambrook 2012). PCR reactions were performed using DreamTaq DNA polymerase (Thermo Fisher Scientific, #EP0702) or Phusion DNA polymerase (Thermo Fisher Scientific, #F-530L). All oligonucleotide primers used in this study are listed in Table S2.

ß-galactosidase assays

 β -galactosidase assays were performed as previously described (Miller 1992) on sodium dodecyl sulphate-chloroformpermeabilized cells grown in LB or M9 medium (to OD600 0.5–0.6). β -galactosidase activity of the pRS-F (+205) and pRS-F (+305) transcriptional fusions was assessed under different conditions. For temperature shift, ON cultures grown at 30°C in LB were subcultured 1:100 in LB at 30°C or 37°C. To mimic intestine-like conditions, ON cultures grown at 30°C were subcultured 1:100 at 37°C in M9 medium supplemented with the following compounds: Sodium deoxycholate (0, 2.5, 5 mg/ml), Bile salts (0, 6, 9 mg/ml), NaCl (0, 0.1, 0.2M), Hydrogen peroxide (0, 10, 50, 100 mM). To screen different pH conditions, bacteria were subcultured 1:100 in M9 medium at pH 5, 6 and 7.

Immunodetection of VirF proteins

VirF protein levels were detected by western blot through enhanced chemiluminescence. In brief, equal amount of proteins was extracted from strains grown at OD600 ~0.6, separated on Any kD™ Mini-PROTEAN® TGX Stain-Free™ Protein Gels (Biorad, #4568126) and transferred onto Trans-Blot Turbo Mini 0.2 µm PVDF Transfer Packs (Biorad, #1704156). The stain-free method was used to obtain the loading control (Colella et al. 2012). The method is based on the fluorescent detection of tryptophan residues in the protein sequence, as a result of the presence of a trihalo compound in the gel. After protein separation by electrophoresis, each gel was imaged upon exposure to UV-light for 5 min and the same region was selected as loading control for all western blots. Immunodetection was performed as described in Di Martino et al. 2016b using polyclonal halon anti-VirF, anti-FLAG (Sigma, #F1804) and anti-GroEL (Sigma, #A8705) antibodies. Quantification by Western blots were obtained by serial dilution of protein extracts, with the relative amounts calculated from a standard curve. For the protein extracts derived from cultures grown at 30°C, concentrated samples were used to calculate the standard curves.

Congo red binding assay

Congo Red (CR) plates were prepared adding 0.108 mg/ml of Congo Red dye (Sigma, #C6277) to Trypticase Soy Agar (Sigma, #22091) and supplemented with 0, 0.1, 0.25, or 1 mM IPTG (Sigma, #I6758). The indicated *Shigella flexneri* M90T strains were grown ON at 30° C with appropriate antibiotics, diluted 1:40 and subcultured at 37° C for ~2 h (OD600 ~0.7). Subcultures were serially diluted and plated on CR plates containing increasing concentrations of IPTG. The following day Congo Red positive (CR+) and negative (CR–) colonies were enumerated. Subsequently, colonies were scraped from each plate, serially diluted and plated on new CR plates without the IPTG selection.

Epithelial cell culture and infections

Caco-2 cells were grown in DMEM GlutaMAX (Gibco, #31966-021) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco, #10270106) and 0.1 mM Non Essential Amino Acids (Gibco, #11140035) at 37°C with 10% CO2. Cultures were passaged two to three times/week in the presence of 100IU/ml penicillin and 100 µg/ml streptomycin, but antibiotics were omitted during infection experiments. Caco-2 cells were seeded in 12-well plates 24-48 h before infection. The indicated S. flexneri strains were grown ON at 30°C in LB with appropriate antibiotics, diluted 1:50 in the presence of 0.25 mM IPTG to allow the induction of $VirF_{21}$. The subcultures were further incubated for 2h at $37^{\circ}C$ or for 1 h at 30°C before shifting for 1.5 h to 37°C (OD600 ~0.7). Upon infection, bacteria were centrifuged on top of the cultured epithelial cells for 15 min at 700 g, followed by 45min incubation at 37°C and 10% CO_2 . The culture medium was replaced with fresh medium containing 200 µg/ml Gentamicin (Sigma, #G1914) and the cells were further incubated for 2 h. At 3h post-infection (p.i.) cells were washed and lysed adding 0.1% Sodium deoxycholate, the lysates

were then diluted and plated on LB agar plates with appropriate antibiotics, followed by enumeration of the number of colonyforming units (CFUs).

qRT-PCR

Total RNA purification and cDNA synthesis were performed as previously described (Di Martino *et al.* 2016b). qRT-PCR was performed using Maxima SYBR green/ROX qPCR master mix (2X) (Thermo Fisher Scientific, #K0222) on a CFX384 Touch Real-Time PCR Detection System (Biorad). The levels of virF, virF₃₀, virB, *mxiE* and icsA transcripts were analysed using the $2^{-\Delta\Delta CT}$ (cycle threshold [CT]) method and results are reported as the fold increase relative to the reference (Livak *et al.* 2001). The housekeeping gene *nusA* was used for normalization. The following oligonucleotide primers were used (see Table S2): *nusAQF/nusAQR*, virFQF/virFQR, virF30QF/virF30QR, virBQF/virBQR, *mxiEQF/mxiEQR* and icsAQL/icsAQR.

Results and discussion

Expression levels of the $virF_{21}$ llmRNA and the $VirF_{21}$: $VirF_{30}$ protein ratio are both elevated at non-permissive temperature (30°C)

Previous work identified a virF₂₁ translationally capable llmRNA, whose transcription is dependent on the presence of an internal promoter located two nucleotides upstream the VirF₂₁ translational start site (Di Martino et al. 2016b). To determine how and when expression of the virF₂₁ llmRNA occurs, E. coli strains harbouring a virF₂₁(llmRNA)-lacZ transcriptional fusion construct (pRS-F (+205)), or a control fusion (pRS-F (+305)) (Di Martino et al. 2016b) were grown under different conditions, mimicking either the environment Shigella encounters during host cell invasion in the gut (i.e. exposure to sodium deoxycholate, bile salts, high osmolarity, oxidative stress, low pH) or the environment outside the host (non-permissive temperature: 30°C) (Marteyn et al. 2012). No difference in the pRS-F (+205) ß-galactosidase activity was observed during osmotic, oxidative and pH-stress, as compared to the untreated control (Fig S1A-B-C). Increasing concentrations of either sodium deoxycholate alone or a bile salt mixture, hence mimicking the biliary secretions encountered in the human intestinal tract (Faherty et al. 2012, de Buy Wenniger et al. 2013, Di Ciaula et al. 2017, Nickerson et al. 2017, Chanin et al. 2019), resulted in ~6 and ~3-fold increase in ß-galactosidase activity, respectively (Fig S1D-E). This suggests an increase in virF₂₁ llmRNA transcription under these two conditions. However, the relative abundance of VirF₂₁ protein, measured in a Shigella flexneri M90T strain harbouring a 3xFlag-tagged version of the VirF proteins, did not increase accordingly in response to these stimuli (Fig S1F-G-H). This may imply that under the conditions tested here, the majority of VirF₂₁ protein originates from alternative translation of the virF full length mRNA. The existence of some other unknown posttranscriptional regulatory mechanisms, hampering VirF₂₁ translation, can also not be ruled out. In either case, typical conditions encountered by Shigella within the host may influence virF₂₁ llm-RNA transcription, but do not seem to significantly alter VirF21 protein levels.

Interestingly, we found that the ß-galactosidase activity of the pRS-F (+205) fusion was significantly higher at 30°C than at the permissive host temperature of 37°C (Fig. 1A). Translation of both VirF forms in *Shigella flexneri* M90T was observed at both temperatures (Fig. 1B-E). In agreement with the positive regulation of virF expression at 37°C, VirF₃₀ protein abundance was ~8–10-

fold higher at 37°C than at 30°C both in LB (Fig. 1B-C-F) and in M9 medium (Fig. 1D-E-G). Notably, the VirF₂₁:VirF₃₀ protein ratio differed dramatically between the two temperatures. While VirF₂₁ represented ~5–10% of the VirF₃₀ protein content at 37°C (~5% in LB; ~ 10% in M9), it reached peaks of ~20–50% at 30°C (~20% in LB; ~ 50% in M9) (Fig. 1C-E-H-I).

Taken together these results suggest that while $virF_{21}$ llmRNA transcription may be affected by several different stimuli, a high VirF₂₁:VirF₃₀ protein ratio is favoured at environmental temperature, rather than under host-like conditions. In this context, VirF₂₁ might function as a molecular brake to minimize fitness costs when the Shigella virulence program is not required or undesired.

The virF genetic arrangement leading to the transcription and translation of two proteins from a single gene is not an isolated example. The E.coli copper chaperone CopA and the Salmonella LysR-type regulator LtrR also display transcription of two mRNA molecules and the translation of two protein forms under specific environmental conditions (Drees et al. 2017, Rebollar-Flores et al. 2020). Furthermore, computational analysis aimed at discovering overlooked regulatory elements showed that gene internal promoters are often associated with horizontally transferred genes, both in E.coli and in some archaeal species (Ten-Caten, Vêncio et al. 2018). This is particularly relevant here, since virF was horizontally acquired on the pINV during Shigella's evolution towards pathogenicity (Yang et al. 2005). Altogether, this suggests the existence of a widespread adaptation strategy in bacteria to expand and diversify the protein repertoire and thereby optimize the response to changing external conditions.

Ectopic expression of VirF₂₁ at the permissive temperature reversibly suppresses the Shigella host cell invasive program

VirF₃₀ activity governs the transition of Shigella between noninvasive and invasive states. When switching from 30°C to 37°C, already a modest increase in *virF* transcription is sufficient for full activation of the downstream virulence cascade and a host cell invasive phenotype (Le Gall *et al.* 2005). To test the hypothesis that ViF₂₁ expression can prevent switching to the invasive phenotype, we explored the consequences of elevating VirF₂₁ protein levels under the permissive temperature (37°C).

First, we investigated the effect of ectopic $VirF_{21}$ expression on the ability of Shigella to bind Congo Red (CR), a phenotype linked to virulence and the presence of virF, resulting in red colonies (CR+) on solid medium (Sakai et al. 1986a). Shiqella flexneri M90T was transformed with either a plasmid that allowed IPTGinducible expression of VirF₂₁ (pVirF₂₁; carries the Ptac promoter; reported as pAC-21 in Di Martino et al. 2016b), or the corresponding empty vector (pControl; previously named pGIP7 in Falconi et al. 2001). Ectopic expression of VirF₂₁ was detected in the presence of graded concentrations of IPTG (0.1-0.25-1 mM), but not in the absence of IPTG (Fig. 2A). We plated dilutions of exponential cultures of M90T pControl, M90T pVirF $_{21}$ and M90T $\Delta \textit{virF}$ on CR plates containing increasing concentrations of IPTG and incubated at 37°C. Fig. 2B and figure S2 show that IPTG-induced ectopic expression of VirF₂₁ led to the appearance of a high percentage (~50–90%) of white (CR-) colonies, reaching comparable levels as the non-virulent M90T $\Delta virF$ mutant, a strain known to exhibit a completely CR- phenotype (Sakai et al. 1986b). In particular, a robust CR- phenotype (>80% white colonies) was observed on CR plates containing 0.25 and 1 mM IPTG, while the percentage white colonies was somewhat variable in the presence of 0.1 mM IPTG. This observation suggests a borderline VirF₂₁ expression at IPTG concentrations lower than 0.25 mM. Importantly, when the CR- M90T pVirF₂₁ colonies were collected from the plates supplemented with IPTG and re-plated on new CR plates devoid of the IPTG inducer, the bacteria reverted back to virtually exclusively CR + colonies (Fig. 2B; <3% CR-). These results suggest that CR binding is subjected to a VirF₂₁-driven reversible switch, linked also to a decrease in virulence gene expression (Fig S3A-B; and Di Martino et al. 2016b).

Next, we infected human colonic epithelial Caco-2 cells with the M90T pControl and M90T pVirF₂₁ strains, to test how ectopic VirF₂₁ expression impacts *Shigella* host cell invasion. M90T Δ mxiD (lacking the outer membrane ring MxiD protein, resulting in a nonfunctional T3SS) was used as a non-invasive control strain. To ensure robust VirF₂₁ expression with minimal side effects, we induced VirF₂₁ expression with the intermediate concentration of IPTG (0.25 mM, as informed by the CR binding assay; Fig. 2A and B). As expected, the M90T Δ mxiD strain failed at infecting Caco-2 cells (Fig. 2C). Notably, ectopic expression of VirF₂₁ (M90T pVirF₂₁) led to a ~4–5-fold decrease in *Shigella*'s ability to infect Caco-2 cells, as compared to the M90T pControl strain (Fig. 2C).

Taken together, these results show that elevated VirF₂₁ expression at 37°C can suppress the Shigella invasive program, signified by a CR-phenotype on plates, reduced virulence gene expression, and hampered capacity to infect epithelial cells. Considering that $VirF_{21}$ makes up a larger fraction of the total VirF protein pool at 30°C than at 37°C (Fig. 1), the above results reinforce the hypothesis that VirF₂₁ may negatively tune Shigella virulence gene expression, when this is undesirable. It is known that the pINV virulence plasmid is subjected to high counter-selective pressure at 37°C. With increasing number of generations, mutations, insertions of IS sequences and/or complete loss of the virulence cascade top regulators virF or virB occur at 37°C (Sasakawa et al. 1986, Schuch and Maurelli 1997, Pilla et al. 2017). Occasionally, the selective pressure can escalate leading even to the loss, or integrational silencing, of the entire pINV (Zagaglia et al. 1991, Pilla et al. 2017). At 30°C, virulence gene expression is silenced and therefore the selective pressure on the pINV is relieved, resulting in minimal loss or mutations (Schuch and Maurelli 1997). In this context, it is tempting to speculate that VirF₂₁ expression represents an additional regulatory layer to minimize virulence gene expression leakage and therefore promote overall pINV stability under certain environmental conditions.

The C-terminal region of VirF₂₁ is required for negative regulation of Shigella host cell invasion

The experimental setting based on ectopic VirF₂₁ expression precludes assessment of the impact of endogenous VirF₃₀ and VirF₂₁ levels expressed from their native genetic context. Despite significant efforts, we have however been unsuccessful at generating a *Shigella flexneri* scarless mutant expressing VirF₃₀ protein only from the endogenous locus. This may suggest that the native virF locus sequence is unusually intolerant to perturbation, although we cannot formally rule out other technical explanations.

To better understand the relationship between VirF₂₁ sequence and function, and to verify the specificity of the above results, we therefore opted for a site directed mutagenesis approach, targeting the untagged virF₂₁ gene cloned into the pVirF₂₁ plasmid. VirF₃₀ and VirF₂₁ belong to the family of AraC-like transcriptional regulators (Cortés-Avalos *et al.* 2021). This group comprises both positive and negative transcriptional regulators, which often control virulence systems across different gram-negative bacterial species (i.e. Salmonella, Yersinia, Vibrio cholera, (Gallegos *et al.* 1997, CortésAvalos et al. 2021)). The mechanisms governing AraC-like protein expression and regulation have been successfully studied in many cases. However, their biochemical and structural properties have been less well characterized, since AraC-like proteins are often difficult to purify (Cortés-Avalos et al. 2021). The DNA sequences targeted by VirF₃₀ have nevertheless been identified in some cases (i.e. within icsA, RNAG, and virB promoters) (Tobe et al. 1993, Giangrossi et al. 2010, Tran et al. 2011), and the $VirF_{21}$ binding site within the virF promoter was also previously mapped (Di Martino et al. 2016b). VirF₂₁ and VirF₃₀ share the C-terminal portion, which contains the two typical AraC-like Helix-Turn-Helix (HTH) DNA binding motifs, separated by an alfa helix linker. VirF₂₁ lacks the N-terminal domain of VirF₃₀, which is believed to have oligomerization properties. Some of the amino acids likely involved in the interaction between VirF₃₀ and its DNA targets have been identified by a combined random and site directed mutagenesis approach (Porter and Dorman 2002).

In an attempt to obtain a non-functional VirF₂₁, we transplanted an assortment of mutations shown to affect $VirF_{30}$ function in the prior study (Porter and Dorman 2002). The following mutations were introduced onto the pVirF₂₁ plasmid: I97N, V108A, V145T and Y141stop, here reported considering VirF₃₀-Met84 (Porter and Dorman 2002) = $VirF_{21}$ -Met1 (Fig. 3A; Di Martino et al 2016b; previously reported in Porter and Dorman 2002 as I180N, V191A, V228T, and Y224Och respectively). The substitutions I97N and V108A target the HTH1 DNA binding motif, while the V145T substitution is located within the HTH2 DNA binding motif. Finally, the deletion of the HTH2 motif was achieved by introducing a stop codon at position 141 (Y141stop; deletion of 39 aa in the Cterminus). Upon induction with IPTG in Shigella flexneri M90T, the wild type (wt) and the mutated versions of $virF_{21}$ showed broadly similar transcriptional levels (Fig. 3B). However, VirF₂₁ protein levels (monitored by a halon anti-VirF antibody) were markedly lower for the VirF₂₁_I97N, VirF₂₁_V108A and VirF₂₁_V145T mutant constructs than in the VirF₂₁_wt carrying strain (Fig. 3C), suggesting a possible impact of these amino acid substitutions on protein stability. Only the truncated VirF₂₁_Y141stop construct generated protein levels comparable to the strain harbouring the pVirF₂₁_wt plasmid (Fig. 3C-D). Next, we infected Caco-2 cells with the strains ectopically expressing either $VirF_{21}$ wt (pVirF₂₁) or $VirF_{21}$ stop (pVirF₂₁ Y141stop). As evident from Fig. 3E, the Shigella pVirF₂₁_Y141stop strain retained the ability to infect Caco-2 cells at similar levels as the control strain (Shigella pControl), while the Shigella pVirF₂₁_wt strain again showed a \sim 3 fold lower invasion capacity (Fig. 3E; compare also with Fig. 2C). These results show that the VirF₂₁_stop protein, lacking the predicted DNA binding HTH2 motif, can be expressed to similar levels as fulllength VirF₂₁, but is non-functional. This validates the specificity of the $VirF_{21}$ suppressive effects observed in the above experiments (Fig. 2), and reveals a key role of the C-terminal portion for VirF₂₁ functionality.

Conclusions

Pathogenic bacteria are masters at adapting to fast-changing environmental cues. *Shigella* encounters many different environmental conditions and switches flexibly between extracellular and intracellular lifestyles. While the activation of the *virF* regulatory cascade is a crucial event for *Shigella* expression of the invasive program (Schroeder and Hilbi 2008), it also constitutes a significant fitness cost for the bacterial population (Schuch and Maurelli 1997). Thus, it is not surprising that *Shigella* employs a multi-layered regulatory arsenal to ensure expression of the virulence genes only when these are needed. VirF₂₁ has been identified as a possible negative autoregulator of VirF₃₀, but the impact on the invasive *Shigella* phenotype had not been addressed (Di Martino *et al.* 2016b). Our results expand on these previous findings, by illustrating that *virF*₂₁ llmRNA expression and the VirF₂₁:VirF₃₀ protein ratio is enhanced at 30°C, a common condition *Shigella* encounters outside of the host. In this context, it seems plausible that VirF₂₁ serves to suppress virulence gene expression when not desired. Indeed, when ectopically expressed, VirF₂₁ is capable of suppressing the *Shigella* virulence program at the permissive temperature 37°C, resulting in a CR- phenotype on plates, lowered levels of virulence gene transcripts, and an impaired ability to infect host cells. This suppressive activity requires the HTH2motif-containing C-terminus of the VirF₂₁ protein.

While the physiological impact of $VirF_{21}$ remains to be completely explored under the multitude of possible environmental conditions, the findings presented here highlight the interconnected mechanisms that ensure fine-tuned regulation of virulence properties across the *Shigella* life cycle.

Supplementary data

Supplementary data are available at FEMSLE online.

Author contribution

Conceptualization: M.E.S., M.L.D.M. Methodology: E.S., M.E.S., M.L.D.M. Investigation: E.S., M.L.D.M. Formal analysis: E.S., M.L.D.M. Resources: B.C., G.P., M.E.S., M.L.D.M. Supervision: M.E.S., M.L.D.M. Project administration: M.E.S., M.L.D.M. Funding acquisition: M.E.S., M.L.D.M. Visualization: E.S., M.L.D.M. Writing— Original Draft: M.L.D.M. Writing—Reviewing & Editing: E.S., M.E.S., M.L.D.M. All authors read, commented on, and approved the final manuscript.

Acknowledgments

We thank members of the Sellin laboratory for helpful discussion.

Funding

This work was funded by the SciLifeLab Fellows program (to MES) and by the Carl Trygger Foundation CTS18:80 (to MLDM).

Conflicts of interests statement. None declared.

References

- Adler B, Sasakawa C,Tobe *et al.* A dual transcriptional activation system for the 230 kb plasmid genes coding for virulenceassociated antigens of Shigella flexneri. Mol Microbiol 1989;**3**: 627–35.
- Arena ET, Campbell-Valois FX, Tinevez JY et al. Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc Natl Acad Sci 2015;112:E3282–90.
- Barbagallo M, Di Martino ML, Marcocci L et al. A new piece of the Shigella pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected]. PLoS One 2011;6:e27226.
- Bernardini ML, Fontaine A, Sansonetti PJ. The two-component regulatory system ompR-envZ controls the virulence of Shigella flexneri. J Bacteriol 1990;**172**:6274–81.
- Bernardini ML, Mounier J, d'Hauteville H et al. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-

and intercellular spread through interaction with F-actin. Proc Natl Acad Sci 1989;**86**:3867–71.

- Chanin RB, Nickerson KP, Llanos-Chea A et al. Shigella flexneri adherence factor expression in in vivo-like conditions. *Msphere* 2019;**4**. DOI: 10.1128/MSPHERE.00751-19.
- Colella AD, Chegenii N, Tea MN *et al.* Comparison of stain-free gels with traditional immunoblot loading control methodology. *Anal Biochem* 2012;**430**:108–10.
- Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA et al. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021a;45. DOI: 10.1093/femsre/fuab020.
- Dagberg B, Uhlin BE. Regulation of virulence-associated plasmid genes in enteroinvasive Escherichia coli. J Bacteriol 1992;174: 7606–12.
- Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 2000;**97**:6640–5.
- de Buy Wenniger LM, Pusl T, Beuers U. Bile Salts. Encyclopedia of Biological Chemistry: Second Edition. Academic Press, 2013, 167–71. DOI: 10.1016/B978-0-12-378630-2.00031-1.
- Di Ciaula A, Garruti G, Baccetto RL et al. Bile acid physiology. Ann Hepatol 2017;**16**:s4–14.
- Di Martino ML, Falconi M, Micheli G et al. The multifaceted activity of the VirF regulatory protein in the shigella lifestyle. Front Mol Biosci 2016a;**3**:61.
- Di Martino ML, Romilly C, Wagner EGH *et al.* One gene and two proteins: a leaderless mRNA supports the translation of a shorter form of the Shigella VirF regulator. MBio 2016b;**7**. DOI: 10.1128/mBio.01860-16.
- Drees SL, Klinkert B, Helling S *et al.* One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting in Escherichia coli. *Mol Microbiol* 2017;**106**:635–45.
- Durand JM, Björk GR, Kuwae A *et al*. The modified nucleoside 2-methylthio-N6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. *J Bacteriol* 1997;**179**:5777–82.
- Durand JM, Dagberg B, Uhlin BE *et al.* Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene. *Mol Microbiol* 2000;**35**:924–35.
- Faherty CS, Redman JC, Rasko DA *et al.* Shigella flexneri effectors ospe1 and ospe2 mediate induced adherence to the colonic epithelium following bile salts exposure. *Mol Microbiol* 2012;**85**: 107–21.
- Falconi M, Colonna B, Prosseda G et al. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperaturedependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 1998;17:7033–43.
- Falconi M, Prosseda G, Giangrossi M *et al.* Involvement of FIS in the H-NS-mediated regulation of virF gene of Shigella and enteroin-vasive Escherichia coli. *Mol Microbiol* 2001;**42**:439–52.
- Gallegos MT, Schleif R, Bairoch A et al. Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997;**61**:393–410.
- Giangrossi M, Prosseda G, Tran CN *et al*. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. *Nucleic Acids Res* 2010;**38**:3362–75.
- Gibson DG, Young L, Chuang R-Y et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009 65 2009;**6**:343–5.

- Green MR, Sambrook J. Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 2012.
- Hurt JK, Olgen S, Garcia GA. Site-specific modification of Shigella flexneri virF mRNA by tRNA-guanine transglycosylase in vitro. Nucleic Acids Res 2007;35:4905–13.
- Le Gall T, Mavris M, Martino MC *et al*. Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri. *Microbiology* 2005;**151**: 951–62.
- Lett MC, Sasakawa C, Okada N *et al.* virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. *J Bacteriol* 1989;**171**:353–9.
- Leuzzi A, Di Martino ML, Campilongo R et al. Multifactor regulation of the MdtJI polyamine transporter in Shigella. PLoS One 2015;**10**:e0136744.
- Li W, Jiang L, Liu X et al. YhjC is a novel transcriptional regulator required for Shigella flexneri virulence. Virulence 2021;12:1661–71.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. *Methods* 2001;**25**:402–8.
- Marteyn B, Gazi A, Sansonetti P. Shigella: a model of virulence regulation in vivo. *Gut Microbes* 2012;**3**:104–20.
- Mattock E, Blocker AJ. How do the virulence factors of Shigella work together to cause disease? Front Cell Infect Microbiol 2017;**7**:64.
- Miller JH. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 1992.
- Nakayama SI, Watanabe H. Identification of cpxR as a positive regulator essential for expression of the Shigella sonnei virF gene. J Bacteriol 1998;**180**:3522–8.
- Nickerson KP, Chanin RB, Sistrunk JR et al. Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. *Infect Immun* 2017;**85**. DOI: 10.1128/IAI.01067-16.
- Parsot C. Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors. FEMS Microbiol Lett 2005;**252**:11–8.
- Pilla G, McVicker G, Tang CM. Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences. PLos Genet 2017;13. DOI: 10.1371/journal.pgen.1007014.
- Porter ME, Dorman CJ. In vivo DNA-binding and oligomerization properties of the Shigella flexneri arac-like transcriptional regulator VirF as identified by random and site-specific mutagenesis. *J Bacteriol* 2002;**184**:531–9.
- Porter ME, Dorman CJ. Positive regulation of Shigella flexneri virulence genes by integration host factor. J Bacteriol 1997;**179**: 6537–50.
- Prosseda G, Falconi M, Giangrossi M et al. The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 2004;**51**:523–37.
- Prosseda G, Fradiani PA, Di Lorenzo M *et al*. A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli. *Res Microbiol* 1998;**149**:15–25.
- Rebollar-Flores JE, Medina-Aparicio L, Osio-Becerro VE et al. The Salmonella enterica serovar typhi ltrR gene encodes two proteins whose transcriptional expression is up-regulated by alkaline pH and repressed at their promoters and coding regions by H-NS and Lrp. J Bacteriol 2020;**202**. DOI: 10.1128/JB.00783-19.
- Sakai T, Sasakawa C, Makino S *et al.* DNA sequence and product analysis of the virF locus responsible for congo red binding and cell invasion in Shigella flexneri 2a. *Infect Immun* 1986b;**54**: 395–402.

- Sakai T, Sasakawa C, Makino S *et al*. Molecular cloning of a genetic determinant For Congo red binding ability which is essential for the virulence of Shigella flexneri. *Infect Immun* 1986a;**51**:476–82.
- Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a plasmid in the invasive ability of Shigella flexneri. *Infect Immun* 1982;**35**:852–60.
- Sasakawa C, Kamata K, Sakai T et al. Molecular alteration of the 140megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. *Infect Immun* 1986;**51**:470.
- Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. *Clin Microbiol Rev* 2008;**21**:134–56.
- Schuch R, Maurelli AT. Virulence plasmid instability in Shigella flexneri 2a is induced by virulence gene expression. *Infect Immun* 1997;**65**:3686–92.
- Ten-Caten F, Vêncio RZN, Péricles A *et al.* Internal RNAs overlapping coding sequences can drive the production of alternative proteins in archaea. 2018. DOI: 10.1080/15476286.2018.1509661.

- Tobe T, Yoshikawa M, Mizuno T *et al.* Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. *J Bacteriol* 1993;**175**: 6142–9.
- Tran CN, Giangrossi M, Prosseda G et al. A multifactor regulatory circuit involving H-NS, VirF and an antisense RNA modulates transcription of the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2011;**39**: 8122–34.
- Yang F, Yang J, Zhang X *et al*. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. *Nucleic Acids Res* 2005;**33**:6445–58.
- Zagaglia C, Casalino M, Colonna B *et al*. Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. *Infect Immun* 1991;**59**:792–9.