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Abstract

Dried blood spots (DBS) are biological samples commonly collected from newborns and in geographic areas distanced from labora-
tory settings for the purposes of disease testing and identification. MicroRNAs (miRNAs)—small non-coding RNAs that regulate gene
activity at the post-transcriptional level—are emerging as critical markers and mediators of disease, including cancer, infectious dis-
eases, and mental disorders. This protocol describes optimized procedural steps for utilizing DBS as a reliable source of biological
material for obtaining peripheral miRNA expression profiles. We outline key practices, such as the method of DBS rehydration that
maximizes RNA extraction yield, and the use of degenerate oligonucleotide adapters to mitigate ligase-dependent biases that are as-
sociated with small RNA sequencing. The standardization of miRNA readout from DBS offers numerous benefits: cost-effectiveness
in sample collection and processing, enhanced reliability and consistency of miRNA profiling, and minimal invasiveness that facili-
tates repeated testing and retention of participants. The use of DBS-based miRNA sequencing is a promising method to investigate
disease mechanisms and to advance personalized medicine.
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Introduction
The strengths of using dried blood spot samples
for disease identification
Reliable measurement of molecules is a cornerstone of biological
methods aimed at identifying candidate biomarkers with clinical
applicability. Blood samples serve as a primary biospecimen in
identifying molecular biomarkers of disease [1]. The protocol pre-
sented here addresses the need for a streamlined, cost-effective,
and minimally burdensome approach for collecting, processing,
and measuring molecular markers in serological samples.

Dried blood spots (DBS) are routinely used in newborn screen-
ing (e.g. heel prick in infants) and in adults (e.g. finger prick for
diabetes monitoring) to identify genetic and metabolic diseases
(for more information, see [2, 3]). This globally accepted practice
has high analytical sensitivity and specificity—i.e. correctly
detecting individuals with a disease and verifying negative result
in healthy persons [4]. Although DBS are collected for a singular
purpose where sampled blood is used up for immediate analysis,
in some instances, residual samples are preserved for secondary

use [5]. The application of DBS-based samples in biomolecular

marker studies spans diverse fields, from monitoring environ-

mental health and infectious diseases [6, 7] to cancer detection

and therapeutic evaluation [8–10]. The minimally invasive nature

of DBS sampling facilitates frequent sample collection across a

wide range of demographic groups and conditions, offering sub-

stantial advantages in disease risk assessment, diagnostics, and

monitoring [6, 11].
DBS collection presents a viable alternative to venipuncture. It

requires minimal training, does not necessitate a laboratory set-

ting or infrastructure, and is well-suited for individuals sensitive

to pain. Molecular profiles obtained via DBS are highly correlated

with those obtained from whole blood or plasma samples [12, 13],

indicating a broad representation of biological activity. Moreover,

this method enhances participant retention and promotes effi-

cient disease monitoring in longitudinal assessments. The analyt-

ical reliability of archived DBS samples for up to 20years [14–17]

provides an invaluable opportunity to serve as a snapshot of the

past for epidemiological and longitudinal biomarker studies.
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Other biosampling techniques, such as liquid whole blood or
plasma, demand professional handling in the pre-analytical
stage [13, 18, 19], along with a stabilizing agent (e.g. preservation
tubes as PAXgene and EDTA) for long-term storage, prompt cen-
trifugation [20], and significantly larger freezer and transport
accommodations than are required for paper cards [21].
Therefore, the collection of DBS specimens can also prevent po-
tential pre-analytical errors. In Canada and the USA, DBS is clas-
sified as a non-regulated and exempt material, allowing easy
shipping in an envelope [22], and providing access to residual
samples from clinical testing for research purposes. It is advis-
able, however, for researchers to consult the regional and
country-specific regulations. Special attention does need to be
paid to the size of DBS punches, shipping time, and exposure to
high temperature or humidity [23, 24]. Although DBS specimens
do not require freezing, opting for temperatures below −20�C
maximizes the reliability of gene expression measurements [25].

DBS can provide a valuable insight into both intra- and extra-
cellular components of blood [13]. The matrix of the filter paper
binds a variety of biomolecules including cells, protein, antibod-
ies, antigens, DNA, RNA, and various other forms of nucleic acids
[26]. As such, DBS is a useful tool for researchers studying com-
plex conditions that affect systemic functions, intracellular
markers, microenvironments, or candidate molecules that have
organ- and/or cell-specific expression.

MicroRNAs as regulators of gene expression in
response to environmental factors
Changes in gene expression can be used as an indicator of the on-
going interplay between environmental factors and biological
function at a given time. MicroRNAs (miRNAs) have garnered
considerable attention for their role as molecular markers of pa-
thology risk [27–30] and as potential therapeutic agents [31, 32]
due to their ability to regulate gene expression on a broad scale.
The functional implications of miRNAs range from fine-tuning
local intracellular gene activity to modulating entire networks of
signaling pathways.

MiRNAs, released from their cell of origin in response to spe-
cific signals, are abundant in body tissues and biofluids, and
serve as signaling molecules across different cells and organs
[33]. Their expression levels can be assessed in peripheral fluids,
such as whole blood and saliva, and can be used as a proxy
for their expression levels in specific tissues, including the brain
[34–36]. MiRNAs are present in cell-free body fluids (e.g. cerebro-
spinal fluid or plasma), shielded by RNA-binding proteins, or en-
capsulated within extracellular vesicles [37]. MiRNAs are highly
stable and readily detectable in peripheral fluids, making them a
valuable asset for potential use as therapeutic agents, with the
capacity to reach the brain [21, 38, 39].

MiRNAs’ robust resistance to degradation under conditions
that would break down most RNAs and widespread influence
over the post-transcriptional landscape makes them ideal candi-
dates for biomarker studies across developmental, aging, and
disease-related pathways [40, 41]. Researchers have begun to ap-
preciate the stability of the miRNome, as studies have found
miRNA levels in DBS samples on par with those in liquid blood [9,
12]. As miRNA processing and degradation are tightly orches-
trated [42–44], temporal snapshots of circulating miRNAs can re-
veal dynamic shifts in cellular processes, thus serving as a
chronicle of biological events or interventions. The robust mea-
surement and recovery of miRNAs in DBS samples paves the way
for the study of various topics, including fetal programming of
metabolic diseases [45] and individual fitness scores [46].

Harnessing the power and advancements of
small RNA next-generation sequencing
DBS biospecimens have been analyzed with Real-Time
Quantitative Reverse Transcription Polymerase Chain Reaction
(RT-qPCR) [47], microarray [48], genotyping [49], genome-wide
analysis [50, 51], and next-generation sequencing (NGS) [52].
Methods such as RT-qPCR require controls, have limited
throughput, and can be sensitive to user practices and reaction
efficiency. In contrast, NGS offers a species-independent method,
eliminating reliance on endogenous controls, enabling re-analysis
with updated human genome templates, and revealing miRNA
variants. NGS surpasses microarray technology by demonstrating
superior intra-sample and inter-lab gene expression replicability
[53], and overcoming several limitations, such as reliance on pre-
designed mature miRNAs detection probes, background noise
(cross-hybridization), lack of isoform or anti-sense transcript iden-
tification, and limited sensitivity for low-abundance transcripts
[54–56].

To prepare samples for sequencing and create a sequencing-
ready library from short miRNA molecules, adaptors are ligated
to the ends of the miRNAs. These adaptors serve the dual pur-
pose of adding primer-binding sites for reverse transcription and
enabling subsequent amplification steps. The protocol we outline
here addresses a common limitation of most miRNA sequencing
studies: the sequence bias from preferential adapter binding af-
finity at the 50 and 30 ends of the input sequences [57–60]. This
bias can be mitigated by introducing modified forms of RNA
ligases (T4 RNA ligase), random bases on adapter ends and opti-
mizing polyethylene glycol (PEG) concentrations [60–63]. While
various approaches are being explored, employing random bases
(also known as degenerate bases) at the ligation boundary has
emerged as an effective strategy to overcome ligation-based
biases [64–68]. MiRNAs have been observed to preferentially and
more efficiently ligate to sequences that enable structural inter-
actions [65, 69–71]. The incorporation of random bases accom-
modates natural sequence variation in miRNAs, reducing the
likelihood of self-ligation and facilitating the capture of miRNA
diversity. For in-house library preparation, we took the approach
of Extracellular RNA Communication Consortium initiative [72]
and the Galas et al. protocol (Galas Lab 4N RNA library prepara-
tion protocol A—Version 1.0—Pacific Northwest Research
Institute, Seattle University, USA) [62, 73], documented to have
high reproducibility across labs, to capture sequence diversity,
and to consistently deliver reliable results—even in situations of
low RNA input, including in extracellular-vesicle derived miRNA
samples [74].

Preserving RNA quality (e.g. messenger RNA) in DBS is a
shared challenge with postmortem tissue studies, given potential
varying degradation rates among samples [75] and volume di-
minishment in unstable temperature conditions. However, the
association between RNA integrity number (RIN) values, indicat-
ing the degradation of full-length RNA, and small RNAs is virtu-
ally nonexistent [76]. Our protocol confronts the issue of low RNA
input by adopting a modified approach that quantifies RNA with
linear fluorescence detection (Table 1) for successful library
preparation and NGS analysis of miRNAs.

By refining and amalgamating different protocols, here we de-
scribe a highly selective sequencing approach for miRNA detec-
tion, incorporating advancements in DBS RNA extraction and
library preparation techniques suitable for low-input miRNA
samples. The extraction (Table 2) and library construction proce-
dures we outline minimize noise, maximize efficient use of
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sequencing resources (Figs 1 and 2), and select for small non-
coding RNAs—predominantly composed of miRNAs (Fig. 3).
Given the dramatic decrease in NGS costs [77], our approach
allows for the assessment of detailed global miRNome profiling
at an affordable cost. In addition, freely accessible and user-
friendly institutional/web services for small noncoding RNA se-
quencing analysis are now available to aid in standardizing data
processing and analysis, including miRMaster2 [78]; sRNAPipe via
Galaxy [79], Genboree [80], and miRDeep2 [81]. The analysis in
the protocol, we detail below was guided by the exceRpt pipeline
on Genboree server, designed to identify different types of small
RNAs (http://genboree.org/java-bin/workbench.jsp).

Our method of sequencing miRNA in DBS provides a straight-
forward yet robust approach for comprehensive molecular profil-
ing, suitable for hypothesis-driven and exploratory research
alike. DBS biosampling circumvents technical challenges in

sample processing and storage, enabling the capture of represen-
tative miRNA profiles in blood that facilitates comprehensive (e.
g. repeated assessments within an individual) and large-scale (e.
g. population-level) testing. Since only a single punch of each
DBS sample is needed for the miRNA sequencing, the rest of the
paper card can be preserved for additional analysis, such as ge-
nomic, proteomic, or metabolic profiling, in the same subject.

Specific considerations for implementing DBS
MiRNA sequencing protocol
The procedure is structured into the following sections: (i) sam-
ple collection and storage; (ii) sample preparation and RNA ex-
traction; (iii) RNA quantification; (iv) library preparation; and (v)
RNA sequencing and analysis.

The critical elements of the first section involve collecting
blood without smearing, maintaining storage at −20�C or lower,
and ensuring controlled humidity conditions. The blood volume
procured from finger-pricks relates to lancet penetration depth,
with recommended length not exceeding 2.4mm for individuals
8 years of age and older (for detailed guidelines, refer to WHO
Guidelines on Drawing Blood [82]). In the literature, there is vari-
ability in the DBS punched disk diameter (ranging from 3 to
9mm) and the number of spots used in downstream analysis.
Based on adequate spot sizes observed in adolescent and young
adult participants [83], we opted for a single punch of a
6-mm diameter.

We conducted a comparative analysis of several RNA extrac-
tion protocol modifications, based on different approaches de-
scribed in the literature, and using three DBS samples. As shown
in Table 2, we tested: (i) addition of RLT buffer (proprietary name
for a lysis buffer in the RNeasy kit) during DBS incubation and ag-
itation [84]; (ii) an adaptation of miRNeasy kit with QIAzol added
prior to DBS incubation and agitation, followed by sonication,
and subsequent addition of chloroform [85]; (iii) incubation with
RLT with b-mercaptoethanol [86]; (iv) incubation with Tris–EDTA
(TE) buffer [45]; and (v) overnight incubation with QIAzol [9]. The
highest concentrations were observed consistently with the
QIAzol agitation and sonication approach, which we adopted in
this protocol.

Our protocol approach relies on purifying the miRNA enriched
fraction (<200 nucleotides) to remove genomic DNA and large
RNAs (this fraction can also be retained). MiRNA enriched sam-
ples compared with total RNA fractions within the same subjects
show higher diversity in profiled reads (Table 3). Although the
sorting of small RNAs is desired, it poses a challenge for the RIN,
which relies on ribosomal RNA; thus, making conventional meas-
ures such as Nanodrop unsuitable for accurately estimating the
input material (Table 1). We used an adaptation of the Quant-iT
RiboGreen RNA Assay kit, allowing us to estimate RNA on the pi-
cogram scale (Table 2). As an alternative to the RiboGreen assay,
it is possible to assess RNA quantity, quality, and the presence of
small RNAs with Bioanalyzer (Agilent Technologies), although we
should note that the accuracy of the Bioanalyzer for measuring
low quantities can be limited, and intercalating dyes, such as
RiboGreen, may enhance the reliability and consistency of
the results.

Our recommended small RNA and complementary DNA
(cDNA) library preparation mitigates the potential biases related
to ligase binding and sequence-specific predilection. The cost of
reagents is lower compared with commercial options. The lim-
ited number of Illumina indices possible in one pool of samples
per lane can be overcome with a custom design of the barcodes.

Table 1. The specifications for Nanodrop indicate a range of
detection between 2 and 12000ng/ml, which is not a suitable
quantification method for DBS RNA.

Nanodrop RiboGreen

Sample ID ng/ml 260/280 pg

T43 −1.71 0.71 0.77
E164 −1.65 0.75 0.40
G1 1.7 2.23 0.95
G2 29.2 1.46 2.577864
G3 14.1 1.45 1.498758
G4 11.3 1.45 0.415353
S1 0.9 2.12 0.00072
S2 2.3 2.04 1.21
T1 37.9 1.45 4.690695
T2 0.9 10.32 2.36
T3 17.4 1.47 2.10065
T4 10.2 1.5 1.050205
M1 2.4 3.1 0.82
M2 16.8 1.37 1.118038
M3 1.6 4.55 0.71
M4 11.5 1.51 0.864861
M5 8.5 1.49 0.14068

Fluorescence-based quantification methods, such as the modified method
described in this protocol with Quant-iT RiboGreen kit are significantly
more sensitive.

Table 2. We tested five modification of RNA extraction protocols
to select the procedure that yields the highest concentration of
total RNA.

Method Sample ID pg/ml

RLT lysis buffer G 0.95
S 0.001
M 0.82

QIAzol/
Phenol based

G 23.13
T 16.43
M 12.28

RLT bufferþb-mercaptoethanol S 1.21
T 2.36
M 0.71

Tris–EDTA Buffer G 16.58
T 15.40
M 10.64

Overnight with QIAzol G 7.97
T 6.83
M 5.64

Note: Incubating the DBS with QIAzol, followed by sonification and addition of
chloroform, as per the miRNeasy protocol, shows consistently high
concentrations.
Highlighted in bold are the RNA concentration values for three samples
measured with the phenol based method, showing the highest yield.

miRNA sequencing in DBSs | 3
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Figure 1. Example concentration peaks of a single DBS sample measured with TapeStation across the library preparation steps: (A) after PCR#1,
(B) after gel purification with BluePippin, and (C) after PCR#2. The final library amplification step (note the change from picograms to nanograms) plays
a crucial role in enhancing the representation of small RNAmolecules, ensuring their adequate abundance for downstream sequencing analysis.
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This protocol accommodates low sample input preferences,

obviates the need for high quality RIN values or internal controls,

and incorporates a library preparation that substantially mini-

mizes binding biases. To our knowledge, some limitations re-

main, including potential preferential PCR amplification of

shorter fragments in samples with low RNA input, and the

under-amplification of miRNAs possessing complex second-

ary structures.

Reagents and equipment
Materials
Sample collection and storage

• Mini contact-activated lancets (BD 366594 Microtainer, BD

Biosciences)
• 3mm filter paper cards (Whatman #903, GE Healthcare)
• Double-lock Ziplock bags
• Desiccant packs
• Humidity indicator card—30%, 40%, 50% (e.g. ULINE S-1547)
• Alcohol pads (70%)
• Band-aids and gauze

Sample preparation

• Single hole punching pliers with a 6-mm diameter

punch head
• Particle-free and gentle wiping material—e.g. Kimwipes (e.g.

Fisher scientific Cat. No. 06-666)
• RNAase free, labeled Eppendorf tubes 1.5–2ml (e.g. Invitrogen

Fisher scientific Cat. No. AM12425)

• Holder for Eppendorf tubes
• Forceps
• RNaseZap (e.g. Fisher scientific Cat. No. AM9780),

diethylpyrocarbonate-treated water (DEPC H2O) for cleaning
• PCR tubes 0.2ml 8-tube strips (Eppendorf Cat. No. 0030124286)
• Dry ice

Sample RNA quantification

• Microplate with optical transparency, such as the Greiner

Bio-One FLUOTRAC 96-well non-treated microplates (Fisher

scientific Cat. No. 07000721 or equivalent)
• Pipet-Lite Multi Pipette L8-200XLSþ (Rainin, Cat. No. 17013805)

Absolute quantification of libraries

• PCR tubes 0.2ml 8-tube strips (Eppendorf Cat.

no. 0030124286)
• 96-well PCR plate, e.g. Eppendorf, Cat. No. 30129504
• Adhesive PCR Plate Seal, e.g. Bio-Rad, Cat. No. MSB1001

Reagents
RNA extraction

• miRNeasy Micro kit (Qiagen, Cat. No. 217084)
• Ethanol 100% (Sigma, Cat. No. 459836-500ML)
• RNase-free chloroform

Sample RNA quantification

• Quant-iT RiboGreen RNA Reagent and Kit (Invitrogen Cat.

No. R11490)

Figure 1. Continued.

miRNA sequencing in DBSs | 5



Figure 2. Comparison of AMPure beads purification versus reconditioning PCR to eliminate the PCR “bubble” products, of a library diluted to 2ng/ml.
(A) The sample (size 159bp) concentration 415pg/ml and bubble product (size 363bp) at 95.5pg/ml after a single and (B) a second round of purification
with AMPure beads, with final sample (size 157bp) concentration of 375pg/ml and bubble product (362bp) 86.9pg/ml. The beads purification slightly
reduced the size of the PCR bubble at a cost of losing sample concentration, and a repeated purification did not improve the sample to bubble ratio. An
alternative method is to expose the library to a single cycle of PCR#2 (C) which substantially reduces the large PCR bubble product (size 288bp 85.1pg/ml)
without losing the sample (size 122bp 1.63ng/ml).
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Library preparation
Oligonucleotide sequences (e.g. custom order from Integrated

DNA Technologies (IDT))

• 50-adapter (desalted)—50-rGrUrUrCrArGrArGrUrUrCrUrArCr
ArGrUrCrCrGrArCrGrArUrCr(N : 25252525)r(N)r(N)r(N)

• 30-adapter (HPLC purification)—50/5rApp/(N: 25252525)(N)(N)
(N)TGGAATTCTCGGGTGCCAAGG/3ddC/

• RT primer (desalted)—50-GCCTTGGCACCCGAGAATTCCA
• RP1 PCR primer (HPLC Purification)—same as Illumina RP1
PCR primer

• Indexed Illumina PCR primers, e.g. RPI1–RPI48 (HPLC
Purification)

• Universal PCR primer F (desalted)—50-AATGATACGGC
GACCACCGAG

Figure 2. Continued

Figure 3. Reads by biotype reveal substantially greater proportion of
miRNAs across all samples (either enriched for small RNA during
extraction versus total RNA). Figure obtained from ExceRpt
pipeline results.

Table 3. Biased representation of a single miRNA in total
RNA extraction.

miR-enriched extraction Total RNA extraction

miRNA ID Sample 1 Sample 2 Sample 1 Sample 2

miR-451a 24.34% 10.98% 52.61% 44.46%
miR-486-5p 13.19% 27.47% 3.99% 8.54%
miR-92a-3p 8.62% 12.46% 3.25% 4.17%
let-7a-5p 5.37% 4.15% 3.44% 3.41%
hsa-miR-16-5p 3.28% 2.48% 3.01% 3.40%

Notes: Shown top five miRNAs, with each value indicating percent of
expression out of all mapped miRNA reads. miRNA enriched extraction shows
higher diversity of reads profiled.

miRNA sequencing in DBSs | 7



• Universal PCR primer R (desalted)—50-CAAGCAGAAGACGGC
ATACGA

Reagents for 30-ligation

• T4 RNA ligase 2 truncated KQ (NEB M0373)
• 10� T4 RNA ligase reaction buffer (included with T4
RNA ligase)

• 50% PEG 8000 (included with T4 RNA ligase)
• RNAseOut RNAse inhibitor (Invitrogen 10777-019)
• Strip tubes (Axygen PCR-0208-CP-C or equivalent)

Reagents for adapter depletion

• Escherichia coli single-stranded DNA binding protein (SSB)
(Promega M3011)

• 50 deadenylase (NEB M0331)
• RecJf (NEB M0264)

Reagents for 50-ligation

• 10mM ATP (NEB P0756)
• T4 RNA ligase 1 (NEB M0204)

Reagents for reverse transcription

• Strip tubes (Axygen PCR-0208-CP-C or equivalent)
• Superscript III (Invitrogen 18080-044)
• 5� First strand buffer (included with Superscript III)
• 0.1M dithiothreitol (DTT) (included with Superscript III)
• 25mM deoxynucleotide triphosphates (dNTP) mix (Thermo
Scientific R1121)

• RNAseOut RNAse inhibitor (Invitrogen 10777-019)

Reagents for PCR amplification #1

• NEBNext Ultra II Q5 PCR master mix (NEB M0544) or other
high fidelity PCR master mix

• DNA clean and concentrator—5 columns (Zymo D4004)

Reagents for gel purification

• 3% agarose cassettes for BluePippin system (Sage
Science BDF3010)

Reagents for PCR amplification #2

• KAPA 2� real-time PCR master mix (KAPA KK2701) or other
high fidelity PCR master mix

• DNA Clean and Concentrator 5 columns (Zymo D4004)

Reagents for library validation

• TapeStation high sensitivity D1000 sample buffer (Agilent,
Cat. No. 5067-5603)

• TapeStation high sensitivity D1000 ScreenTape (Agilent, Cat.
No. 5067-5584)

Absolute quantification of libraries

• KAPA SYBR FAST qPCR Master Mix (Roche KK4600)
• PhiX Control v3 (Illumina FC-110-3001)
• Illumina P5 primer (IDT custom: 250nmole DNA Oligo
50-AATGATACGGCGACCACCGA)

• Illumina P7 primer (IDT custom: 250nmole DNA Oligo
50-CAAGCAGAAGACGGCATACGA)

Equipment
Sample storage

• Freezer (−20�C short term, −80�C long term)

RNA extraction

• Sonicator
• Agitator with regulated temperature setting
• Centrifuge

Sample RNA quantification

• A fluorescence plate reader, e.g. Tecan Spark

Library preparation

• Vacuum concentrator, e.g. Savant SpeedVac Concentrator
(Thermo Fisher Scientific)

• Thermocycler
• TapeStation system 2200 (Agilent) or equivalent equipment
• BluePippin System (BLU0001; required for BluePippin gel cas-
settes for the automatic size selection step)

• qPCR machine, e.g. QuantStudioTM 6 Flex System

Absolute quantification of libraries

• qPCR machine, e.g. QuantStudioTM 6 Flex System

Procedure
Sample collection and storage

1. Request that the participant warm their non-dominant
hand under comfortably hot water for 2min.

2. Label the collection paper card (Whatman).
3. Dry participant’s hands with paper towel and immediately

clean the middle/ring finger of the non-dominant hand
with isopropyl alcohol wipes. Allow the finger to air dry
for 30 s.

4. Use the lancet (BD Microtainer) to prick the side of the se-
lected finger, avoiding the fingerpad.

5. Gently apply pressure to the sides of the finger to increase
blood flow and formation of a blood droplet. If necessary,
ask participant to stand and relax their arm while you mas-
sage their hand to further stimulate blood flow.

6. Capture the initial blood drop with a gauze pad and dispose
of it in a biohazard bag.

7. Position the participant’s hand above the paper card, if
necessary, applying gentle pressure, to produce another
drop of blood. Touch the blood droplet with the filter paper,
absorbing the blood without the paper contacting the skin.
IMPORTANT: Refrain from smearing the blood onto the col-
lection paper. Avoid placing additional blood on a previ-
ously spotted area, even if the initial spot appears small.
Overlaying blood drops can concentrate the sample and
compromise the uniform diffusion properties of the paper.

8. Saturate each circle indicated on the paper card with a
drop of blood (one drop per circle).

9. If necessary, repeat for all circles using the same fin-
ger prick.

10. Apply a bandage to the pricked finger.
11. Record the sample collection time and any additional notes

on the data collection form.
12. Store the labeled card in a temporary storage box made of

non-absorbent material. This box will protect the cards
against direct sunlight and heat. Allow the card to dry fully
at room temperature under low humidity conditions for a
minimum of 3h, or leave it overnight, maintaining consis-
tent drying times across all samples. Do not stack the cards
during storage.
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13. Once dry, the card should be placed in a resealable plastic
bag with a desiccant sachet. Store the bag at a consistent
temperature of −20�C or colder.

Sample preparation (spot punching)

14. Note that the size of punched circle should be consistent
across samples, thus it is crucial to use the same hole-
puncher for all specimens. We suggest punchers that pro-
duce a 6-mm diameter spot and one spot per tube for
downstream processing. It is essential to clean the punch-
ing pliers between each sample with ethanol and to allow
them to dry thoroughly.

15. Maintain a clean working environment by disinfecting the
counter with RNAaseZap (Thermo Fisher) þ DEPC H2O. If
the samples were stored at freezing temperatures, place a
few Ziplock bags containing samples (�2 to begin with,
progress to 4, max 6 at a time) atop dry ice—CAUTION: use
proper ventilation and take care to avoid freeze burns.

16. Sterilize the forceps that will handle the paper cards and
hole-puncher tool with ethanol, ensuring they are fully dry
before use. Label the tubes with the sample ID on both the
top and the side.

17. When picking up the samples, use caution that no dry-ice
precipitation forms on the Ziplock bag, so it doesn’t get in-
side or onto the card. If necessary, wipe the Ziplock bag
with a Kimwipe before opening. Grab the sample card by
the edge with forceps. Place the puncher over the DBS,
while holding the Eppendorf tube (Invitrogen) with another
hand—CAUTION to punch the center of the DBS—1 punch
per sample per 2ml tube, not the edge.

18. After the punching process, place the card back with care,
slowly sealing the Ziplock bag while gently pressing out
any excess of air—to avoid the possibility of condensation
from temperature fluctuations. Immediately transfer the
bag to a container with dry ice. Close the tube and place on
dry ice.

19. Clean the hole-puncher and the forceps (if used) with etha-
nol pads and wipe them dry with Kimwipes (Fisher
Scientific) after each sample.

20. Repeat this process for the remaining samples.

RNA extraction
Note: Due to inconsistency in the literature in regard to RNA ex-
traction procedure, we tested several modifications, including [9,
84–86] (Table 2). The optimized protocol that yields the highest
RNA concentration and miRNA proportion (Table 2; Fig. 3) is
detailed below.

21. Place the 2ml tube with DBS on dry-ice until the addition of
1ml of QIAzol lysis reagent (included in miRNeasy
kit; Qiagen).

22. Agitate the tubes at 450 rpm for 15min at 37�C.
23. Place the tubes in Sonicator at room temperature (15–25�C)

for 15min.
24. Agitate the tubes once again, 450 rpm for 15min at 37�C.
25. Add 250 ll of chloroform and vortex the tube prior to incu-

bation at room temperature for 5min.
26. Centrifuge the tube at 12 000 � g for 15min.
27. Remove the tube carefully from the centrifuge, ensuring the

integrity of the different phases within the tube is main-
tained. Pipette only the upper aqueous phase and transfer
to a new 2ml tube. If carryover occurs, repeat from step 26,
centrifuging for at least 5min.

28. Add 100% 800 lL of ethanol and mix.

Purify the homogenate for miRNA-enriched fractions, follow-
ing Appendix A of the manufacturer’s miRNeasy hand-
book (Qiagen):

29. Pipet the sample into RNeasy MinElute spin column within
a 2-ml collection tube. Gently close the tube, centrifuge at
12 000 � g for 30 s at room temperature. Pipet the flow-
through with the miRNA fraction into a new 2-ml tube.
Discard the RNeasy MinElute spin column.

30. Add 500ll of 100% ethanol (�0.65 volumes) to the flow-
through and vortex to mix thoroughly.

31. Pipet 700 ll of the sample into a new RNeasy
MinElute spin column placed in a 2-ml collection tube.
Centrifuge for 30 s at �8000 � g at room temperature.
Discard the flow-through. Repeat until entire volume of the
sample has been processed.

32. Add 700 ll of Buffer RWT to the spin column, close the lid,
and centrifuge for 30 s at �8000 � g at room temperature.
Discard the flow-through.

33. Add 500ll of Buffer RPE to the spin column, close the lid,
and centrifuge for 30 s at �8000 � g at room temperature.
Discard the flow-through.

34. Add 500 ll of 80% ethanol to the spin column, close the lid,
and centrifuge for 2min at �8000 � g at room temperature.
Place the spin column into a new 2ml collection tube, dis-
carding the one with the flow-through to avoid etha-
nol carryover.

35. Centrifuge the spin column in the collection tube with open
lid for 5min at �8000 � g at room temperature, positioning
the caps into an empty preceding space of the rotor to mini-
mize the risk of caps being torn off.

36. Elute the extracted RNA with 20 ll of RNase-free water into
a 1.5-ml collection tube, centrifuging for 1min at �8000 � g
at room temperature.
If not proceeding to sample quantification immediately, se-
cure the labeled tube and keep in −80�C for long-
term storage.

Sample quantification
Note: Nanodrop can be used for RNA quantification on these
samples, however the 260/280 ratios are likely to be inadequate
or abnormal due to enrichment of shorter RNA fragments and
low concentrations in the majority of samples (Table 1). To this
end, we modified the RiboGreen protocol (Invitrogen) which iden-
tifies RNA on a scale ranging from 1ng to 100pg.

37. Prepare 2 lg/ml RNA standard and 200-fold dilution of
RiboGreen (10 ll per standard) with the final concentrations
being 1ng/ll, 500 pg/ll, 250 pg/ll, 100 pg/ll, and blank (1�
TE buffer only), with total volumes of 20 ll per well, as such:

1�
TE (ml)

2 mg/ml
RNA standard

200-Fold
Dilution RiboGreen

Final RNA
concentration

ng/ll

0 10 10 1ng/ll
5 5 10 500pg/ll
7.5 2.5 10 250pg/ll
9 1 10 100pg/ll
10 0 10 Blank
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38. Mix 1 ll of each stock RNA (sample) with 9 ll TE buffer in
separate tubes.

39. To a microplate with optical transparency, pipette the RNA
standard ladder in duplicates (10ll per well) and the diluted
samples, keeping track of the sample-well placement.

40. Top up the sample wells with the 10ll of the RiboGreen di-
lution, gently pipette the solution up and down, and incu-
bate the plate at room temp for 5min covered with foil.

41. Using a fluorescence plate reader machine (e.g. Tecan
Spark), select the appropriate choice for the plate setting,
with shaking for 5 s, fluorescence intensity: excitation 480,
emission 520.

42. Perform the calculations of the concentrations. The average
blank value will be subtracted from all the averaged RNA
standard values and the samples, and these sample values
multiplied � 10 to return ng/ll concentrations.

Library preparation and pooling
Note: We adopted the Galas protocol “Library Preparation for
small RNA sequencing using 4N adapters” to prepare the sam-
ples for sequencing, incorporating minor modifications:

43. Bring the samples to equal concentrations as per calcula-
tions from step 42.

44. Halve the stated concentrations of the adapters, RT primer,
dNTP mix, and Universal primer cocktail compared with the
indicated concentration (due to low RNA input and suffi-
cient efficiency). Illumina forward primer and RPI1 through
48 reverse index primers can be used at 10mM con-
centrations.

45. Add 3 ll of 50% PEG 8000 (included as such with T4 RNA li-
gase; NEB) to each strip tube per sample, slowly pipetting
the volume of the viscous solution, which can be dehy-
drated in a vacuum centrifuge/concentrator (set for 37�C, 1–
2h) to create a highly concentrated pellet.

46. For 30 ligation, in each tube with the PEG pellet, mix 7 ll of
stock RNA with 1 ll adenylated 30 adapter.
Heat the tube to 70�C for 2min in a thermocycler, then snap
cool on ice.
To each tube of denatured RNA and adapter add:

1 ll of 10� T4 RNA ligase reaction buffer

1 ll RNAseOut RNAse inhibitor

1 ll T4 RNA ligase 2 truncated KQ

Incubate at 25�C in a thermocycler for 2h.
Add 1 lg E. coli SSB (diluted in 1� ligase buffer; Promega) and
incubate at 25�C for 10min.
Add 1 ll 50-deadenylase (NEB) and incubate at 30�C for 1h.
Add 1 ll of RecJf (NEB) and incubate at 37�C for 1h.

47. In separate tubes, add 1 ll of 50 adapter (25 lM) per ligation
and denature at 70�C for 2min, then snap cool on ice.
Per tube of denatured 50-adapter, add:

1 ll 10mM ATP (NEB).

1 ll T4 RNA ligase 1 (NEB).

Add the 3 ll mix (50-adapter, ATP, and ligase) to the com-
pleted 30-ligation from step 46. The total volume will make
up 18ll, pipette up and down to mix.
Incubate in a thermocycler at 25�C for 1h.

48. To begin the reverse transcription, to a new strip tube per
sample add 1 ll of RT primer (5lM) and 6 ll of the ligated
RNA, from step 47. Leftover RNA to be stored at −70�C
or below.

Incubate at 70�C for 2min, then snap cool on ice.
Create a master mix of:

1 ll Superscript III (Invitrogen)

2 ll 5� First strand buffer (included with Superscript III)

0.5 ll 12.5 mM dNTP mix (included with Superscript III)

1 ll DTT (included with Superscript III)

1 ll RNAseOut (Invitrogen)

5.5 ll Total

Add the 5.5ll of the master mix to each tube of the 7 ll de-
natured RNA and primer.
Incubate at 55�C for 1h, then at 70�C for 15min.

49. For the first PCR amplification, create a master mix of:

25 ll PCR master mix (NEBNext Ultra II Q5 or equivalent)

2 ll Illumina RP1

8 ll RNAse free water

35 ll Total

Add to the tubes with cDNA from step 48.
Add 2 ll Illumina index primer (RPI 1–48, up to 48 samples
to be indexed and potentially pooled; important to keep
track of index–sample combination) .
Amplify for 10 cycles:

50. Purify and concentrate the PCR product with DNA Clean
and Concentrator columns (Zymo) to elute to the final vol-
ume of 11 ll. As per the Zymo DNA Clean & Concentrator—
5 kit instructions, up to 5 lg of total DNA per column into as
little as 6 ll can be processed by performing the steps below:

If using a new kit, ensure to add the indicated amount of

100% ethanol to the DNA Wash Buffer (e.g. for 25ml DNA

Wash Buffer, add 96ml 100% ethanol).

a) In a 1.5-ml microcentrifuge tube, add five times the volume
of DNA binding buffer to each volume of DNA sample.
Based on the rounded volume of the PCR product from step
49 add 250 ll. Mix briefly by vortexing.

b) Transfer the mixture to a provided Zymo-Spin Column in a
Collection Tube.

c) Centrifuge for 30 s. Discard the flow-through.
d) Add 200 ml DNA Wash Buffer to the column, then centri-

fuge for 30 s. Repeat this wash step.
e) Add 11ml DNA Elution Buffer (10mM Tris–HCl, pH 8.5,

0.1mM EDTA) or water (pH> 6) directly to the columnmatrix
(not the walls of the column) and incubate at room tempera-
ture for 1min. Transfer the column to a 1.5-ml microcentri-
fuge tube and centrifuge for 30s to elute the DNA.

51. Quantify the PCR product with TapeStation (Agilent)
HighSensitivity D1000 tapes (detection range 35–1000bp)
with 2 ll of the DNA sample and 2 ll of the HS D1000
Sample Buffer. Cap firmly and vortex thoroughly for at least
1min. Spin down prior to loading the tube strip into the
TapeStation machine.

52. Using BluePippin (Sage Science) for the single gel purifica-
tion step, with a target of 138 bp size (Fig. 1), using the entire

98�C 30 s 1�
98�C 10 s

10�60�C 30 s
65�C 35 s

65�C 2min 1�
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volume of the samples collected from step 50 (�9 ll) bring
the volume up to 30ll with 1� TE as per the manufacturer’s
protocol, then add 10ll (room temp) of the supplied
marker/internal standard mix.

At the end of the run collect the samples from the elution well.

53. Purify and concentrate the eluted sample as in step 50.
54. Quantify the purified samples with the TapeStation system.
55. For the second PCR amplification, create the following mas-

ter mix:
25ll KAPA 2� real-time master mix (KAPA)
2.5ll Universal primer cocktail (10lM of each, forward and
reverse primers)
27.5ll Total

Bring up the cDNA volume to 22.5 ll with nuclease-free wa-

ter, and add master mix.

56. Run for six cycles, which creates sufficient amplification
and minimizes “bubble” product from being created (see
Troubleshooting section for more details; Fig. 2)

57. Purify and concentrate the PCR product with DNA Clean

and Concentrator columns, as in step 50. Elute to 20 ll.
58. Quantify the PCR product with the TapeStation

HighSensitivity D1000 tapes (quantitative range 10pg/ll–

1ng) with 2 ll of sample or with 1 ll of sample D100

ScreenTape (quantitative range 0.1ng/ll–50ng/ll).

Singular peaks with size (bp) ranging from 140 to 160 are

expected and the second gel purification is not

needed (Fig. 2).

To achieve precise absolute quantification of libraries and

to ensure an accurate pooling of samples, we recommend

performing a qPCR test. The pooling process should take

into consideration variations in samples, including balanc-

ing factors such as sex, age, and condition in each group.

Here, we utilized PhiX as the control template/DNA

Standard. PhiX, an adapter-ligated library, is commonly

used as a control in Illumina sequencing runs. It is particu-

larly useful for ensuring the quality of sequences in runs in-

volving libraries with low diversity.
59. Dilute libraries with either TE buffer (Tris and EDTA) or dis-

tilled water, based on molarity estimated with TapeStation

(e.g. range between 1 and 10ng or 1 and 10nM), so the di-

luted concentrations fall within the dynamic range of the

standard curve (detailed example below).
60. Prepare a set of fresh serial dilutions of PhiX (10nM;

Illumina) in a 0.2-ml eight-tube strip, following the example

provided, with a range of 0.1–0.0015625nM:

61. Prepare sufficient reaction mix for the required number of
reactions with a total volume of 10ll, assayed in triplicate:

5 ll KAPA-2X SYBR FAST Universal qPCR Master Mix (2�)

4 ll of each library

OR 4 ll PhiX dilution

1 ll Primer premix (Illumina P5&P7 at 10 lM each)

62. Seal the plate using adhesive seal and centrifuge the plate
to 250 � g for 1min

63. Run qPCR, selecting absolute quantification option and the
following parameters:

64. Standard curve is generated based on average quantifica-

tion cycle (Cq) scores of the PhiX dilutions against their

known concentrations, removing replicate outliers, e.g. Cq

replicates >0.5 from other, or based on statistical outlier de-

tection. This curve enables estimation of sample concentra-

tions based on their Cq values, allowing determination of

the corresponding sample concentration by comparing its

Cq value to the standard curve.

Sequencing and analysis
Post-preparation, the samples can be submitted to a service com-

pany equipped with appropriate sequencing machines (e.g.

Illumina NovaSeq 6000 system). Refer to their specific sample

volume and concentration submission requirements, and ac-

count for some volume to be used for quality control. Our sug-

gested coverage per sample is 20 M reads.
For analysis, we recommend the exceRpt pipeline (Fig. 3;

Supplementary Figures 1), which can be downloaded directly

(depending on memory capacity) or accessed via Genboree por-

tal. Maintaining a record of analysis package versions is crucial

because the existing Genboree packages, such as exceRpt and

DESeq2, may not be the latest versions available. The use of the

4N adapters needs to be specified in the analysis pipeline or

manually removed via cutadapt package. We highly recommend

that the maximum allowed mismatched bases in the aligned por-

tion of the read should be set to zero (the default is 1), as miRNAs

98�C 45 s 1�
98�C 15 s

6�60�C 30 s
72�C 20 s

72�C 2min 1�

PhiX Concentration

1 0.1 nM
2 0.05nM
3 0.025nM
4 0.0125nM
5 0.00625nM
6 0.003125nM
7 0.0015625nM
Negative control 0nM

Step Temperature Duration Cycles

Initial denaturation 95�C 5min 1�
Denaturation 95�C 10 s 40�
Annealing/Extension 60�C 35 s

Melt curve analysis 65–95�C
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are short, and allowing for less stringent alignment can change

the results.

Troubleshooting

• Library preparation final PCR results in double peak: In cases

in which the sample concentrations are high to begin with

(>100ng post PCR#2), the samples are likely to show a “bubble”

product, approximately double the band of the peak concen-

tration (Fig. 2). Although this product will not interfere with se-

quencing, an efficient way to reduce or remove it is to run an

additional PCR cycle on all libraries to eliminate it. All samples

would need to undergo an additional single PCR cycle:

• Few to no sequences mapped to the genome: Using an
Illumina MiSeq machine with a 50-bp protocol, the auto-
mated exceRpt trimming of the sequences was sufficient.
However, sequencing with NovaSeq6000 S1100bp leads to the
issue of inadequate trimming and few sequences mapped to
the genome. To this end, manually removing the 4N adapters
and adjusting the sequence length (via command such as:
–cut -50 -a NNNNTGGAATTCTCGGGTGCCAAGG -o) prior to
file submission to a pipeline, as specified in the previous sec-
tion, will successfully prepare the reads for mapping
to genome.

Time taken
The following section provides estimated time frames for the dif-
ferent phases of the protocol that may vary depending on the
number of participants recruited and the equipment used:

i) Sample collection—collecting blood generally requires less
than 30min per participant, with drying times for the cards
ranging from 3h to overnight.

ii) Sample preparation and RNA extraction—ideally conducted
in batches of 12–16 (depending on the centrifuge model and
available space), DBS punching and extraction should be ex-
ecuted sequentially to minimize the freeze-thaw cycles.
Around 32 samples can be comfortably processed within
8h, if run manually/without equipment that automates
and speeds up the process.

iii) RNA quantification—a single plate, which has 96 wells for
about 86 samples would take approximately 3h.

iv) Library preparation—The stages up to reverse transcription,
including preparation, 30 ligation, and 50 ligation are
expected to take 6–8h, accommodating around 30 samples.
Reverse transcription, PCR amplification, and PCR product
purification can comfortably be done within 8h for the
same number of samples. Gel purification speed is limited
due to the number of samples or libraries that can be proc-
essed at a time using the BluePippin cassette, and expected
time from sample preparation to collection per plate is

about 2h. A TapeStation measurement should take about

an hour. PCR amplification #2 and PCR product purification

can comfortably be done within 4h for about 30 samples.
v) Library quantification—setting up the dilutions and prepar-

ing reagents and samples may take approximately 2h. The

qPCR run and subsequent analysis each take less than

an hour.

Anticipated results

• Based on the absence of contamination indicated by the hu-

midity index, placed inside the Ziplock bags with the DBS

sample cards and in the container holding all Ziplock bags, it

is anticipated that transport, storage, and use of the DBS

cards for the punching procedure will not contribute to vari-

ability in the outcomes.
• Low RNA concentrations are to be expected for miRNA

enriched fractions, as described (Tables 1 and 2). The com-

mercial kits for constructing a library specify recommended

RNA volume, ranging from 1 to 200ng. A study on DBS de-

rived miRNA sequencing describes 500 pg input to produce

sufficient library [87]. The protocol described here has been

tested on 50 pg (with the smallest RNA concentration from a

single DBS being 3.5 pg/ml) and produces superior mapping ef-

ficiency—MiSeq at the depth of 38M for 4 samples pool, 84%–

90% of reads mapped to human genome

(Supplementary Figures).
• Library quality shows high percent of reads used for align-

ment and reads mapped to genome, with minimal failed

quality or contamination (Supplementary Figures).
• miRNA reads compose the highest concentrations compared

to other types of RNA (Fig. 3).
• Drawing from our substantial experience in analyzing DBS

samples from pediatric and adolescent cohorts, including

individuals with psychiatric conditions and healthy counter-

parts, we expect that the fold changes in differentially

expressed miRNAs will be relatively modest compared with

what is typically observed in gene expression studies.

Limitations
Certain limitations associated with the DBS-sourced miRNA se-

quencing approach should be recognized, particularly those re-

lating to pre-analytical factors. Although research indicates that

technical variability is minor compared with biological factors, it

is critical to ensure proper drying of the blood on the card, and to

maintain controlled humidity throughout the process using des-

iccant packets and humidity index cards [88]. These precautions

help mitigate potential variations that may arise from factors

such as the number of freeze-thaw cycles, multispotted versus a

single punch, or the location within the blood spot [89].
Individual variations in hematocrit can contribute to variabil-

ity in the proportion of red blood cells in DBS samples [17, 90–92].

Diluting the samples to the lowest RNA concentration after ex-

traction helps account for and mitigate hematocrit-related varia-

tions in RNA yield. Comparing liquid blood (and its fractions such

as plasma) and DBS sample miRNA expression should be done

with caution, as hemolysis can introduce bias to miRNA levels

[93–97] and to analytes overrepresented in erythrocytes.

98�C 45 s 1�
98�C 15 s

1�60�C 30 s
72�C 20 s

72�C 2min 1�
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