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Abstract: This work is concerned with the semi-mechanistic prediction of residence time metrics
using historical data from mono-component twin screw wet granulation processes. From the data,
several key parameters such as powder throughput rate, shafts rotation speed, liquid binder feed
ratio, number of kneading elements in the shafts and the stagger angle between the kneading
elements were identified and physical factors were developed to translate those varying parameters
into expressions affecting the key intermediate phenomena in the equipment, holdup, flow and
mixing. The developed relations were then tested across datasets to evaluate the performance of the
model, applying a k-fold optimization technique. The semi-mechanistic predictions were evaluated
both qualitatively through the main effects plots and quantitatively through the parity plots and
correlations between the tuning constants across datasets. The root mean square error (RMSE) was
used as a metric to compare the degree of goodness of fit for different datasets using the developed
semi-mechanistic relations. In summary this paper presents a new approach at estimating both the
residence time metrics in twin screw wet granulation, mean residence time (MRT) and variance
through semi-mechanistic relations, the validity of which have been tested for different datasets.

Keywords: continuous wet granulation; prediction; residence time

1. Introduction
1.1. Twin Screw Wet Granulation

Wet granulation is a size enlargement process wherein a liquid solvent is added to a
primary powder bed that consists of one or more components. The solvent is usually water
or a polymer solution [1–5]. The size enlargement process occurs in the presence of binder
that is added either in a dry state and mixed along with the formulation/primary powders
in the granulator or dissolved in the liquid binder solvent [6,7]. The addition of the binder
in the wet granulation process facilitates the formation of liquid capillary bridges that hold
the primary particles together via granulation mechanisms such as nucleation, aggregation,
consolidation, breakage and layering [8].

In recent years, there has been an accelerating shift towards continuous manufacturing,
partly driven by the growing need for industries to reduce the time-to-market for products,
while maintaining strict quality requirements. This has resulted in extensive investigation
of continuous wet granulation processes, and its associated processing equipment. Wet
granulation is carried out continuously in twin screw extruders (TSE) by employing
powder feeders in order to maintain steady inlet flow into the system, and the liquid
(with or without a polymer binder dissolved in it) is pumped at the desired flow rates
into the mixers in a controlled flow ratio with respect to the primary powders. The
liquid is discharged through nozzles into the granulator in order to achieve uniform and
proper wetting of the powder particles. A typical continuous wet granulation setup and a
computer-aided-design (CAD) render of a TSE, are illustrated in Figure 1a,b.
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(a) Continuous wet granulation process

(b) Computer-aided-design (CAD) render of twin screw extruders (TSE)
Figure 1. (a): Schematic of a typical continuous wet granulation process and; (b): a TSE used for continuous wet granulation
process.

An improved process understanding and characterization of the continuous granula-
tion unit operation necessitates mechanistic analysis of the physical processes occurring
within the unit operation. The typical critical quality attributes of a wet granulation process
are the exit particle size distributions, densities and the distribution of the formulation
material components within the granules of different sizes. Population balance models
have been extensively developed and studied in order to completely and accurately char-
acterize number and mass distributions of various important particle traits such as size,
liquid content and/or porosity [9,10]. However, they usually do not account for the initial
and final segregation between the components [11]. This leads us to develop residence
time distribution (RTD) models for studying mixing behavior in wet granulation. RTD
studies are also useful for process design, material traceability, control and optimization.

Experimental studies are typically performed to develop and validate an RTD model,
which can be further used for process model development and optimization. The RTD of
continuous wet granulation systems is measured via the use of a tracer material, which
tracks the movement of bulk material within the system. The tracer is added at the entrance
of the granulator and then blended and distributed inside according to the conveying
and mixing profile of the system. The granules exiting the system are analyzed using
different techniques to quantify the RTD. The tracer content in the exiting granules can
either be measured from offline samples collected or in-line measurement techniques.
The concentrations of the tracer in these granules are measured using ultraviolet-visible
(UV-Vis) [12] or near infrared (NIR) spectrophotometry. The RTD profiles are dependent on
the effective material holdup volume inside the equipment, flow rates of the solid powder
streams, the liquid-to-solid percentages (LS %ages), the rotation speed of the shaft, the
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configuration of the shaft elements (conveying/ kneading/ distributive elements) and the
material properties such as density, compressibility and particle size of the components
of the solid powder blend. The obtained time-dependent RTD profiles can then be fitted
to mathematical relations either by observing the profile curve characteristics or through
first-principled approaches by looking at the mechanics of the system under study.

The development of an accurate and predictive model of the RTD of a system would
provide a thorough understanding of the process dynamics, and the model can be used
to optimize the design space of the process. Shirazian et al. [13] presented a study
where the equipment was modeled by dividing the equipment into theoretical mixing
tanks and plug flow regions. The work described by Ismail et al. [14] leveraged the
availability of advanced statistical tools such as artificial neural network (ANN) towards
actually predicting the mean residence time (MRT) of the granulation system itself from
the experimental points and additional points generated using Kriging sampling tools. The
MRT itself was calculated from the RTD pulse response exit function developed and then,
modeled from a Zuastz function developed by Poulesquen et al. [15,16]. However, the
presented statistical model did not provide any semi-mechanistic correlations between the
operational parameters and the theoretical parameters of the model.

RTD models have been extensively developed for continuous reactors in traditional
chemical engineering such as continuous stirred tank reactors (CSTRs) and plug flow
reactors (PFRs) dealing with mostly incompressible liquid systems and fully-developed
flow profiles. These models were fitted to non- reacting systems using the experimental
data of different industries such as food, pharmaceutical manufacturing and even in
environmental engineering [17–19]. One such study by Kumar et al. has described an RTD
model for a twin screw granulation (TSG) system and attempted to fit the experimental
data to the model with some specified parameters [20,21]. Apart from predicting the full
RTD profiles for the experimental conditions, the authors also attempted to give a physics
based explanation for the tuning factors of their model. However, a model developed for a
specific system needs to be re-validated (and often its parameters need to be re-calculated)
for different equipment and/or different formulation.

In addition to studying the MRT and RTD profiles, researchers have also attempted to
understand axial mixing in TSG. Axial mixing in continuous equipment is characterized
by the variance of the RTD profiles. The mixing in radial direction is neglected due to the
narrow geometries of extruders characterized by their length-to-diameter (L/D) ratios [22].
The degree of axial mixing in TSG can be estimated by determining the dimensionless
Peclet number, which is the ratio between rate of transport by convection and rate of
transport by diffusion/dispersion. The relationship between Peclet number and variance
was originally developed by Levenspiel et al. and later Fogler showed how different
boundary conditions can give rise to different correlations [23,24]. Lee et al. [25] studied
RTD using a positron emission particle tracking (PEPT) technique and in their study they
found that the extent of axial mixing was not effected by screw speed, powder feed rate or
screw configuration. One of the drawbacks is that this study does not employ the effect of
number of kneading elements. Kumar et al. [20] also studied the extent of axial mixing
by measuring the variance of the RTD curves. In their study they found that screw speed,
material feed rate, number of kneading discs and stagger angle had significant effects on
axial mixing. They also found that interaction between screw speed and powder feed rate,
and between stagger angle and number of kneading elements had a significant effect on
axial mixing.

In general, processes involving wet powder flow behavior require close examination.
Therefore, it is the overall aim of the researchers working in this field to develop mechanistic
models accounting for the chosen vessel’s geometry (length of screws, pitch of screws,
screw element configuration), its operating parameters (screw speeds and rotation direction
of screws), process parameters (material feed rates and the rate of liquid addition) and the
material properties (density, particle size etc.) of the constituent materials.
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1.2. Objectives

This work proposes to further understand the physical processes governing the RTD
in a TSG by developing a method to predict the central moments of RTDs, namely the
MRT and variance using semi-mechanistic relations that can be extended to systems
of different scales, screw configurations and process parameter ranges. The predicted
values of the central moments of RTD have been compared qualitatively with the main
averaged effects of individual parameters at different settings for each subset considered.
In addition, the fidelity of the predictions were further validated by comparing them with
the corresponding experimental points and evaluating statistical measures of goodness of
fits. The historically produced twin screw wet granulation experimental data that were
made available in literature by various researchers in the field were leveraged to train
the semi-mechanistic models and evaluate the validity of the relations developed. It is
to be noted that, in this work, the focus has been kept on having as mechanistic a model
as possible for predicting the metrics across datasets and hence, the relations and tuning
parameters were chosen to reflect the physics of the system.

The rest of the paper is organized as described in this paragraph. Section 2 introduces
three experimental datasets used in the study that have been sourced from existing pub-
lished data in literature. Section 3 concerns with the theoretical background of the paper
and introduces new semi-mechanistic relations for estimating MRT and variance subject
to their physical constraints. Section 4 shows the results of the study and discusses the
model prediction performance for different datasets. Section 5 is a short conclusion that
summarizes the paper and provides suggestions for future researchers to improve and
build upon the modeling scheme presented in this work.

2. Materials and Methods

The RTD experimental data were collected from the published available
literature [14,21,26]. The dataset collated has been described below in Table 1. The dataset
has been classified based on source, equipment dimensions, varied process and equipment
variables: powder feed rate (FR), processing screw speed (RPM), liquid-to-solid percentage
(LS), screw configuration described by number of kneading elements (NK) and stagger
angle (SA) between them. The table also lists the available number of points sourced from
each study.

Table 1. Summary of the twin screw wet granulation residence time distribution (RTD) available and
collected from the literature.

Data Source Equipment
Name

Process
Material

Varied
Parameters

Number of
Points

Kumar et al. 2015
[21] ConsiGma-25 α-Lactose MH FR, RPM, NK &

SA 66

Kumar et al. 2016
[26] ConsiGma-25 α-Lactose MH FR, RPM, LS,

NK & SA 51

Ismail et al. 2019
[14] Three-Tec Avicel PH-101 FR, RPM, LS &

NK 24

Total: 141

In addition to the above mentioned categories, the database also contained details
on the equipment parameters such extruder shaft outer diameter, and effective length
scales of operation. Lastly, the dataset also considered material properties affecting the
flow in a wet granulation system, namely the bulk and true densities of the powder
processing material and the density of the binder liquid fed into the system. The collation
and categorization of along these parameters aided us in comparing published residence
time metrics data from various experimental sources using different materials on different
equipment. This mode of organization is the first step in building a more generalizable
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prediction model as opposed to being confined within the bounds of a chosen DOE,
equipment and formulation material.

3. Theory and Metrics
3.1. Theory behind Equation Development

For this study, three new physically relevant reduced order expressions have been
introduced namely, Flow factor, Holdup factor and Mixing factor. Furthermore, these
reduced order expressions have been employed to formulate equations for the prediction
of MRT and variance.

Flow factor: Flow factor defines the convective/ bulk flow of the powders in the axial
direction. It has been found that as the feed rate is increased the residence time of powders
in a TSG decreases, which has been attributed to the axial velocity component provided by
the feed rate [27–29]. It is also known that impeller speed effects the convective capacity of
the powders in TSG: as the impeller speed increases the axial velocity of powders increase
thereby decreasing the MRT [25,30,31].

Holdup factor: In previous studies either dimensionless or physically significant
reduced order parameters were developed in order to describe the barrel fill level in TSG
systems [27]. In this study, in addition to the effects of the powder and liquid material
feed rates [32], the mechanistic effects of the screw elements that is, conveying sections and
kneading blocks have been incorporated too in building the relations for Holdup factor as
it has been known from prior study that fraction of the section volumes are responsible for
holding the particulate material [33].

Available volume in screw sections: While it is known that the sector volume con-
taining the stagger angle is responsible for the fill in kneading elements, the relations for
conveying section are unknown as they are continual helical screws. Therefore, in this
study the conveying section of a particular length and angular turn has been approximated
as a kneading section of the same length where the number of kneading elements is large,
the thickness of each element in the section and the stagger angle between the kneading
elements are infinitesimally small. The finite element approximation schematic has been
shown below in Figure 2.

Figure 2. Schematic showing (a) kneading block of 7 elements each with thickness 3 units and SA 60◦;
(b) kneading block of 21 elements each with thickness 1 unit and SA 18◦ ; and (c) conveying section
of length 21 units and full turn angle 360◦.

Mixing factor: Mixing in flow systems can be divided into global mixing and local
mixing [34]. The variance of the RTD is more appropriately described by local mixing. It
was found in many mixing studies that the local mixing was enhanced with increasing
shaft rotation speeds due to velocity gradients created in the transverse direction [35–38].
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A previous study has shown that there is an increase in the degree of local mixing when
particles entering at different times interact with each other [39]. Apart from the shaft rota-
tion speeds, the local mixing in TSG is directly proportional to the stagger angle between
the kneading elements and, inversely proportional to the number of kneading elements.

Mean residence time (MRT): Mean residence time (MRT) is defined as the average
amount of time powders or a particle spends in the system of interest. In this study, this
metric has been obtained from the more traditional definition in chemical engineering by
dividing the material holdup by the flow rate through the system.

Variance: Most of the studies involving RTD and describing variance in a TSG have
either directly correlated variance to the mixing efficiency or have described mixing via the
change in Peclet Number assuming the closed-closed boundary condition approximation
for TSG [24]. However, the handling of solid particulate material with size distributions
in continuous operations such as feeders, blender, twin screw granulators and so forth,
leads to segregation of particles continually throughout the course of flow. This causes
the dispersion effects to linger outside the boundary of the system as well [40,41]; thus
interfering in the measurement of the concentration of particles [42,43]. Hence in this study,
the Peclet number has been modeled assuming the open-open boundary condition.

3.2. Formulation of the Equations for the Metrics

The expression for the net volumetric material feed-rate FRvol,net has been given in
Equation (1):

FRvol,net =
FRmass,powder

ρpowder
+

FRmass,liquid × LSratio

ρliquid
, (1)

where FRmass,powder is the primary powder mass flow rate fed into the granulator, ρpowder
is the density of the powder fed, LSratio is the ratio of the mass feed rate of the liquid
to the mass feed rate of the powder, and ρliquid is the density of the granulation liquid.
The available volume in the kneading blocks Availvolknead, has calculated as shown in
Equation (2):

Availvolknead = 4 × 1
2
× R2 × NKknead × tknead × SAknead,deg ×

π

180
, (2)

where R is the outer radius of the kneading element, NKknead is the number of kneading
elements in the kneading block for the screw configuration, tknead is the thickness of each
kneading element and SAknead,deg is the stagger angle between the kneading elements for
the configuration. Based on the finite element approximation of the conveying screw as
described in Section 3.1, the expression for the available volume for the conveying section
Availvolconvey has been given in Equation (3):

Availvolconvey =

[
4 × 1

2
× R2 × NKconvey,FE

× tconvey,FE × SAconvey,FE,deg ×
π

180

]
,

(3)

where NKconvey,FE is a big number of kneading discs making up the conveying screw,
tconvey,FE is the small thickness of each kneading disc, and SAconvey,FE,deg is the extremely
small stagger angle between the kneading elements for the finite element approximation
of conveying section. From (2) and (3), the expression for the total available volume
Availvoltotal has been obtained in Equation (4):

Availvoltotal = Availvolknead + Availvolconv. (4)
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The expression for the volumetric material displacement rate by a conveying screw of
1 lead length in the equipment Dispvolrateconv,1lead is given in Equation (5):

Dispvolratelast =
RPM

60
× Availvollast, (5)

where RPM is the shaft rotation speed in rotations-per-minute and Availvollast is the
volume held by the last element of the shaft in the configuration.

By using the expressions developed in Equations (1) and (4), the surrogate expression
for the volumetric Holdup factor Holdup has been given by the following Equation (6):

Holdup = FRb2
vol,net × Availvoltotal , (6)

where b2 is a tuning constant. Similarly from Equations (1) and (5), the surrogate expression
for the volumetric Flow factor Flow has been computed from following Equation (7):

Flow = FRb3
vol,net × Dispvolrateb4

conv,1lead, (7)

where b3 and b4 are tuning constants. Lastly, the surrogate expression for the Mixing factor
Mixing has been formulated as follows in Equation (8):

Mixing =
SAknead,deg × Dispvolrateb6

conv,1lead × KB × π

NKperblock,knead × 180
. (8)

Dividing Equations (6) and (7), and by multiplying by a tuning constant b1, the semi-
mechanistic expression for the mean residence time MRT has been derived in Equation (9):

MRT = b1 ×
FRb2

vol,net × Availvoltotal

FRb3
vol,net × Dispvolrateb4

conv,1lead

, (9)

with the tuning constants b2, b3 and b4 subject to the following constraint (to ensure value
of MRT calculated in (9) is in unit seconds in Equation (10):

− b2 + b3 + b4 = 1. (10)

Similarly, dividing Equations (7) and (8) and multiplying by tuning constant b5, the
semi-mechanistic expression for Peclet number Pe has been derived in Equation (11):

Pe = b5 ×
FRb3

vol,net × Dispvolrateb4
conv,1lead

SAknead,deg×Dispvolrate
b6
conv,1lead×KB×π

NKknead×180

, (11)

with the tuning constants b3, b4 and b6 subject to the following constraint (to ensure value
of Peclet number calculated in (11) is non-dimensional) in Equation (12):

b3 + b4 = b6. (12)

From the open-open boundary condition of the TSG, the normalized variance Varnorm
has been given by the following expression in Equation (13):

Varnorm =
2Pe + 8
(Pe + 2)2 . (13)

3.3. Algorithm Development

Figure 3 shows the schematic of the algorithm developed for predicting MRT and
variance. The general idea for the algorithm goes through the following steps. Initially,
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the experimental dataset goes through a splitting step. After the split, the larger subset
(i.e., training set) is used to train the model for MRT and Peclet number (and in turn the
variance) while ensuring the constraints described in Equations (10) and (12) in Section 3.2.
Training is based on the developed Equations (9) and (11) as described in Section 3.2. For
parameter optimization the ’fmincon’ function in MATLAB was used, the parameters
resulting in predictions having the least root mean square error (RMSE) were chosen to
further predict the MRT and variance for the initially divided smaller subset (test set). If
the predictions on the smaller subset meet certain end point criteria, then the model is
stopped. If not, the process is started again.

Figure 3. Schematic for algorithm adopted to train and validate mean residence time (MRT) and
variance models on datasets.

In order to ensure a good prediction of the model, validation of the model needs to
be conducted. However, especially when we have smaller datasets, a simple validation
(validation runs on a small percentage of the full dataset) might not be sufficient. Hence, in
such cases cross-validation techniques need to be employed for higher degree of confidence
in model predictions. For this reason, we have employed a k-fold cross-validation model.
To further increase the confidence in our predictions, we initially split the experimental
dataset into 2 subsets—one consisting of approximately 70–80% of the data points (Training
set) and the second one comprising of the remaining points (Test set), respectively. Prior to
splitting, the corresponding dataset rows were jumbled and the test set runs were randomly
selected using the ’rng’ function in MATLAB with a specified seed number number to
ensure that the procedure is reproducible [44]. The larger subset is used for training and
the smaller one is kept aside for testing the model (unseen to the model). On the Training
set the k-fold cross-validation is employed to make sure the predictions of the model
were accurate.

K-fold cross-validation: In a k-fold cross-validation the parent dataset is arbitrarily
divided into k datasets and every time the model is run k − 1 datasets are used to train and
1 dataset is used to validate the model. This step is repeated k times such that model is
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validated on each of the k datasets. k-fold cross-validation was used to further enhance the
parameter optimization process by introducing the parameter output of one iteration as an
input to the next iteration.

Three different metrics were used to determine the end point criteria of the model.

i Comparison between main effects plot of the experiments and that of the model
ii Satisfactory parity plots, realistic narrow upper and lower bounds were set, and

the model’s performance was determined based on how many predicted points
fell between these limits; in addition the root mean square of errors RMSE too was
evaluated as a statistical measure for goodness of fit

iii Wherever possible, the values of the tuning parameters in the model when trained
on different datasets were compared, and physical interpretation was made for their
ranges

The expression for the root mean square errors is given as follows in Equation (14)

RMSE =
n

∑
i=1

(
yi,exp − yi,pred

)2
, (14)

where yi,exp are the actual experimental values for the metric reported and yi,pred are the
predicted values of the metric from the model.

4. Results and Discussion
4.1. Qualitative Analysis- Main Effects Plots

The individual main effects of the varied parameters, powder feed rate (FR), number
of kneading elements (# KEs) in the configuration, stagger angle between the kneading
elements (SA) and the rotational speed of the shafts of the extruder (RPM) have been
shown on the experimental MRT and on the model predicted MRT in Figure 4 for the
Kumar et al. 2015 dataset. From the figures, it can be seen that the MRT of the TSG showed
an increasing trend with respect to the increasing powder feed rate range from 10 kg/h
to 25 kg/h and number of kneading elements from 2 to 12. On the other hand, the MRT
decreased with respect to increasing screw speed from 500 RPM to 900 RPM. These
observations are in line with the equations formulated in Section 3.2. However, it can
be seen that the average MRT increased and then subsequently decreased as the stagger
angle was increased from first 30◦ to 60◦ and then 90◦. Additionally, it was reported by
Kumar et al. 2015 [21], that several experimental data points were missing for run cases of
90◦ SA due to the jamming of the equipment. This lack of comparable data points is the
reason for a low average MRT value at high stagger angle.

Upon closer inspection of the main effects plots for the FR (indicated by the first
sub-figure in blue), it can be seen that the model (solid curve) predicted a much steeper
increase and wider range of MRT values compared to the experimental runs (individual
points). The average model predictions were closer for powder feed rate values of 25 kg/h
at higher MRT values. A similar observation is made from the second sub-figure (red curve,
main-effects of # KEs) whereby, the average model prediction was lower compared to the
experimental values at two kneading elements configurations yielding low MRT values.
On the other hand, from the fourth sub-figure (yellow curve, main effects of RPM), the
average MRTs predicted were lower at lower screw speeds corresponding to larger MRT
settings. Lastly, it can be seen from the third sub-figure (green curve, main effects of SA)
that MRTs were under-predicted at settings corresponding to lower experimental MRT (30◦

& 90◦ SA values), and were over-predicting for the intermediate setting of 60◦.
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Figure 4. Experimental results vs. Model predictions: Main effects of varied parameters on MRT for the Kumar et al. 2015 [21]
dataset.

The main effects of the varied parameters have been shown on the experimental MRT
and on the model predicted MRT in Figure 5 for the Kumar et al. 2016 dataset. In addition
to the previously shown effects (FR, # KEs, SA and RPM), there is an addiotional factor LS
along which the effects have been in plotted too as indicated by the pink line and points.
From the figures, it is seen that the MRT of the TSG showed an increasing trend with respect
to the increasing powder feed rate range from 10 kg/h to 25 kg/h. On the other hand,
the MRT decreased with respect to increasing screw speed from 500 RPM to 900 RPM.
Similar to the results for the Kumar et al. 2015 dataset, these observations are in line with
the equations developed. Comparing the main effects of the kneading elements, it can
be seen that the model predicted average MRT values were lower than the experimental
average values for 4 and 6 kneading elements in the screw configuration. The plausible
reason for this observation may be that the granules formed had occupied more space in
the kneading zone than what was calculated theoretically, thereby increasing the holdup
and consequently the MRT. On the other hand, the mean experimental MRT showed no
observable change upon increasing the stagger angle from 30◦ to 60◦. Similar to the effects
of low number of kneading elements, the granules formed at 30◦ stagger angle might have
plausibly occupied more space than estimated leading to higher experimental MRT values.
Despite these unexpected observations, the model equations were not changed to fit the
predictions/main effects trends better as doing so would have removed the generalizable
nature of the model which has been the goal of this study all along.

The main effects of the parameters have been shown on the experimental and the
model predicted variance in Figure 6 for the Kumar et al. 2015 dataset. From the figures,
it can be seen that the model predicted trends match the experimental trends for all the
parameters except the stagger angle. It can be seen from the experimental trends for
the Kumar et al. 2015 dataset only that increasing stagger angle did not effect the mean
variance. However, the effect of stagger angle was still incorporated to predict the variance
effects for the Kumar et al. 2016 dataset.

The main effects of the parameters have been shown on the experimental variance
the model predicted MRT in Figure 7 respectively for the Kumar et al. 2016 dataset. From
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the figures, it can be seen that the model predicted a decreasing variance with increasing
feed rate as was previously for the Kumar et al. 2015 dataset but the experimental trends
showed a contradictory increasing trend. Another observation is that the experimental
average variance increased on increasing the number of kneading elements in the screw
configuration from 6 to 12.

Figure 5. Experimental results vs. Model predictions: Main effects of varied parameters on MRT for the Kumar et al. 2016 [26]
dataset.

Figure 6. Experimental results vs. Model predictions: Main effects of varied parameters on variance for the Kumar et al. 2015 [21]
dataset.
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Figure 7. Experimental results vs. Model predictions: Main effects of varied parameters on variance for the Kumar et al. 2016 [26]
dataset.

4.2. Quantitative Analysis- Parity Plots

The parity plot for the experimental values of the MRT (X) vs. the predicted MRT
values (Y) for the Kumar et al. 2015 dataset has been given below in Figure 8a. From the
scatter points chart, it is seen that the most of the points were within the chosen confidence
intervals of +/− 1 s. Moreover, it can be observed that most of the points are spread evenly
on either side of the Y = X line. Similarly, from the parity plot for normalized variance for
the Kumar et al. 2015 dataset in Figure 8b, it is seen that the most of the points were within
the chosen confidence intervals of +/− 0.1, and most of the points are spread evenly on
either side of the Y = X line. The confidence intervals were chosen in accordance with the
variation of the points for the experimental dataset.

From Figure 9a, it is seen that the model under-predicts most of the experimental
points under-predicted 1 second lower than their experimental value and lie on either side
of the Y = X − 1 line. Apart from this, it is also observed that a few points have been
extremely over-predicted by as much as 75%. From Figure 9b, the model predictions for
the normalized variance can be seen where, most of the points are scattered far away either
side of the Y = X line.

The parity plots between experimental values and model predictions obtained by
combining the two datasets, Kumar et al. 2015 and Kumar et al. 2016 are seen below in
Figure 10. It is to be noted that the number of data-points from each individual dataset were
in the same proportion in the total combined dataset and the partitioned datasets (Training,
Validation & Test). Comparing the corresponding results for MRT and normalized variance,
it is seen that the predictions built using a combined dataset are worse when compared to
the predictions built using a single experimental dataset. It is seen that for the Kumar et al.
2015 dataset, the RMSE prediction using a jumbled training set is 0.77 s, and the RMSE for
the Kumar et al. 2016 dataset is 1.48 s. Similarly, for the normalized variance results, the
RMSE for the Kumar et al. 2015 dataset trained using a combined training dataset is 0.1,
and the RMSE for the Kumar et al. 2016 dataset is 0.27. At this juncture, it must be noted
that the LS% ages were 11.5% for the Kumar et al. 2015 dataset and the LS% ages were
varied from 6 to 8% for the Kumar et al. 2016 dataset. One plausible reason for the poor
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prediction using the combined Training set may be that the main effects of FR have been
contrary for the Kumar et al. 2015 and Kumar et al. 2016 experimental datasets respectively
as seen in Section 4.1. Additionally, from the parity plots in Figure 10c,d, it is seen that the
properly predicted, under- and over-predicted points were distributed in equal proportion
across the training, validation and test datasets. This gives further indication to the veracity
of the modelling approach.

From Figure 11, it is seen that the model predicts the experimental values of the MRT
for the Ismail et al. 2019 dataset in the right scale for quite a lot of the points, with many
points +/− 20 s from their experimental value. However, there are quite a few points
in the experimental values range of 125–225 s that have been under-predicted, thereby,
leading to a large RMSE value of 63.23 s. It is to be noted here that the confidence interval
for this dataset was higher compared to the previous datasets in order to account for the
higher MRT values reported by Ismail et al. [14].

(a) MRT

(b) Variance

Figure 8. Experimental observations (X) vs. predicted model responses (Y) when trained on the
Kumar et al. 2015 [21] dataset.
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(a) MRT

(b) Variance
Figure 9. Experimental observations (X) vs. predicted model responses (Y) when trained on the
Kumar et al. 2016 [26] dataset.

4.3. Quantitative Analysis- Comparing Model Parameters

The values of the fitting constants that were obtained by training the model on different
datasets have been shown below in Table 2. Since the values b2, b3, b4 and b6 are exponential
terms in Equations (9) and (11), it can be inferred that they indicate the extent of diminishing
or magnifying effects of the corresponding physical terms incorporated in the factor. The
effect of each constant would be to diminish if the value is less than 1, and magnify the
factor if the value is greater than 1. On the other hand, the constants b1 and b5 are scaling
parameters that aid in predicting the MRT and Peclet number/normalized variance in the
right scale for each dataset. This is seen in the range of the MRT and normalized variance
values respectively seen previously in Figures 8–11. A similar behavior is seen in the
exponent b4 of the Dispvolrateconv,1lead as seen in the Equation (7).
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(a) MRT (b) Variance

(c) MRT (d) Variance
Figure 10. Experimental observations (X) vs. predicted model responses (Y) when trained on the combined Kumar et al.
2015 + 2016 [21,26] set.

Figure 11. Experimental MRT observations (X) vs. predicted model MRT responses (Y) when trained
on the Ismail et al. 2019 [14] dataset.

From Figure 12, it can be seen that the scaling constant for MRT fits with respect to
varying liquid-to-solid percentages in a Langmuir-like trend. The reciprocal of the fitted
parameter values, b1 for each dataset was plotted against the respective reciprocal of the
number-averaged LS percentage (Kumar et al. 2015- 7, Kumar et al. 2015 + 2016- 9.5,
Kumar et al. 2016- 11.5 and Ismail et al. 2019- 85.83). From this trend we infer that as the
liquid content in a TSG operation increases, the granulation rates would increase, thereby
leading to greater quantities of larger granules in the system which would lead the particles
to have a slower net average velocity giving a higher macroscopic MRT value. However,
increasing the LS percentage beyond a limit would yield diminishing returns as the greater
liquid quantities might just dissolve the excess powder particles and exit the system.
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Table 2. Model parameter values obtained for fitting on different datasets.

Parameter Kumar et al.
2015

Kumar et al.
2015 + 2016 Kumar et al. 2016 Ismail et al.

2019

b1 0.33 0.46 0.53 1.67

b2 0.99 1.24 0.33 0.96

b3 0.65 1.09 0.24 1.32

b4 1.33 1.15 1.08 0.63

b5 5.35 2.29 1.16 -

b6 1.99 2.24 1.33 -

On the other hand, an additional effect is seen in the estimated values of the constants
b2, b3 and b6. The reasons for this observation would have to be further investigated
by testing the model with more available datasets and checking the differences in the
experimental conditions among them all.

Figure 12. Fitting trend of b1 for different datasets as the LS percentage is varied.

5. Conclusions

From the main effects plots in Section 4.1, we could see that the same model relations
yielded mostly similar trends across the datasets. This indicates the physical soundness
and fundamental nature of the relations developed for predicting the measures of central
moment, mean residence time (MRT) and Peclet number (Pe)/normalized variance. From
the parity plots in Section 4.2, it is seen that the model performance varies with the distri-
bution of the experimental data-points’ range. While the model predicted the experimental
MRT and variance fairly well for the Kumar et al. 2015 dataset, however for several cases in
the Kumar et al. 2016 and Ismail et al. 2016 dataset, there is either over- or under-prediction.
A plausible explanation is that the prediction capability depends on the bounds of the
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changing process and equipment parameters for different experimental dataset combina-
tions. Lastly, comparing the tuning parameter values for different datasets in Section 4.3,
it is seen that they exhibit trends with respect to the inherent process complexities. One
empirically inferred trend was found for the scaling constant b1 for the MRT, and it was
seen that the number-averaged liquid-to-solid percentage had a Langmuir effect on it.
The presented approach and prediction models aim to serve as a starting point for future
researchers to improve upon to obtain more mechanistic relations for the residence time
central moment metrics, namely MRT and variance. Experimentally, having more points
in a chosen design of experiments would also help in having more robust predictions by
providing larger datasets to train and test the models upon.

Therefore, in summary, this research paper presents (i) a historical data-driven ap-
proach to estimating the RTD central moment metrics of a TSG system; (ii) a semi-
mechanistic development of the predictive model relations (iii) validation of the said
relations on different datasets; (iv) and lastly physical explanation for the values of the
tuning parameters and empirical correlation for one of them with the liquid-to-solid per-
centage, one of the varying process parameters across datasets.
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