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An approach to and web-based 
tool for infectious disease outbreak 
intervention analysis
Ashlynn R. Daughton, Nicholas Generous, Reid Priedhorsky & Alina Deshpande

Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an 
infectious disease outbreak currently rely on a subjective process involving surveillance and expert 
opinion. However, there are many situations where neither may be available. Modeling can fill 
gaps in the decision making process by using available data to provide quantitative estimates of 
outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through 
collaboration between the modeling community and public health policy community. However, such 
collaboration is rare, resulting in a lack of models that meet the needs of the public health community. 
Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures 
that allows parameter ranges, rather than parameter point estimates, and includes a web user interface 
for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show 
the feasibility of its use and describe a research agenda to further promote interactions between 
decision makers and the modeling community.

Despite substantial public health improvements in the last century, infectious diseases remain one of the leading 
causes of both morbidity and mortality1,2. When confronted with an infectious disease outbreak, public health 
officials typically work to control the outbreak by performing assessments, analyzing surveillance data, identify-
ing resources and interacting with subject mater experts2–4. Control measures are then implemented based on the 
cumulative information collected. These approaches rely heavily on good surveillance systems, access to experts, 
and good intuition about which control measures to use. As such, they are largely subjective, time consuming, and 
the infrastructure required is often not present in high disease burden areas.

Modeling is an attractive supplemental method because of the ability to estimate an outbreak’s trajectory and 
the effects of possible control measures in a timely manner. Compartmental models are historically common; 
they divide individuals into categories based on their disease status. The most common variant is the SIR model, 
named after the categories used—“susceptible”, “infectious” and “recovered”. Models of this nature have small 
computational requirements, and are thus commonly used as first pass attempts to characterize outbreaks or 
infections quickly5. For example, after the sudden emergence of Severe Acute Respiratory Syndrome (SARS) in 
the early 2000s, researchers used modeling to characterize the virus’ epidemiology. Several used compartmental 
models with control measures like quarantine or isolation in various settings (e.g., hospitals or cities) to describe 
effects of possible interventions6–9. Similar work exists for essentially all well known infectious diseases. For exam-
ple, Mandal et al. provide a review of models used for malaria10 and Bauch et al. explore model use with respect to 
SARS and other emerging infectious diseases6. Methods among these groups are often similar, but tend to focus 
on specific diseases and locations of interest.

In contrast, agent-based models use a bottom-up approach where the agents (these are often people) inter-
act with particular rules to simulate outbreaks11. This allows simulations at high resolutions, but requires large 
amounts of data to parameterize the models, as well as substantial computational power. It is thought that they 
may reflect real world scenarios more accurately, but the lack of available epidemiological data necessitates 
assumptions that are difficult or impossible to test11. These models further require computational resources inac-
cessible to an average health department.

Both agent-based and compartmental models exhibit additional features that are problematic to wide-spread 
model adoption. The first is the focus on particular disease-location pairs. This emphasis precludes application to 
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a new location or disease because of the amount of work associated with finding location specific data, tweaking 
parameters, and, often, reproducing code that is not freely available.

A related, but perhaps more pressing issue is the lack of collaboration between the researchers developing 
models and those making policy decisions during an outbreak. Wagner et al. describe the disconnect between 
these two fields12. The ultimate result is a lack of clarity in the modeling community about the requirements for 
real-world application of models and production of models that do not meet decision makers’ needs12,13.

There have been previous efforts to produce widely available models, in particular web-based simulations of 
agent-based disease models. Several of these efforts have been part of MIDAS (the Models of Infectious Disease 
Agent Study), including FRED14 and GLEAMviz15, which are both freely accessible and maintained. There is one 
package for the statistical language R16 that implements compartmental models. However, available web-based 
compartmental models are limited and are directed towards educating public health trainees rather than provid-
ing an operational modeling platform.

With this context in mind, our aim is to use existing models with low computational requirements to—(1) 
explore control measures and (2) develop an accessible platform for public health collaborators to use and provide 
feedback on models. For this initial work, we use a SIR model, modified to include a control measure, to explore 
many possible disease progression paths. The SIR model was chosen because it is the simplest and requires min-
imal computational resources. This study presents the application of existing SIR models to investigate control 
options using a “counterfactual”, a web application using the model, and a description of a path forward for vali-
dating SIR models.

A counterfactual is a theoretical construct describing a perfect experiment isolating one variable. For exam-
ple, say patient P is in a clinical trial that is assessing the effects of drug D compared to a placebo. Patient Pi is 
randomly assigned to drug D. A perfect experiment would be for an identical patient, Pj, to exist and be assigned 
to the placebo, so that the researchers could compare the differing effects of the drug versus the placebo in iden-
tical people. The concept of a counterfactual has existed in theory for decades17, and is commonly used in causal 
inference in medicine and epidemiology18. The counterfactual concept is not generally explicitly applied to epi-
demiological modeling, but some (e.g., Smith et al.19) mention the concept of exploring what “could” happen 
under different control scenarios. A policy maker could, for example, mentally compare an outbreak of strep 
throat where hand washing is the predominant intervention to an identical one where school closures are the 
main intervention and compare outbreak outcomes to aid in decision support about which intervention to use. 
This method aims to make those mental comparisons more explicit, thus affording more transparent decisions.

This work contributes to the field by providing a mechanism to weigh control measures (our κ value), an 
extensive description of ways to use the counterfactual in decision support, and a mechanism to enable broad 
adoption. By investigating plausible disease parameter ranges, rather than point estimates, we can analyze a num-
ber of possible outbreaks and begin to quantitatively understand how disease parameters affect outbreak out-
comes of interest. Further, we contribute to the relative lack of compartmental model interfaces and provide a 
mechanism for iteration and feedback with public health end users.

To explore SIR models as decision support tools, we apply the model to three diseases—measles, norovirus 
and influenza. Within disease parameter ranges, we describe the worst case scenario where the model indicates 
a reduction in cumulative infected can still be achieved. These observations are hypothesis generating, rather 
than validated endpoints, because of the general lack of validation in previous work on SIR models. As such, we 
describe a path for future research in the discussion.

Methods
SIR model. As described above, the SIR model is a commonly used compartmental model used for infectious 
disease outbreaks. Because of the large literature base describing both the history and use of SIR models (e.g., see 
Keeling and Rohani20), we present a somewhat abbreviated description here.

People are assigned to three compartments based on their disease status at time t (see Fig. 1). The number of 
people in each compartment varies with time as the outbreak progresses, but the overall population in the model 
stays constant. Susceptibles (S) are those that are at risk of infection. Infected (I) are individuals experiencing the 
illness, and recovered persons (R) have completed infection and are now immune to the disease, or died as a result 
of the infection. Movement between compartments is described by the following system of equations:

Figure 1. In a SIR model, individuals move between three compartments—S (susceptible), I (infectious) 
and R (recovered). Movement between the categories is dependent on β and γ which describe the “force” of the 
infection and the infectious period, respectively. The number of infectious persons at any given time results in 
the epidemic curve familiar to many epidemiologists.
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Transitions between compartments are described by two parameters, γ and β. γ is the reciprocal of ψ, the infec-
tious period (see equation (5)). The infectious period is the interval of time during which an infected individual 
can transmit the disease. Time in our model is represented in days. Measles, for example, has an infectious period 
of approximately 8 days; individuals can transmit the disease from approximately 4 days before rash onset until 
4 days after21. γ controls the transition from infectious to recovered (see equations (2) and (3)). β is commonly 
referred to as the “force of infection” because it describes how quickly a disease can move through a population. 
It is the product of γ and the reproductive number (R0), and controls the transition from susceptible to infectious 
(see equations (1) and (2)). The reproductive number, R0, is the number of secondary infections per primary 
infection (see equation (4)). Of note, R0 can be estimated a number of ways. Obadia et al.22 describe an over-
view of several common methods including exponential growth, maximum likelihood, sequential bayesian and 
a time-dependent method. Each method makes slightly different assumptions, and can result in different repro-
ductive values. Values should be calculated and interpreted with these caveats in mind23.

SIR augmentations. To expand the above model and introduce a scenario where a control measure is 
applied to an outbreak, we introduce two additional parameters:

1. λ or control measure effectiveness describes what fraction of individuals are removed from the susceptible 
population at each time point. For example, λ =  0 is a control that is completely ineffective and removes no 
individuals from the susceptible population during each time interval. Conversely, λ =  1 is a control meas-
ure that is 100% effective, or removes all susceptible individuals in one time interval. A more realistic value 
might be λ =  0.01, which would describe an intervention that removes 1% of the susceptible population 
during each time interval. A more detailed description of the appropriate interpretation of this parameter is 
included below.

2. τ or control start is the time unit (interpreted as days throughout this analysis) on which the control meas-
ure begins. For the purposes of the simulations presented here, it is assumed that the control is implement-
ed on day τ and continued for the remainder of the outbreak.

To apply a control measure, equations (1) through (3) are modified such that if time (t) is ≥ τ, a control 
measure with λ effectiveness is applied at each time step (see equations (6), (7), (8)). To denote the “controlled” 
environment the subscript T is added.
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Within this implementation, λ is the fraction of the susceptible population removed at each time point. 
Operationally, this describes a control measure that eliminates the possibility of infection. For example, λ =  0.1 
and τ =  5 indicates a scenario where 10% of the susceptible population is removed every day on and after the 5th 
day. This would describe an intervention like vaccination or quarantine. However, it does not describe the type of 
control measure that reduces infectivity, changes human behavior in a way that affects population density (e.g., 
staying home from work/school), or does not confer immunity to the infection (e.g., hand washing). Further, the 
control measure is continuously applied at each time point after initiation (e.g., 10% of the susceptible population 
are vaccinated each day for the remainder of the outbreak). This assumes that the control is implemented with 
the same effectiveness throughout each time interval. These assumptions simplify the addition of control meas-
ures to the SIR model, but it is relatively straightforward to modify this implementation in the future to a more 
realistic scenario. These equations are also limited to describing one control measure. It would be comparatively 



www.nature.com/scientificreports/

4Scientific RepoRts | 7:46076 | DOI: 10.1038/srep46076

straightforward to substitute λ with a vector of parameters as opposed to a single term, in order to describe mul-
tiple control types and effectivenesses.

Assumptions. There are a number of assumptions inherent in SIR models24. As a result, SIR models are 
scoped to diseases that meet the following criteria:

1. The disease is transmitted person-to-person. This means the disease is not transmitted via vector, or envi-
ronmental component like water or food.

2. Disease transmission can be described via homogenous mixing. This means that if a group of susceptible 
people interact with an ill person, all susceptible person are equally likely to acquire infection. Of impor-
tance, a majority of infections do not meet this assumption. For example, sexually transmitted infections 
are not transmitted with equal probability among the entire susceptible population. Even in the case of 
airborne infections like measles this assumption ignores individuals’ specific immune responses (e.g., 
immunocompromised individuals are treated the same as healthy individuals).

3. The disease confers immunity. This means that once an individual has recovered they cannot get contract 
the illness again during the same outbreak. Diseases with very short-term (or no) immunity are commonly 
modeled with SI models.

4. The disease’s incubation period is relatively short. Diseases with long incubation periods should include the 
“exposed” category and can be modeled with a SEIR model25.

5. The disease is an acute illness (i.e., infected individuals recover or die). This excludes chronic diseases like 
hepatitis.

κ - Comparing controlled and uncontrolled outbreaks. In order to compare a controlled outbreak to 
its counterfactual outbreak, we introduce the outcome measurement, κ. It describes the ratio of the cumulative 
number infected in a controlled outbreak to the cumulative infected in an uncontrolled outbreak. The cumulative 
number infected throughout the outbreak at time t is equal to the number recovered at time t plus the number 
infectious at that time (see equation (9)). At the end of an outbreak (t =  end) there are no individuals left in the 
infected category and equation (9) reduces to equation (10).
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κ =  1 means that the controlled and uncontrolled outbreaks are identical, or that the control measure had no 
effect. κ >  1 means that the controlled outbreak had more infected than the uncontrolled outbreak (or that 
the control measure had a detrimental effect). κ <  1 indicates that the control measure reduced the number of 
infected persons. For example, κ =  0.01 is interpreted to mean that the controlled outbreak was 1% as large as the 
uncontrolled outbreak. κ =  0 would describe a scenario where the control measure stopped the outbreak from 
occurring at all.

Sensitivity analysis. To assess the effect of each parameter on the model, we performed a sensitivity analy-
sis. We varied γ, β, λ and τ within specific ranges (see Table 1) at random for 10,000 trials. During each trial, we 
randomly picked the value of each input parameter from the specified range, ran the model using those values, 
and recorded the outcomes. Here, outcomes of interest are the number infected in a controlled scenario, number 
infected in an uncontrolled scenario and the related κ. We then analyzed each parameter’s relative impact on 
these outcomes. Because γ and β vary together and can be described simultaneously using R0 (see equation (4)), 
we also analyzed how the change in R0 affects the outcomes. Because λ and τ only exist as parameters in con-
trolled outbreaks, the controlled scenario is the only outcome considered.

Application to three diseases. We applied this model to measles, norovirus, and influenza. These diseases 
were selected because they are of public health interest, and because they meet the requirements described in the 

Parameter Range tested (units)
Controlled or 
uncontrolled outcome

γ 0.05–1.0 (days−1) Both

β 0.05–5.0 (unitless) Both

R0 1.0–100 (unitless) Both

λ 0.01–1.0 (fraction of 
susceptibles removed) Controlled only

τ 1–31 (days) Controlled only

Table 1.  Sensitivity analysis ranges tested.
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assumptions section above. Of note, norovirus can be transmitted both through food and via person-to-person. 
Outbreaks described here are solely person-to-person transmitted outbreaks.

Outbreaks were simulated using standard parameter ranges for the three diseases. These ranges were iden-
tified based on literature values reported for parameters, identified via searches using Google Scholar and 
PubMed. Search terms included “[disease name] +  infectious period”, “[disease name] +  contact rate”, “[disease 
name] +  force of infection”, and “[disease name] +  reproductive number”. We were consistently unable to find 
reported literature values for β and instead used equation (5) to find the maximum and minimum β values for 
each disease, given their infectious period and R0 values.

Rather than attempting to identify control parameters (λ and τ) based on literature values, we intentionally 
selected a broad range of possible parameters to observe the effects of a broad number of controls. To account for 
the logistic work that precedes control initiation (identifying the outbreak, laboratory confirmation, mobilizing 
resources etc.) we selected a minimum control start of 3 days. We then selected upper bounds based on typical 
outbreak progression for each disease. Measles and influenza can both result in outbreaks that are several weeks 
to months long. Thus, we selected one month (30 days) as the upper bound of τ. Conversely, norovirus outbreaks 
are typically much shorter due to their short infectious period. We thus limited the latest possible control start to 
7 days. All λ values were varied between 0.005 and 0.3 (0.5% to 30%). Table 2 describes the ranges used for each 
parameter and disease.

Development of a web-based tool. To make this model available for decision making, we developed a 
web-based application that allows a user to enter parameter ranges for their disease, initial population variables 
and control information. It is a Django application26 that uses HighCharts27 for visualization. All code for the SIR 
model was written in Python 3.528.

To make the application more user friendly, two small modifications were made to γ and β such that they 
could be expressed as the infectious period (see equation (11)) and R0 (see equation (12)). These terms are more 
familiar to public health individuals than γ and β, which are commonly used by modelers.

ψ
γ

=
1

(11)

β
γ

=R
(12)0

Results
Sensitivity analysis. Figure 2 shows the results of the sensitivity analysis. Plots show each parameter with 
respect to the cumulative number infected (in either controlled or uncontrolled outbreaks), and are colored by the 
range of the associated κ score. γ shows a strong negative correlation with the cumulative number infected (i.e., 
larger γ values (shorter infectious periods) result in smaller outbreaks) and R0 shows a positive association with 
the number of persons affected (i.e., more quickly moving outbreaks infect more people). Both correspond to our 
intuition about outbreak progression—diseases with short infectious periods infect fewer individuals because the 
disease is infectious for less time and can thus spread to fewer persons. Conversely, large R0 values correspond to 
situations where the host can infect many other people, thus resulting in much larger outbreaks.

Results further indicate that β, λ and τ affect overall outbreak size substantially less. There is a weak associa-
tion between β and outbreak size in controlled outbreaks, as well as a possible association between β and κ, but 
essentially no association between λ and outbreak size or λ and κ.

Disease application. Figure 3 describes a number of outcomes for measles, norovirus and influenza out-
breaks based on literature parameter values (see Table 2) and the resulting κ. Patterns are recognizable both 
within and across diseases. Within norovirus, for example, it is evident that there are several combinations of 
outbreaks that produce no outbreak (here defined as fewer than 2 cases total—see gray dots). In particular, as γ 
approaches larger values (> 0.3) individuals progress from infected to recovered too quickly to pass the illness to 
others. This is consistent with many point source norovirus outbreaks where the number of secondary cases is 
generally quite small.

Conversely, the vast majority of measles outbreaks simulated are essentially unaffected by any control measure 
tested (see dark blue dots that indicate controlled and uncontrolled outbreaks are ≥ 95% similar). Within a given 
cross-section of outbreak parameters, the τ value (control measure start) affects the resulting κ more than λ indi-
cating that, under this model, implementing a control measure early is more important than implementing the 
most effective control measure. This is a potentially important finding for decision support and is an intriguing 
path for further investigation. It is also consistent with our sensitivity analysis findings (see Fig. 2).

Disease
Infectious period 

(days) γ R0 values β values λ τ (days)

Measles 821 0.1–0.2 1–1835–38 0.1–3.6 0.5–30% 3–30

Norovirus 0.5–1439 0.07–2 1.6–7.340,41 0.1–2.0 0.5–30% 3–7

Influenza 3–742 0.1–0.4 0.9–2.2743,44 0.1–0.9 0.5–30% 3–30

Table 2.  Parameter Selection.
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For each disease, we identify the latest possible control start and the least effective intervention that could still 
result in κ values of 0.1 and 0.01 (see Table 3). Interestingly, if control measures have λs that are large enough 
(minimum 5%), or control starts that are early enough (6—30 days) they can consistently produce dramatic 
reductions in outbreak load. By examining these values in various parameter ranges, we can begin to see the 
effects of parameter ranges on κ results. In Table 3, we consider (1) the entire range, (2) the lower 50th percentile 

Figure 2. Each scatterplot shows a parameter (β, γ, λ, R0 or τ) with respect to outbreak size, represented 
here by the cumulative number of infected individuals in a controlled or uncontrolled outbreak. Each point 
in the scatterplot corresponds to one trial, as described in the text. Points are colored by the range in which the 
corresponding κ score falls. Here, strong relationships between parameters and the outcome (e.g., γ and R0) indicate 
stronger influence on outbreak size compared with parameters that have weak or no relationships (e.g., β, τ).
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of both γ and β values or (3) the upper 50th percentile of both γ and β values. There is a strong distinction 
between outbreaks with large values (upper 50th percentile) compared to outbreaks with small values. For exam-
ple, in measles outbreaks, although it is possible to reduce the outbreak to 10% of the uncontrolled outbreak by 
beginning a control measure 29 days after outbreak onset, dividing the outbreaks into upper and lower 50th 
percentiles indicates this is actually only possible if both the β and γ parameters fall into the lower 50th percentile 
and the control is at least 19% effective. Similar, but less dramatic trends are evident in norovirus and influenza.

These examples illustrate the possible use of models like this for decision support. By aggregating several mod-
els, it is possible to identify general trends that are relevant for intervention decisions.

User interface. To facilitate widespread use of the model, a user interface was developed. Figure 4 shows an 
example of user data and application output. Output includes the smallest and largest SIR curves possible based 
on user input, as well as the effect of user control measures on those curves. An additional three graphs describe 
how outputs (κ) change with changing R0, β and γ values, and describe the minimum required control effective-
ness to reduce the outbreak ten times. Visualizing the data multiple ways allows the user to see different aspects 
of the same outbreak, and facilitates enhanced decision making capabilities. In the example presented, the second 
graph (titled ‘Intervention analysis’) indicates that changing the control start date by a few days in either direction 
minimally impacts the resulting κ score, regardless of the R0 value. However, changing control effectiveness from 
0.01 to 0.1 dramatically increases κ.

Figure 3. Three sets of scatterplots describing simulated outbreaks of influenza, norovirus and measles are 
shown. Individual scatterplots provide a cross section of possible outbreaks where rows hold β ranges constant 
while columns hold γ ranges constant. Plots show λ values on the y-axis, control start (τ) values on the x-axis 
and are colored by κ ranges. Each point denotes a counterfactual (i.e., a controlled outbreak within the given 
β and γ ranges compared to an identical uncontrolled outbreak). The color indicated the κ score associated 
with the counterfactual trial. Gray points are combinations that yield no outbreak (defined here as fewer than 
2 cases overall), and progressively darker shades of blue indicate less difference between the controlled and 
uncontrolled outbreak.
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Discussion
We conducted this study to evaluate the feasibility of a simplified approach to decision support for control meas-
ure intervention. The larger goal is the development of methodologies that improve collaboration between public 
health and modeling communities which in turn can facilitate optimum disease response during outbreaks.

Our results suggest that it is reasonable to simultaneously explore the impact of a variety of control measures on 
outbreak progression in a number of scenarios using simple SIR models. We do so while using a range of outbreak 
parameters, to understand the effects of both outbreak parameters and control efforts on outbreak progression. We 
show that, in this model, γ affects the outbreak outcomes most substantially. We further provide a way to measure 
the relative success of outbreak control using the κ value. We lastly present one possible method to promote adoption 
of models in the public health community by presenting a simple, web-based interface for the model.

β and γ range 
percentile Measles Norovirus Influenza

Latest τ for κ ≤  0.1 (associated λ) All 29 (19%) 6 (5%) 29 (15%)

Latest τ for κ ≤  0.1 (associated λ) Lower 50% 29 (19%) 6 (5%) 29 (17%)

Latest τ for κ ≤  0.1 (associated λ) Upper 50% None 6 (16%) 29 (29%)

Smallest λ for κ  ≤  0.1 (associated τ) All 5% (6) 5% (6) 5% (12)

Smallest λ for κ ≤  0.1 (associated τ) Lower 50% 7% (24) 5% (6) 5% (6)

Smallest λ for κ ≤  0.1 (associated τ) Upper 50% None 6% (5) 6% (10)

Latest τ for κ ≤  0.01 (associated λ) All 29 (27%) 6 (5%) 29 (7%)

Latest τ for κ ≤  0.01 (associated λ) Lower 50% 29 (19%) 6 (9%) 29 (17%)

Latest τ for κ ≤  0.01 (associated λ) Upper 50% None 6 (16%) 19 (29%)

Smallest λ for κ ≤  0.01 (associated τ) All 7% (24) 5% (6) 5% (12)

Smallest λ for κ ≤  0.01 (associated τ) Lower 50% 7% (24) 6% (5) 6% (9)

Smallest λ for κ ≤  0.01 (associated τ) Upper 50% None 6% (5) 13% (5)

Table 3.  Control measure summary results.

Figure 4. A web-based application using the model presented is shown. User input fields are on the left, and 
application output is on the right. Inputs are simple, and allow the user to describe ranges of parameters rather 
than point estimates. Application outputs include traditional epidemiology curves (top left), simple line charts 
describing the effect of changing control starts or effectiveness (top right) and two heat maps to describe the 
impact of various parameters on the resulting outbreak (bottom row).
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Compartmental models are in many ways preferable to agent-based models because of their simplicity and 
small computational requirements. However the use of SIR models necessitates adoption of several assump-
tions that rarely exist in real world outbreaks. Of particular concern is the assumption of homogenous mixing. 
However, there are numerous ways to improve upon the simple model described here. Other compartmental 
models (e.g., SEIR, SIS, SI etc.) and methods exist to reduce or modify these assumptions and expand the breadth 
of applicable disease. For example, Hethcote et al. describe a method to allow non-homogenous mixing within 
compartmental models for sexually transmitted infections29.

Another possibility is the addition of an underlying network to improve model behavior. For example, Meyers 
et al.30 found that coupling a compartmental model with an underlying social network allowed them to explain 
aspects of real SARS epidemics (used for illustration purposes in the introduction) better, than the compartmen-
tal models alone. Related possibilities include additions of spatial networks in addition to or instead of social 
networks31. It is possible that various networks are suited to particular diseases or disease scenarios. These sub-
tleties offer opportunities for extensive further research. Importantly, many variations of these models continue 
to maintain comparatively low computational requirements, while allowing for a better representation of reality.

Another, related focus should be continued research on the impact of parameter selection on model outputs. 
Here, we describe an approach where parameters are assumed to be known (or estimate-able), and the range of 
possible outbreaks are treated as an outcome. In contrast, Wearing et al. estimate parameters by finding the best 
simulated outbreak fit to real data and identifying the parameters that give rise to that simulation32. Their results 
caution that model selection (e.g., the type of compartmental model used) can dramatically affect the result-
ing reproductive ratio estimated. Our results indicate that, in addition, variations in reproductive ratio produce 
exceedingly different outbreaks. Meyers et al.30 also note the large impact parameter selection and network struc-
ture can have on resulting simulated outbreaks.

One obvious possible improvement is in the continued production and extension/refinement of tools to utilize 
compartmental models and afford control measure simulation quickly and easily. The tool presented here, for 
example, might be enhanced by adding new compartmental models, refining control definitions, improving visu-
alization, and investigating addition of network structures. Deployment of these systems as open-source code, or 
freely available web applications should be encouraged.

Overall, there is a clear need in the field to better understand outbreak parameters, model selection, underly-
ing model assumptions, and the ways that these apply to real world scenarios. While SIR models have been used 
extensively for many years, there has been little work done on validating their output. We thus propose thought-
ful validation of SIR models as an important next step. One method to accomplish this is to compare the out-
puts of validated agent-based models to outbreaks produced using compartmental models. Previously validated 
agent-based models simulating disease outbreak progression on a fine tuned scale already exist (e.g., EpiSimS33,34) 
and would provide good candidates for this research.

Such a validation would accomplish several things. It would (1) validate the counterfactual approach, (2) 
provide additional data to describe when compartmental models are appropriate approximations of real world 
outbreaks and (3) provide data to describe situations where the compartmental models do not match real world 
outbreaks and should not be used for decision support.
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