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Abstract

Indels in the coding regions of a gene can either cause frameshifts or amino acid insertions/deletions. Frameshifting
indels are indels that have a length that is not divisible by 3 and subsequently cause frameshifts. Indels that have a
length divisible by 3 cause amino acid insertions/deletions or block substitutions; we call these 3n indels. The new
amino acid changes resulting from 3n indels could potentially affect protein function. Therefore, we construct a SIFT
Indel prediction algorithm for 3n indels which achieves 82% accuracy, 81% sensitivity, 82% specificity, 82%
precision, 0.63 MCC, and 0.87 AUC by 10-fold cross-validation. We have previously published a prediction algorithm
for frameshifting indels. The rules for the prediction of 3n indels are different from the rules for the prediction of
frameshifting indels and reflect the biological differences of these two different types of variations. SIFT Indel was
applied to human 3n indels from the 1000 Genomes Project and the Exome Sequencing Project. We found that
common variants are less likely to be deleterious than rare variants. The SIFT indel prediction algorithm for 3n indels
is available at http://sift-dna.org/
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Introduction

Each human genome contains more than ten thousand
coding variants [1]. These variants are of considerable interest
because most disease variants with severe phenotypic
consequences are found in coding regions [2]. The majority of
severe diseases are caused by missense mutations (44%) and
small coding indels (23%), according to the HGMD database
[2]. Missense changes are single base changes that cause an
amino acid change in the corresponding protein sequence.
Coding indels are insertions or deletions of DNA bases in the
coding portion of a gene.

Given the large number of coding variants per genome and
their potential importance, the features that distinguish neutral
variation from deleterious are of significant interest. For single
nucleotide base changes that cause single amino acid
substitutions, features such as sequence conservation,
predicted structure, and annotation of functional protein regions
can help distinguish between neutral and deleterious mutations
[3]. These features can be used by prediction algorithms that
prioritize the functional effect of a coding variant [3-7].

Indels have not been as well characterized as single amino
acid substitutions. There are two types of coding indels: those
that have lengths that are divisible by 3, and those that do not.
Indels with lengths that are not divisible by 3 cause frameshifts,
and are presumed to be deleterious to gene function. However,
frameshifting indels found in healthy humans tend to occur at
the ends of genes or in redundant genes [8-10]. This indicates
indel location and gene function are important features for
distinguishing between neutral and deleterious frameshifting
indels. We use the term “3n indels” for the small indels with
lengths divisible by 3. These indels typically lead to an insertion
or deletion of amino acids in the corresponding protein
sequence. If single amino acid substitutions can affect protein
function and play a role in disease, then the insertion/deletion
of amino acid(s) could also affect protein function and
potentially lead to disease. 3n indels that cause an insertion/
deletion of amino acid(s) tend to be in conserved regions and
lower disorder regions [11,12].

SIFT is a widely used algorithm to predict the effect of
missense changes on protein function [13]. SIFT can also
predict on frameshifting indels [10]. Here, we extend SIFT by
adding prediction for 3n indels that cause insertion/deletion of
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amino acid(s). In this work, we have constructed a SIFT Indel
prediction algorithm which classifies 3n indels as gene-
damaging or neutral, and performs comparably to DDIG-in and
PROVEAN [11,12]. The purpose of this study is to elucidate
important features of deleterious 3n indels, and to provide a
prediction method for 3n indels.

Materials and Methods

Dataset
The goal of this classifier is to predict if a 3n indel affects

gene function (designated as “gene-damaging") or not
(designated as “neutral”). The classifier for 3n indels was
trained and tested on two datasets:

1. Indel Disease Set: Disease-causing indels were obtained
from HGMD [2] version 2010.2. HGMD is a database of
mutations found in affected patients, and these mutations are
assumed to be gene-damaging. The original HGMD dataset
contains 1,887 indels. We picked one indel per gene to be
represented in the dataset to avoid over-training on genes that
have many HGMD indel entries. After choosing one indel per
gene and removing indels from non-exon regions and from
genes with invalid/incomplete transcripts, 474 indels remained.
The HGMD accession id’s of the 1,887 indels and 474 indels
can be found in Data S1.

2. Neutral Indel Set: The set of neutral 3n indels were
derived from pairwise alignments from the UCSC genome
browser of human with cow, dog, horse, chimpanzee, rhesus
macaque and rat [14]. After choosing one indel per gene and
removing indels from non-exon regions and from genes with
invalid/incomplete transcripts, there were 9,710 neutral indels.
The locations of the neutral indels can be found in Data S1.

In addition to the above datasets used for training and test
purposes, we use human 3n indels from the 1000 Genomes
Project (1K) [15] and the Exome Sequencing Project (ESP) [1]
to observe indel trends in the human population. The 1000
Genomes Project is a worldwide collaborative effort to
sequence human genomes from different ancestries. As of
November 8, 2011, it has over 1000 exomes with at least 20x
coverage in 70% of the exomes. The Exome Sequencing
Project (ESP) sequenced coding regions of the genome from
samples that either served as controls, showed extreme
manifestations of specific traits (LDL and blood pressure), or
had specific diseases (early onset myocardial infarction and
early onset stroke, lung diseases). Despite containing
individuals with unfavorable traits, ESP, like dbSNP and 1000
Genomes, is often used as a control and used to filter out
neutral variants in order to focus on disease variants [16,17].
For ESP, we used the ESP6500SI dataset which includes
6,503 exomes.

Prediction Algorithm
We make a decision tree algorithm for the insertion/deletion

of amino acids only. If a 3n indel causes an early stop or
frameshift, then this indel is discarded from the training and test
set. An example of such an indel is an insertion of TGA which
introduces an early stop codon. It will be treated as a

framshifting indel and predicted by the SIFT prediction
algorithm for frameshifts [10].

If the indel or a part of the indel is repeated in the indel itself
and its contiguous flanking sequence, then the indel is deemed
to be located in a repeat region.  For example, for the
sequence ctcctc-CAT-catctg, the indel will be called as a repeat
of (CAT)2. Another example is atcgg-CCC-ccacc; since C (an
element of the indel) is repeated 5 times in the indel and its
flanking sequence, the indel is also considered a repeat of (C)5.
The minimum length of a repeat is 4 for mononucleotide
repeats (e.g. CCCC), and 6 for trinucleotide repeats (e.g.
(CAT)2).

Indels in repetitive regions can be described in multiple ways
by the genome coordinate system. Because some features in
the decision tree algorithm depend on the indel’s location, we
wanted a consistent way to describe the location of an indel in
the genome. Each indel goes through a preprocessing step for
calling consistent genomic coordinates: if an indel resides in a
repeat, then the coordinates of the indel will be shifted left
before further processing. For example, chr12: 132547088 has
an insertion of 3 bases GCA. Because the insertion is flanked
by 6 GCA’s 5’ to the indel, the indel coordinates will be
adjusted to chr12: 132547070 (Figure S1). Thus, we shift all
indel positions to the left if they reside in a repeat.

We used RONN [18] to find the disorder regions of proteins.
We construct a classifier based on the J48 decision tree

algorithm implemented in WEKA[19] to predict if an indel is
“gene-damaging” (affects the function of the gene it resides in)
or “neutral” (does not affect gene function). We choose to
implement the prediction algorithm as a decision tree because
it provides interpretable classification rules, which can provide
biological insight. Because the dataset is not balanced, we
used 474 disease indels and randomly sampled 474 neutral
indels from the neutral dataset for training and cross-validation.

Performance measurement
Ten-fold cross-validation was used to evaluate the

performance of the algorithm. The dataset was divided into ten
equal-sized subsets. In the ten-fold cross-validation, there were
ten rounds of experiments. During each round of experiments,
nine subsets were used to train the classifier, and the
remaining subset was used to test the classifier. In this study,
disease-causing indels are treated as the positive class, while
neutral indels are treated as the negative class. True positives
(TP) are disease-causing indels predicted as gene-damaging.
True negatives (TN) are neutral indels predicted as neutral.
False negatives (FN) are disease-causing indels predicted as
neutral. False positives (FP) are neutral indels predicted as
gene-damaging.

Performance is measured using sensitivity, specificity,
precision, accuracy, MCC (Matthews correlation coefficient),
and AUC (area under the curve). Sensitivity is the fraction of
disease-causing indels that are correctly predicted as gene-
damaging. Specificity is the fraction of neutral indels that are
correctly predicted. Precision is the percentage of predicted
gene-damaging indels that are actually gene-damaging.
Accuracy is the percentage of overall predictions that are
correct. AUC is the area under the ROC curve when adjusting
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sensitivity vs. (1-specificity). MCC is a balanced measure of the
performance on both positive and negative samples. The
formulas for sensitivity, specificity, precision, accuracy and
MCC are as follows:

sensitivity= TP
TP+FN

speci f icity= TN
TN+FP

precision= TP
TP+FP

accuracy= TP+TN
TP+FN+TN+FP

MCC= TP×TN−FP×FN
TP+FN TP+FP TN+FP TN+FN

Feature Selection
For each indel, we have extracted 27 features (see Table

S1) describing its properties and influences on the gene
product. A heuristic feature selection process was used to
choose the features that were useful for the prediction of gene-
damaging indels. This feature selection procedure is a
simplified version of the Bestfirst method included in WEKA
[19]. The search initially started with an empty feature set.
Then, one feature was added and 10-fold cross-validation was
used to evaluate the performance (i.e., MCC). This step was
repeated 27 times so that every feature was attempted
individually. After the 27 MCC’s were calculated, the feature
with the highest prediction performance was added to the
feature set. In the next iteration, every feature from the
remaining available features was tested and the feature that
showed the largest improvement in the performance (as
measured by MCC) when combined with the current selected
feature set was chosen to be added to the feature set. The size
of feature set was then increased by 1. This feature selection
process continued until adding any of the remaining features to
the feature set decreased performance.

Results

Motivation for Features in Classifier
For the indels in the disease and neutral datasets, we

extracted 27 features describing each indel and the indel’s
influence on the gene product (see Table S1). These features
were used for training the decision tree algorithm. For example,

features describing the physiochemical properties of the amino
acids being affected by the indel (e.g. hydrophobicity, volume,
mass, surface area, breaking structure) were added as
features. The motivation for implementing these features was
based on a previous study where Chang and Benner studied
protein alignments and looked at the amino acids appearing in
and around the gapped regions of the alignment [20]. They
found that gapped regions had a propensity for hydrophilic
residues but not for hydrophobic residues. Therefore, we
implemented amino acid properties as features.

Similarly, we reasoned that amino acids in the secondary
structure of the protein (e.g. α-helix, β-sheet) would be
important for function, whereas amino acids not in the
secondary structure (typically in flexible disordered regions of
the protein structure), would not be as important. Therefore,
one feature was whether the amino acid that was inserted/
deleted was in a disordered region of the protein [15].

We were also motivated to identify if an indel is in a repeat
region because repetitive indels play a role in polyglutamine
diseases [21]. We wanted to be sensitive to indels in small
repeats so we implemented a script to detect small exact
repeats rather than using the de facto algorithm for tandem
repeats, Tandem Repeats Finder [22] (see Methods). Six
features were from our past frameshifting algorithm [10]; we
also added 21 new features (i.e., feature 1, 3-4, 6-7, 12-27) to
capture various properties and influences of the 3n indels.

Performance of the decision tree
Because the number of disease indels and neutral indels is

not balanced (~1:20), we used 474 disease indels and
randomly sampled 474 neutral indels from the neutral dataset
for training and cross-validation to avoid bias toward neutral
dataset. The performance of the decision tree trained on this
sampled dataset (all 474 disease indels and randomly selected
474 neutral indels) was evaluated using ten-fold cross-
validation. We then again sampled a new set of 474 neutral
indels from the neutral dataset and the same evaluation
process was used. This sampling process was repeated 1,000
times and the average performance and standard deviation
were calculated across all samplings. When all 27 features
were used, the decision tree achieved an average performance
of 80% sensitivity, 80% specificity, 80% precision, 80%
accuracy, 0.61 MCC, and 0.82 AUC (Table 1). The standard
deviations were within a small range (i.e., 2.0%, 2.0%, 1.7%,
1.5%, 0.03 and 0.02 respectively), which indicates it is
reasonable to use one sampling instead of all indels in the
neutral dataset for feature selection and training of the final
classifier.

Table 1. Performance of the decision tree using different features.

Feature used Sensitivity(%)±SD Specificity(%)±SD Precision(%)±SD Accuracy(%)±SD MCC±SD AUC±SD
27 features 80±2.0 80±2.0 80±1.7 80±1.5 0.61±0.03 0.82±0.02
4 features 81 82 82 82 0.63 0.87

SD: Standard deviation
doi: 10.1371/journal.pone.0077940.t001
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We then randomly picked one sampling which consisted of
474 disease indels and 474 neutral indels. We named this
dataset the “Balanced Dataset”. We used a greedy feature
selection method to search for an optimal set of features that
are useful for prediction (see Methods). The final method used
four selected features to achieve 82% accuracy, 81%
sensitivity, 82% specificity, 82% precision, 0.63 MCC and 0.87
AUC by 10-fold cross-validation (see Table 1). This final
method has better performance than using all 27 features
(Figure 1). Also, the decision tree and classification rules built
from these 4 features are concise, interpretable, and less prone
to overtraining. We also applied the final method on the
complete dataset (1,887 disease indels and 9,710 neutral
indels) and achieved 78% sensitivity, 82% specificity, 45%
precision, 82% accuracy, 0.50 MCC, and 0.85 AUC (Table 2).
The precision and MCC are low because the large neutral indel
dataset causes a high number of false positives which affects
these performance metrics.

We were also interested in the performance of the decision
tree for insertions and deletions separately. The performances
of 10-fold cross-validations are similar for insertions and
deletions combined, insertions only, and deletions only on the
balanced dataset used for training (Table 2). We also applied
the final decision tree to predict on the complete dataset. For
this larger dataset, the decision tree achieved better accuracy

Figure 1.  Performance as a function of the number of
features.  Matthew’s correlation coefficient is used to measure
performance. Adding more features beyond the first four
features does not substantially improve performance, and can
lead to a decline in performance.
doi: 10.1371/journal.pone.0077940.g001

on insertions than deletions (85% vs. 80%) (Table 2). For
comparison, we also plot the ROC curves of predictions on the
balanced and complete datasets for insertions and deletions
combined, insertions only, and deletions only (Figure 2). For
the balanced dataset, the AUC is 0.87 for insertions and
deletions combined, 0.87 for insertions only, and 0.87 for
deletions only. For the complete dataset, the AUC is 0.85 for
insertions and deletions combined, 0.90 for insertions only, and
0.83 for deletions only. The decision tree achieved better
performances on insertions than deletions. However, if we
require high specificities (specificity>90%, or FPR<0.1), then
sensitivities are similar for all 6 datasets (see overlap of all
curves on left side of Figure 2).

Insertions have higher performance compared to deletions,
and this was also found in PROVEAN [12]. DDIG-in initially
trained insertions and deletions separately, but the final SVM
was trained on the combined set of insertions and deletions
because of the large overlap of features [11]. For our decision
tree, we decided to combine insertions and deletions as a
single dataset for training of the decision tree due to the small
training dataset, especially for insertions. Widespread
sequencing will identify additional indels so that training on

Figure 2.  SIFT ROC curves for insertions and deletions
combined, insertions only, and deletions only.  The
balanced dataset is the training set for the decision tree and
consists of 474 disease indels and 474 neutral indels. The
complete dataset consists of 1,809 disease indels and 9,710
neutral indels.
doi: 10.1371/journal.pone.0077940.g002

Table 2. Performances of the decision tree for insertions, deletions and both.

Performance Balanced Dataset Complete Dataset

 Insertions Deletions Combined Insertions Deletions Combined
Sensitivity 83% (74 /89) 81% (312/385) 81% (386/474) 91% (257/283) 76% (1154 /1526) 78% (1411/1809*)
Specificity 82% (172 / 211) 82% (215/263) 82% (387/474) 84% (3477/4125) 81% (4501/5585) 82% (7978/9710)
Accuracy 82% (246 /300 ) 82% (527/648) 82% (773/948) 85% (3477/4408) 80% (5655/7111) 82% (9389/11519)

* Out of 1,887 disease indels, 1,809 have predictions. The rest lack of predictions because they are located in genes with no valid/complete transcript information.
doi: 10.1371/journal.pone.0077940.t002
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larger datasets in the future may stabilize performance for
insertions.

Analysis of selected features and trained classification
rules

The four features for prediction were chosen using the
heuristic feature selection process described in the Feature
Selection section of Methods. These features, in the order they
were chosen, are: 1) fraction of Pfam [23] domains affected, 2)
whether the indel resides in a repeat, 3) whether the indel is in
a disordered region [24],and 4) the conservation score of the
DNA base to the left of the allele obtained from PhyloP [25].
They are features 9, 1, 27 and 3 as described in Table S1.

There are 10 classification rules derived from the trained
decision tree (see Table S2). A classification rule is extracted
by following a path from the root of the decision tree to one of
its leaves. The class of most training samples which follow the
path gives a classification rule; while the percentage of training
samples which matches the class of the leaf on that path gives
the confidence score of such classification. Three rules can be
used to predict on the majority of the training indels (i.e., almost
60% of gene-damaging indels and 84% of neutral indels).
These rules are as follows:

Rule 4: If no Pfam domain is affected, the indel is not in a
repeat but in the disordered region of gene’s protein product,
then the indel will not affect the gene function. The confidence
score of this rule is 0.918. (Out of 317 training samples that
followed this classification rule, 291 of them were actually
functional neutral.)

Rule 5: If no Pfam domain is affected, the indel is not a
repeat and is not located in the disordered region of the protein
product, and the DNA base 5’ of the allele is not conserved
(conservation score ≤ 1.405), then the indel will be functionally
neutral with a confidence score of 0.720. (Out of 82 training
samples that followed this classification rule, 59 of them were
actually functionally neutral.)

Rule 10: If there are Pfam domains affected and the indel is
not located in disordered region, then the indel will be gene-
damaging with a confidence score of 0.894. (Out of 284
training samples that followed this rule, 254 of them actually
affect gene functions.) The biological reasoning for this rule is
that if the indel is not in a disordered region then it is located in
secondary structure which also has functionality according to
Pfam. Thus, indels that disrupt structure/function are damaging
to gene function.

Because rules 4,5, and 10 cover the majority of the training
set, we also reported the performance of 10-fold cross-
validation by using combinations of just these three rules (see
Table S3).

Together these rules reflect that an indel is unlikely to affect
gene function if it does not reside in a Pfam functional domain,
is not a repeat, resides in a disordered region, and/or its left
flanking base is not conserved. An indel is more likely to be
gene-damaging if the indel affects Pfam domains, is a repeat,
not in disordered region, and/or its left flanking DNA base is
highly conserved.

Disease indels are 4 times more likely to occur in repeats
than neutral indels; 11% of neutral indels versus 43% of

disease indels appear in repeat regions. The period size of the
repeat tends to be divisible by 3, consistent with a repeating
amino acid or amino acids (Figure 3). The number of copies of
the repeat for disease indels can be small. Half of the disease
indels are due to two copies of a trinucleotide repeat (e.g.
(ACG)2) (Figure 3). This indicates that disease indels are
frequently due to an insertion that is a simple duplicate of an
amino acid (e.g. CTT → (CTT)2 causes Leu → LeuLeu) or a
deletion of an amino acid from 2 amino acids with 2 identical
codons (e.g. (AAG)2 → AAG causes LysLys → Lys).
Polymerase slippage causes indels to occur in sequence that is
repeated [26]. Slippage is a frequent mutation mechanism, and
slippage-like indels are known to occur 5-9x more frequently
than random mutations [27]. Hence, a substantial percentage
of the disease indels are due to intrinsic DNA mutation
susceptibilities.

Prediction on Human Indels
Evolution selects against deleterious variants.

Consequentially, common variants are less likely to be
deleterious than rare variants, and this has been confirmed for
missense substitutions and frameshifting indels [3,4]. We
applied the SIFT Indel algorithm to the 3n indels identified from
the 1000 Genomes Project (1K) [15] and the Exome
Sequencing Project (ESP) [1], and observed similar trends for
3n indels. We calculated the fraction of indels that were
predicted damaging for indels identified by 1000 Genomes and
the Exome Sequencing Project. As expected and across all
datasets, a higher fraction of rare indels were predicted
damaging compared to common indels (Table 3). Over 50% of
the rare 3n indels were predicted damaging (MAF <= 0.05). For
common 3n indels (MAF > 0.05), the percentage predicted
damaging ranged from 30% to 45%, and this appears to be
highly dependent on the source of the data. Common indels
from Exome Sequencing Project were more likely to be
predicted tolerated than common indels from 1000 Genomes
Project, which may due to differences between the data sets

Figure 3.  Repeat length distribution for disease indels in
small exact repeat regions.  On the x-axis is the total length
of the repeat, which is the product of the period size of the
repeat and the number of copies of the repeat.
doi: 10.1371/journal.pone.0077940.g003
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with different sequencing technologies and downstream variant
calling pipelines.

We examined the relationship between indels’ allele
frequencies and DNA conservation. For a given range of allele
frequencies (e.g. Minor allele frequency =0.00- 0.05), we
calculated the fraction that of indels that are conserved, as
defined by having a GERP conservation score > 2 [25]. Rare
indels were more likely to be conserved than common indels
(Figure 4).

Discussion

We have previously shown that SIFT predicts on amino acid
substitutions and frameshifting indels. Here, we enhance SIFT
to predict on short insertions/deletions of amino acid
substitutions.

Biological Insights from the Decision Tree
One would expect that insertion/deletion of amino acids in a

functional region to alter gene function. This is consistent with
our decision tree’s rule that when an indel resides in a Pfam
domain, the indel is more likely to be damaging. Similarly,
disordered regions of a protein evolve more rapidly than the
ordered regions [28], so it is not surprising that disordered
regions can withstand variation; therefore, indels in these
regions would be predicted to be neutral.

The conservation score of the DNA base 5’ to the indel was
another feature selected, where low conservation at the base
returns a neutral prediction. If the conservation score of the
DNA base 5’ of the indel is low, then this could indicate the
indel is flanking the third base of a codon. The third base of a
codon can be degenerate (e.g. ACN encodes Threonine) and
tends not to be conserved. This suggests the indel coincides
with codon boundaries and amino acid(s) would be precisely
inserted or deleted, which is a phase 0 indel event and no
amino acid changes occur in the flanking sequence [27]. Our
algorithm suggests that precise insertion/deletion of amino
acids have less deleterious consequences on gene function
than 3n indels that change neighboring amino acids in addition
to inserting/deleting amino acids.

Comparison with Other Tools
Recently two other tools which can predict the effects of 3n

indels have been published. PROVEAN [11] predicts the effect
of 3n indels by measuring the change of sequence similarity
scores of the target protein with its homologous proteins. It
achieved 82% accuracy for deletions and 87% accuracy for
insertions on human indels extracted from UniProt’s “Human
Polymorphisms and Disease Mutations” dataset. DDIG-in [12]
is a support vector machine-based method by exploring
features at both nucleotide and protein level, including DNA
conservation scores and disorder scores. Using selected
features, DDIG-in yielded 0.684 for MCC, 85% for accuracy
and 0.89 for AUC on dataset of both insertions and deletions
by 10-fold cross-validation. Therefore, our prediction tool has
similar accuracy (82%) compared to PROVEAN (82%) and
DDIG-in (85%).

Training datasets determine how an algorithm is constructed
and performs. DDIG-in and SIFT 3n Indel used disease indels
from HGMD, but different neutral datasets. DDIG-in’s neutral
dataset were indels from healthy individuals sequenced by
1000 Genomes Project. Our motivation for using cross-species
comparisons for our neutral dataset was because indels from
apparently healthy human individuals might still damage gene
function yet not manifest as disease. Indels from cross-species
comparisons have undergone millions of years of selection,
and the majority of variants with small negative selection
coefficients should have been eliminated. Despite the
differences in datasets, both DDIG-in and SIFT have selected
similar features for being important for prediction, such as
conservation and disorder scores.

Table 3. Percentage of 3n indels predicted damaging,
according to allele frequency and population.

 Exome Sequencing Project 1000 Genomes

 EUR AFR EUR ASN AFR
Rare (MAF <= 0.05) 55% 55% 54% 57% 52%
Common (MAF > 0.05) 30% 30% 41% 49% 46%

EUR: European, AFR: African, ASN: Asian
doi: 10.1371/journal.pone.0077940.t003

Figure 4.  The fraction of indels that are conserved for
indels in a given allele frequency range.  Conserved is
defined as a GERP score > 2. 1000G: 1000 Genomes; AFR:
African; EUR: European; ASN: Asian; ESP: Exome
Sequencing Project; EA: European American; AA: African
American.
doi: 10.1371/journal.pone.0077940.g004
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Comparison of rules for 3n Indels and Frameshifting
indels

The rules for the prediction of 3n indels conform to known
biological insights about insertions/deletions of amino acids in
protein sequence. We compare the rules for amino acid
insertion/deletion prediction with the rules extracted for
frameshifting indels in our previous study [10]. For both
frameshifting and amino acid indels, conservation is important.
However, conservation is considered at the direct location of
the insertion/deletion of the amino acid for 3n indels. In
contrast, for frameshifting indels, conservation is important
downstream of the indel location, because this indicates if
protein function has been lost as a result of the frameshift. In
general, 3n indels affect the local environment surrounding the
mutation, while frameshifting indels affect everything
downstream of the indel.

Amino acid changes and coding indels encompass over two-
thirds of known disease mutations [2]. Thus, SIFT supplies
predictions for the two largest classes of known disease
mutations. These types of prediction methods will aid
researchers in prioritizing newly discovered variation.
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Table S1.  List of all features tested by the decision tree.
(DOCX)

Table S2.  Classification rules for prediction.
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Table S3.  Performance of 10-fold cross-validations using
subsets of rules.
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Figure S1.  Shifting indels in repeats to the leftmost
position. An indel has a position assigned at
chr12:132,547,088 (filled red arrow). Because the indel is in a
repeat sequence, it could also be assigned other locations and
still result in the same DNA change (dashed purple arrows).
Due to the ambiguity of locations, we assign indels in repeats
the leftmost position (chr12:132,547,070, filled purple arrow).
(TIF)

Data S1.  List of neutral indel locations and HGMD id’s of
disease indels.
(XLSX)
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