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Introduction

Medication related osteonecrosis of the jaw (MRONJ) is a 
complication associated with the use of bone antiresorptive 
agents1, mainly bisphosphonates (BPs) that are widely used 
for the management of osteoporosis, bone metastasis and 
other bone-loss related disorders1-4. It has been suggested 
that the development of MRONJ is more frequently reported 

with the use of high doses of IV BPs, for the treatment or 
prevention of skeletal related events (SREs) in patients with 
advanced cancer and bone metastasis compared to standard 
doses used for the treatment of osteoporosis5. Nonetheless, 
recent good quality of evidence suggests that MRONJ is also 
seen among patients receiving BPs, per os or intravenous 
for non-malignant indications6-8. The hallmark of MRONJ 
development is the finding of necrotic exposed bone in the 
oral cavity1. In the majority of cases, the precipitating event 
appears to be a dental extraction or other dental invasive 
procedures1, and use of dentures1,9,10. However, 40% of 
MRONJ cases appear to occur spontaneously and to be 
unrelated to dental treatment11,12. 

Despite the increasing amount of evidence regarding 
the association of MRONJ with bone metabolism and anti-
resorptive agents the underlying pathogenetic mechanisms 
remain largely unknown;2,4,13 infection at tissue level in the 

Abstract

Objectives: To examine the effect of denosumab administration in the peripheral blood white cell population, to further 
elucidate a plausible pathophysiological link between denosumab and osteonecrosis of the jaw. Methods: Thirty women 
with osteoporosis, after denosumab treatment were included. Peripheral blood samples were obtained prior to and 48-72 
hours following denosumab administration. Flow cytometry gated at the monocyte population for CD14/CD23/CD123/
CD16 stainings were performed. Results: We were able to record a number of changes in the monocyte populations 
between baseline and after denosumab administration. Most importantly, in the monocyte populations we were able to 
detect statistically significant increased populations of CD14+/CD23+ (p=0.044), CD14-/CD23+ (p=0.044), CD14+/
CD123+ (p=0.011), CD14+/CD123- (p=0.011) and CD14-/CD16+ (p=0.028). In contrast, statistically significant 
decreased populations of CD14-/CD123+ (p=0.034), CD14+/CD16+ (p=0.037) and CD14+/CD16- (p=0.014) were 
detected. Conclusions: Our results provide evidence supporting the hypothesis that denosumab administration modifies 
the monocyte mediated immune response in a manner similar to that of bisphosphonates. This may partly explain the 
trivial immunity changes recorded with denosumab.
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oral cavity has also been implicated in the pathogenesis14,15. 
Denosumab (Dmab), is a fully human monoclonal antibody, 

which binds to receptor activator of nuclear factor kappa beta 
ligand (RANKL), and is a potent anti-resorptive agent used 
for the management of osteoporosis and the prevention of 
SREs in cancer patients, showing favorable results in terms 
of efficacy and safety16-18. Due to its unique pharmacokinetics 
Dmab exerts a maximal suppression of bone turvover 
during treatment, but unlike BPs that are embedded in the 
bone matrix, Dmab-induced suppression is reversed after 
treatment discontinuation17,19.

Since osteoclasts and macrophages stem from a common 
progenitor cell lineage15, it has been proposed that a plausible 
compromised local defense due to insufficient numbers or 
reduced functional capacity of macrophages, when combined 
with the impaired oral mucosa that has been reported in 
patients receiving BPs15, could allow oral pathogens to reach 
the bone surface of the jaws14. What is more, given the more 
discrete RANKL pathway inhibition by Dmab, this agent might 
be a more appropriate target to examine RANKL inhibition 
effects on the immune system15,20. We have previously 
reported an increase of CD14+ peripheral blood monocyte 
(PBMC) populations along with a decrease of CD14- PBMC 
populations in breast cancer women receiving intravenous 
Zolendronic Acid (ZA)21.

To shed more light in the role of anti-resorptive agents in the 
aetiopathogenesis of MRONJ through a possible modification 
of the immune system we designed this prospective study in 
order to examine the effect of subcutaneous administration 
of Dmab in postmenopausal women with osteoporosis using 
an immune phenotype quantified sampling profile for B-cells, 
T helper cells, T cytotoxic cells, Natural Killer (NK) cells, NK-
like cells, Monocytes, Polymorphonuclear leukocytes (PMN) 
and Eosinophil granulocytes.

Patients and methods

Sample

Female patients diagnosed with postmenopausal 
osteoporosis and treated with denosumab for at least one 
year that were under regular follow up at the endocrinology 
outpatient clinic were candidates for enrollment. Exclusion 
criteria were: i) secondary osteoporosis, ii) renal and or liver 
insufficiency ii) medical history of cancer, iv) untreated hypo 
or hyperthyroidism, v) metabolic bone diseases other than 
osteoporosis, vi) medical history of osteonecrosis of the jaw, 
vii) history of previous Zolendronic acid use for the treatment 
of osteopororosis. 

All patients gave their informed consent for participation 
in the study and the study was approved by the Institutional 
Review Board of the Faculty of Dentistry (IRB protocol 51/06-
06-2019) of Aristotle University of Thessaloniki.

Anthropometric and demographic data (age, sex, place of 
residence, social security type, marital status) and disease 
status (initial diagnosis, history of treatments received, 
current treatment regimes) were recorded for each patient.

Study protocol

After an overnight fast, blood sample was drawn at the 
hospital, prior to Dmab administration. Then, a second visit 
was planned within 48-72 h after Dmab administration, in the 
hospital, for a second sample.

Flow cytometry

Immunostaining and subsequent flow cytometry were 
performed according to standard protocol prior to Dmab 
administration and 48-72 hours after, on peripheral blood 
samples. The antibodies used were CD45 (PerCP), CD14 
(FITC), CD 23 (PE), CD 123 (PE), CD 4(FITC)/ CD 8(PE)/ 
CD 3(PerCP), CD 3(FITC)/ CD 16+56(PE)/ CD 45(PerCP)/ 
CD 19(APC)/ CD16 (PE) (BD Bioscience), as previously 
described21. Briefly, 100 μl of whole fresh blood were 
stained with the appropriate antibodies as instructed by the 
manufacturers for 30 min at RT. 2 ml of BD lysis buffer was 
added in order to lyse the erythrocytes and the samples were 
incubated for 10 min at RT. The samples were centrifuged at 
500 xg and the supernatants were discarded. Pellets were 
washed once with serum-free PBS and centrifuged at 500 xg 
for 5 min. The final pellet was re-suspended in 0.5 ml serum-
free PBS and the samples were immediately analyzed using 
FACs Calibur and Cell Quest software. 50,000 events were 
collected for each staining. The percentage of positive cells 
for each antibody was determined. The gating for each cell 
population has been previously described21. 

Statistical analyses

Normality explorations were performed on all variables. 
Non-parametric tests were used where normality 
assumptions were not met. Descriptives and absolute and 
relative frequencies for all variables were obtained. Pearson’s 
r or Spearman’s rho correlation coefficients were used, 
following normality explorations. Paired t-test was used for 
paired sample comparisons. Bootstrapping was used for 
internal validation. Alpha level was set at 0.05. An alpha 
value smaller than 0.10 was considered a trend. Statistical 
analyses were performed using the IBM SPSS 23.0 package 
(IBM SPSS Statistics for Windows, Version 23.0, Armonk, NY: 
IBM Corp).

Results

Patients

Thirty postmenopausal osteoporotic women under 
treatment with denosumab were finally enrolled in the study. 
The patient’s anthopomorphometric, clinical and biochemical 
characteristics are depicted in Table 1. 

Six patients (20%) had sustained at least one vertebral 
fracture and 4 had a history of a non-vertebral fracture 
(13%) (Table 1) before initiation of denosumab treatment.

No history of new or worsening vertebral fractures, hip 
fractures or other non-vertebral fractures were reported 
during treatment with denosumab.



341http://www.ismni.org

A. Kyrgidis et al.: Changes in peripheral monocytes after denosumab treatment for osteoporosis

To examine the patients’ monocyte population, gating 
at the monocyte area with the CD14/CD123, CD14/CD23 
and CD14/CD16 stainings were performed (Table 1, Figure 
1). The instrument was set in order to position the cells 
appropriately in the dot blots by using isotype controls, 
voltage, and compensation tools. A dot plot of FSC versus 
SSC was established and the region of interest was selected 
(gated area), excluding any other cell type and cellular debris. 
Each staining was performed twice for each patient, one prior 
and on 48-72 hours post treatment administration (Table 2). 
Statistically significant increase was found in CD14+CD23+, 
CD14-/CD23+, CD14+/CD123+, CD14+/CD123- and CD14-/
CD16+ populations. Decrease was found in CD14-/CD123+, 
CD14+/CD16+, CD14+/CD16- populations. No statistically 
significant difference was found for CD14+/CD23+, CD14+/
CD23-, CD14-/CD23-, CD14-/CD123-, CD14-/CD16- 
monocyte populations (Table 3).

Discussion

In our sample of thirty postmenopausal osteoporotic 
women under treatment with denosumab we were able to 
record a shift towards CD23+ expression in the monocyte 
population, an increase in the CD14+CD123+ population while 

CD14-CD123+ population was decreased and a decrease in 
the CD14+CD16+ population. 

Approximately 2-9% of the peripheral human blood 
leukocytes are peripheral blood monocytes (PBMC), but 
only 40% of the available monocytes circulate while 60% 
migrate22.

CD14 (55 kDa) is a glycoprotein released by monocytes 
and macrophages in humans, which is located on the 
cellular membrane. Normal mature osteoclasts and human 
monocytes have been reported to express high levels of 
CD1421. In our sample, PBMC CD14+21,23-25 populations 
have been found to be markedly increased following Dmab 
administration. In this regard, we have previously reported 
similar findings in PBMC of breast cancer patients treated 
with ZA21. The latter finding is in agreement with previous ex 
vivo26 and experimental studies27 demonstrating an increase 
in CD14+ expression after zolendronic acid exposure which 
was documented in vitro from human PBMC derived cultures27 
and subsequently ex-vivo from human jaw tissues26. Further, 
Dmab administration increased the population of CD14-/
CD23+ monocytes, 48 hours after the infusion. CD 23 is 
a marker of activated macrophages associated with B-cell 
activation28-30. 

CD 123 antigen is present in blood dendritic cells31,32 and 
it is lost when monocytes are transformed in macrophages 
in which CD68 and CD168 predominate33,34. CD123 is a 
molecule currently under intensive research as a potential 
therapeutic target for haematologic malignancies32,35,36. We 
were able to detect a subset of CD14+ that were CD123+ 
probably reflecting the blood dendritic cell population. 
Notably, the increase in this cell population following DMAB 
administration was similar to the increase in the original 
CD14+ population. In contrast, we found the CD14-CD123+ 
population to be decreased, a fact probably attributed 
to a generic decrease of CD14-PBMC following Dmab 
administration.

Skrzeczyńska-Moncznik J et al reported that the CD16+ 
subset of the CD14+ population has a potent anti-inflammatory 
immune action37. In the present study we were able to detect 
decrease in the CD14+/CD16+ following Dmab administration 
in the PBMC population of osteoporotic women under Dmab 
treatment. This finding is novel and may partly explain the 
increased infection risk that has been previously reported in 
patients with osteoporosis treated with Dmab20,38. To avoid 
the immune hindering effects of Dmab while maintaining 
its anti-resorptive efficacy, the linking of anti-RANKL with 
single-chain variable fragments of an antibody specific 
for osteonectin, a protein which is abundantly expressed 
in osseous tissues, has been recently proposed39. This 
approach is even more tempting if one considers that Dmab 
is also used for the treatment of patients with cancer related 
skeletal events in whom hindering macrophage mediated 
immunity may be a double – edged sword.

With regard to the reversal of the hindered macrophage 
immune function to cure MRONJ, Ogata et al40 used 
an experimental design to demonstrate that serum-
free conditioned isolates from mesenchymal stem cells 

Table 1. Anthropometric, clinical and biochemical characteristics 
of the enrolled patients. *: All biochemical and DXA measurements 
were performed before the scheduled dose of denosumab (yrs, 
years; VF, vertebral fractures; NVF, non-vertebral fractures; NR, 
normal range; BMD, bone mineral density; LS, lumbar spine; LFN, 
left femoral veck; LTH, left total hip).

Parameters Values

Age (yrs) 67.8 ± 9

Age at menopause (yrs) 46.28 ± 4.9

Drug – naive patients (n,%) 11, 36%

History of gastroesophageal reflux disease 
and/or peptic ulcer (n, %)

9, 30%

Duration of previous treatment (yrs) 5.1 ± 4

Duration of treatment with denosumab 3.1 ± 1.6

Patients with a history of VF (n, %) 6, 20%

Patients with a history of NVF (n, %) 4, 13%

*Serum calcium (NR: 8.7-10.3 mg/dl) 9.5 ± 0.5

Serum phosphate (NR: 2.5-4.5 mg/dl) 3.3 ± 0.7

Serum creatinin (NR: 0.7-1.2 mg/dl) 0.7 ± 0.14

Serum PTH (NR: 11-54 pg/ml) 47.4 ± 12.8

Serum osteocalcin (NR: 9-42 ng/ml) 10.6 ± 4.8

BMD LS (gr/cm2) 0.921 ± 0.12

T-score LS -2.03 ± 0.96

BMD LFN (gr/cm2) 0.743 ± 0.06

T-score LFN -2.02 ± 0.66

BMD LTH (gr/cm2) 0.808 ± 0.08

T-score LTH -1.54 ± 0.71
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Figure 1. Representative flow cytometry analysis of a patient prior (left Column) and 48-hours following (right Column) denosumab 
administration. FACS plot of Forward scatter (FSC) vs side scatter (SSC) is presented, indicative of the experiments. The dot blots 
represent the percentages of single or double positive cells for the indicated markers (CD14/CD23, CD14/CD123 and CD14/CD16) from 
gated monocyte population. (A: Gating all populations; R1: Lymphocytes, R2: Monocytes, R3: Granulocytes. B: Increased CD14-/CD23+ - 
CD14-/CD23+ and increased CD14+/CD23+ - CD14+/CD23+. Left: Before; Right: After Denosumab administration. CD14+/CD23- - CD14+/
CD23- increased and CD14-/CD23- - CD14-/CD23- decreased in case image but not statistically significant in total sample of patients. C: 
Increased CD14+/CD123+ - CD14+/CD123+, CD14+/CD123- - CD14+/CD123 and decreased CD14-/CD123+ - CD14-/CD123+. Left: Before; 
Right: After Denosumab administration. CD14-/CD123- - CD14-/CD123- decreased in case image but not statistically significant in total 
sample of patients. D: Decreased CD14+/CD16+ - CD14+/CD16+ and decreased CD14+/CD16- - CD14+/CD16, along with increased CD14-/
CD16+ - CD14-/CD16+. Left: Before; Right: After Denosumab administration. CD14-/CD16- - CD14-/CD16- decreased in case image but 
not statistically significant in total sample of patients).
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conditioned media (MSC-CM) which contained various 
cytokines (to facilitate the recruitment of cells during 
osteogenesis, angiogenesis and cell proliferation), showed 
function maintenance in osteoclasts despite the presence of 
RANKL inhibitors40.

Kambayashi et al reported augmented matrix 
metalloproteases expression and tumor associated 
proliferation following RANKL treatment in CD14+ cells 
isolated from PBMCs of healthy donors41. Thus the 
RANK/RANKL pathway may further contribute to the 
development and maintenance of the immunosuppressive 
tumor microenvironment and denosumab may even be a 

promising adjuvant therapy for targeting tumor associated 
macrophages (TAMs) in other cancers41. Dmab has already 
shown favorable results for the treatment of Giant Cell Tumor 
of Bone42, however, neoplastic cells with certain mutations 
survive denosumab treatment and undergo dramatic 
histological changes in response to this agent43. Still, because 
high RANKL mRNA expression has been reported in patients 
with aneurysmal bone cyst, fibrous dysplasia, osteosarcoma, 
chondrosarcoma and enchondroma44, primary bone tumors 
present new therapeutic targets for denosumab, particularly 
those tumors expressing RANKL and those involving bone 
resorption by osteoclasts44.

Table 2. Descriptives of antigen expression prior and 48-72 hours following subcutaneous denosumab administration. CD14/C23/CD123/
CD16 stainings. Thirty postmenopausal osteoporotic women under treatment with denosumab.

1st measuremet (Baseline) 2nd measurment

Staining Mean Std. Deviation Median IQR

CD14+/CD23+ 2,6546 3,81430 9,9927 20,78235

CD14+/CD23- 59,0086 30,06067 69,8865 23,04598

CD14-/CD23+ ,9821 1,00949 1,6569 1,42718

CD14-/CD23- 25,9381 22,39671 23,2454 19,53608

CD14+/CD123+ 9,0567 11,86702 17,3707 17,27212

CD14+/CD123- 62,2593 19,98991 73,0904 20,50811

CD14-/CD123+ 6,5161 4,14880 3,9878 4,56302

CD14-/CD123- 14,0196 11,19632 13,6048 12,44166

CD14+/CD16+ 15,6682 18,63325 8,2926 4,60213

CD14+/CD16- 65,1189 22,28524 56,0948 24,47873

CD14-/CD16+ 10,0671 6,55533 15,4348 13,83929

CD14-/CD16- 9,1775 10,43060 6,4259 6,26783 

2nd measurement, 48-72 hours following subcutaneous denosumab administration.

Table 3. Mean differences of antigen expression prior and 48-72 hours following subcutaneous denosumab administration. CD14/C23/
CD123/CD16 stainings. Thirty postmenopausal osteoporotic women under treatment with denosumab.

Staining

Paired Differences

Mean Std. Deviation
95% Confidence Interval of the Difference

p-value
Lower Upper

 CD14+/CD23+ 7,193 17,25673 0,223 14,163 0,044

CD14+/CD23- 13,358 37,36448 -1,733 28,450 ,080

CD14-/CD23+ ,605 1,45269 ,018 1,191 ,044

CD14-/CD23- -1,511 26,79658 -9,312 12,334 ,776

CD14+/CD123+ 8,461 16,00697 2,128 14,793 ,011

CD14+/CD123- 10,161 19,03547 2,631 17,691 ,010

CD14-/CD123+ -2,273 5,28709 -4,364 -,181 ,034

CD14-/CD123- -,699 15,71201 -6,914 5,516 ,819

CD14+/CD16+ -7,502 17,76660 -14,531 -,474 ,037

CD14+/CD16- -8,773 17,32542 -15,627 -1,919 ,014

CD14-/CD16+ - CD14-/CD16+ 5,394 12,06589 ,620 10,167 ,028

CD14-/CD16- - CD14-/CD16- -2,902 10,83524 -7,188 1,384 ,176 

Statistical significance typed in bold. Increase (positive difference) typed in green. Decrease (negative difference) typed in red.
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From an epidemiological perspective, MRONJ presents 
only in a very small percentage of osteoporotic patients 
receiving Dmab. Furthermore, 40% of MRONJ cases appear 
spontaneously with no previous documented mucosal injury. 
It has been reported that the initiating event in MRONJ is 
likely the infection, instead of the low bone turnover14. In 
this regard, sterile inflammation alone in the soft tissues 
surrounding the jaw was not found to be enough to induce 
ONJ14. Thus the presence of bacterial populations is also a 
requisite for MRONJ45. The pathogenesis of MRONJ could 
be a series of events initiating from infection, followed by 
inflammation which might also be augmented by the use 
or bone antiresorptive agents46. It has been reported that 
the presence and function of macrophages and monocytes 
could be crucial in the development of local infection14. 
MRONJ has been reported to be associated with various 
bacterial pathogens populations, the numbers of whom 
do not decrease despite antimicrobial chemotherapy47,48. 
These might be the reasons for the differential response to 
monocyte impairment in patients receiving antiresorptive 
agents. Differences in the populations of macrophages but 
also differences in the oral flora might explain the occurrence 
of MRONJ only in some patients, of whom some even develop 
MRONJ without mucosal injury. 

A second significant side effect of antiresorptives is 
the occurrence of atypical femoral fractures16. We have 
previously reported that altered microdamage repair and 
microfractures accumulation, “fatigue” could be implicated in 
the pathogenesis of ONJ49,50. In this regard an experimental 
study showed that treatment with granulocyte colony-
stimulating factor (G-CSF) result in increased bone healing 
along with upregulation of  monocytes, granulocytes and 
macrophages51, Other experimental studies suggested that 
CD34+ and CD31+ cells isolated from peripheral blood might 
be potential therapeutic autologous treatments to augment 
fracture healing52,53. Interestingly, monocytes appear to 
express both CD34 and CD3154,55. A study of the potential 
changes in those monocyte subpopulations would be required 
to explore the possible aetiopathogenetic link between Dmab 
and altered microdamage repair.

Through this study we were able to document changes 
in the peripheral blood monocyte population, 48-72 hours 
following subcutaneous Dmab administration. Denosumab 
has long been identified as a cause for MRONJ19 and this 
is – to the best of our knowledge – the first clinical report to 
suggest that it is associated with PBMC changes in a similar 
pattern to ZA. Our finding when placed in the context 
of currently existing evidence regarding the trivial, yet 
existent deterioration in immunity following anti-resorptive 
drug administration, warrants further studies targeting 
the peripheral blood and the tissues of patients under 
bisphosphonates or Dmab treatment to explore how the 
changes in the peripheral blood monocytes are reflected in 
the tissues of those patients. As the passage of monocytes 
to tissues is a complex process21,22,56, newly designed 
studies should be able to overcome the obscuring effects of 
the latter complexity.

To conclude, in the present study we were able to document 
an increase in the peripheral blood monocyte CD14+ 
population and a decrease in the CD14- PBMC population 
in female patients with osteoporosis, following Dmab 
administration. This finding is in accordance with currently 
existing evidence and creates further research queries that 
need to be addressed by future studies.
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