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Pinpointing the animal origins of SARS-CoV-2: a genomic approach
Understanding the origins of zoonoses is critical to developing

the means to prevent zoonotic spillover into the future. Like 60%

of emerging diseases in humans (Jones et al., 2008), SARS-CoV-2

is likely to have zoonotic origins with possible immediate hosts

(Holmes et al., 2021; Wang et al., 2021). Determination of the origin

of SARS-CoV-2, that is, when, where, and how it emerges in

humans through possible zoonotic transfer, facilitates prevention

of the emergence and establishment of new zoonotic diseases.

Yet, so far, whilst many similar CoVs have been detected in wild an-

imals (especially bats), the SARS-CoV-2 progenitor has not been

identified, and the closest wild hosts still host viruses estimated

to have diverged from SARS-CoV-2 decades ago (Holmes et al.,

2021). There have been two controversial speculations on the origin

of SARS-CoV-2, the natural origin and the laboratory leak hypothe-

ses (Burki, 2020). In understanding the probability of either theory,

we should consider patterns from former epidemics, which all

showed immediate spillover from wildlife, or livestock, and the sim-

ilarity of coronaviruses found in wildlife in the region. Based on

these, addressing the gaps which continue to see speculation is

important:

1) Despite of the uncertainty of the SARS-CoV-2 progenitor,

increasingly high numbers of coronaviruses with relatively high simi-

larity to SARS-CoV-2 genome sequences have been constantly iso-

lated from nature reservoirs of bats or pangolins in Asian countries,

including China, Japan, Cambodia, Thailand, and Laos (Lam et al.,

2020; Xiao et al., 2020; Zhou et al., 2020, 2021; Temmam et al.,

2022). Besides of RaTG13 that shares 96.3% of genome sequences

with SARS-CoV-2 (Zhou et al., 2020), another more closely related

coronaviruses containing BANAL-20-52 and BANAL-20-103 were

isolated from Rhinolophus malayanus and R. pusilus, respectively,

in Vientiane Province in northern Laos, presenting 96.8% sequence

identity to SARS-CoV-2 and even only one or two residual divergence

in receptor-binding domain (Temmam et al., 2022). In fact, there is a

high diversity of as yet undiscovered CoVs in wildlife across the

regions.

2) By comparing the mutation signatures across the currently

sampled SARS-CoV-2-related coronaviruses that are heavily shaped

by hosts, SARS-CoV-2 genome in infected human cells shows a

similar mutation spectrum to a naturally evolved viral genome

(RaTG13) in bat cells, highlighting its natural origin (Shan et al.,

2021; Deng et al., 2022).

3) The unique genomic signature of SARS-CoV-2, that is, the furin

sites which boot infectivity of SARS-CoV-2 in human, could occur

naturally through evolution by analyzing temporally collected viral

genomic data (Holmes et al., 2021), and is not unusual in other coro-

naviruses which have been contacted by humans.

The debate on natural and laboratory leak origin has just subsided

(though conspiracy theories continue to distract attention from
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scientific evidence), recently, two studies (Pekar et al., 2022;

Worobey et al., 2022) simultaneously take the Huanan Seafood Mar-

ket in Wuhan, China as the origin of the COVID-19 pandemic for

granted. By performing spatial analyses of the locations of the

earliest COVID-19 cases in Wuhan, Worobey et al. (2022) claimed

the Market as the spillover site (epicenter) of the pandemic, where

the infected animals may introduce virus into humans via wildlife

trade. By investigating the genomic diversity of SARS-CoV-2 isolated

from early cases, Pekar et al. (2022) modeled the genomic diversity

using epidemic simulations, and deduced that there were at least

two separate zoonotic events into humans (i.e., lineages A and B)

in the Market. These studies have clear limitations:

1) Obfuscating the epidemic outbreak place (Po) and the origin

(i.e., spillover) place (Ps). Worobey et al. (2022) can only indicate

that the early cases represented an infection cluster centering around

the Market, which is totally different from the Ps. Po could be far away

from Ps based on the lessons learned from viruses like HIV (Ruan et

al., 2021; Wang et al., 2021).

2) Overstating conclusions based on limited data and unrealistic

simulations. Pekar et al. (2022) compared the phylodynamic patterns

of the early-sampled viral sequences to those of epidemic simula-

tions under various scenarios using coalescent process. In the coa-

lescent process of their simulations, they assumed that viruses

spread and evolve without population structure, which is inconsistent

with viral epidemic processes with extensive clustered infections,

founder effects, and sampling bias (Liu et al., 2020). Furthermore,

they cannot exclude alternative scenarios that the local outbreak

can be caused by asymptomatic infections, infected external traders,

travelers or cold-chain transmission.

3) No definitive evidence about what type of animals might have

harbored the virus before it spreads to humans. The joint WHO-

Chinese study reported they did not identify immediate host animals

related to the Market. Gao et al. (2022) tested 1380 samples from an-

imals and environments related to theMarket, finding that 73 environ-

mental samples but no animals themselves were positive for SARS-

CoV-2.

Analyzing the genetic diversity of early-stage SARS-CoV-2 ge-

nomes may provide limited information on the origin of SARS-CoV-

2. It is necessary to investigate worldwide to identify the SARS-

CoV-2 progenitor in any of the potential animal reservoirs or interme-

diate hosts, and as with SARS and MERS to determine the pathway

from reservoir hosts to humans.

We make inference on the location of SARS-CoV-2 progenitor

based on the information of both sequence similarity and isolated

geographical distribution of the currently existing SARS-CoV-2-

related sarbecovirus genomes with at least 75% sequence identity

compared to SARS-CoV-2. Following the isolation-by-distance the-

ory in population genetics, which posits that genetic differentiation
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among individuals increases as geographical distance increases

(Wright, 1943), we assume that the genomic similarity among

SARS-CoV-2-related coronaviruses is generally proportional to their

geographical distance. We further assume the spatial decaying rates

of the virus genome similarity are in uniformwithout being affected by

geographical landform, which are additionally allowed to be varied

along the x- and y- axis, rotating from the North q clockwise. Let

the sampling location of virus sample i be xi (longitude), yi (latitude).

Suppose SARS-CoV-2 originates in location (x0, y0), which is an un-

known parameter to be inferred. We denote sequence similarity be-

tween virus i and SARS-CoV-2 as si. The virus genomic similarity

decays in different rates v and kv along x- and y- axis, rotating q

clockwise from north. Function f(A, B) measures the geographical

distance between locations A and B; and f(�)v predicts the expected

sequence divergence between SARS-CoV-2 progenitor and the

sampled sequences as a function of their geographical locations.

We thus defined the loss function as

Lðk; q; v; x0; y0Þ¼
Xn
i¼1

�
f

�
T

�
xi
yi

�
;T

�
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��
v � ð1� siÞ
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��
cosðqÞ sinðqÞ
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�
.

The loss function measures the difference between the predicted

and the observed sequence similarity to SARS-CoV-2 as a function

of geographical locations of the existing SARS-CoV-2 related coro-

naviruses isolated from bats. By minimizing the loss function using

interior point method in the fmincon function in MATLAB, we profile

the origin location and spatial distribution of sequence similarity,

which reflects the probability of finding the SARS-CoV-2 progenitor.

It shows that the highest density area in the fitted f function mainly

covers Indochina Peninsula, encompassing Laos, Thailand, and

Cambodia (Fig. 1A). The most probable location of the SARS-CoV-

2 progenitor was inferred to be centered to 16.0986�N and
Fig. 1. The inferred locations of the SARS-CoV-2 progenitor. A: Using the whole genome se

domain (RBD, hot color map) and non-RBD sequences (cold color map), respectively. The blue

to 78% with distance to the probable locations, covered by the color map. The red triangles de

at least 75% sequence identity compared to SARS-CoV-2. The viruses consist of RacCS20

southern border of Yunnan province, China, BANAL-52, BANAL-103, BANAL-116, BANAL-23

figure is downloaded from http://bzdt.ch.mnr.gov.cn with censorship number of GS(2019)165

901
104.0617�E, which was located in Thailand in Southeast Asia (blue

point, Fig. 1A), though further sequence data from other parts of

the region may shift this locality. Since receptor binding domain

(RBD) in SARS-CoV-2, the key structure that binds to the ACE2 re-

ceptor to enter host cell and determines the host range, shows strong

signature of recombination (Temmam et al., 2022), RBD similarity

might be the key factor for SARS-CoV-2 progenitor to acquire the

capability of efficiently infecting human. Therefore, we also conduct-

ed similar analysis for the RBD and non-RBD regions of the samples,

respectively. Both the inferred locations are centered to 16.4332/

16.2975 �N and 103.9537/104.0823 �E, very close to the predicted

origin location of the whole genome sequences (Fig. 1B). This indi-

cates that recombination events of different virus lineages carrying

the backbone sequences and the RBD regions respectively may

occur somewhere close to the origin place, contributing to the

mosaic genome of SARS-CoV-2 progenitor.

We thus highlight that the most probable origin of SARS-CoV-2

might be pinpointed in Southeast Asia encompassing Laos, Thailand,

Cambodia, and neighboring countries. It is important to note that all

these countries have found coronaviruses with genomic sequences

highly similar to SARS-CoV-2, and given the high diversity of Rhino-

lophids in forests and caves across the region, further surveys are

likely to detect closer relatives. There are multiple lines of evidence

supporting this finding. SARS-CoV-2 neutralizing antibodies were

detected in Thai cave bats and a pangolin at a wildlife checkpoint

in Southern Thailand (Wacharapluesadee et al., 2021). The ecological

distribution area of Rhinolophus species, the most likely natural res-

ervoirs of SARS-CoV-2, primarily covers the southern portion of the

Eurasian continent, extending from South Laos and Vietnam in

Southeast Asia to southern China (Wang et al., 2021; Zhou et al.,

2021). We are aware of the fact that the samples of SARS-CoV-2

related coronaviruses are still limited, and most of them are from

Southeast Asia and East Asia; furthermore, some of the sequences

are from different species (e.g., Rhizomucor pusillus), relying on the
quence. The blue dot is the deduced most probable location. B: Using receptor binding

dot and green plus are the deduced most probable locations. Genome identity decreases

note the viral sampling locations, containing 15 SARS-CoV-2-related sarbecoviruses with

3 in Thailand, RaTG13, PrC31, RmYN02, RsYN04, RmYN05, RpYN06, and RmYN08 in

6, and BANAL-247 in northern Laos, and RshSTT182/200 in Cambodia. The map in the

6.
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assumption that SARS-CoV-2 related viruses are shared among

different bat host species locally. Our analysis and conclusions are

inevitably affected by limited and potentially biased sample collec-

tion, and the assumptions. These preliminary results highly suggest

that expanding sample collection of SARS-CoV-2 related coronavi-

ruses will significantly help pinpoint the origin of SARS-CoV-2, and

in turn help us trace the path to zoonotic spillover to provide a basis

to prevent future emerging infectious diseases.
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