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Genetic Variants in Circadian Rhythm Genes and 
Self-Reported Sleep Quality in Women with Breast Cancer
Tricia D. LeVan, Peng Xiao, Gaurav Kumar, Kevin Kupzyk, Fang Qiu, David Klinkebiel, 
James Eudy, Kenneth Cowan and Ann M. Berger

Introduction: Women diagnosed with breast cancer (BC) are at increased risk of sleep deficiency. 
Approximately 30–60% of these women report poor sleep during and following surgery, chemotherapy, 
radiation therapy, and anti-estrogen therapy. The purpose of this study was to examine the relationship 
between genetic variation in circadian rhythm genes and self-reported sleep quality in women with BC.
Methods: This cross-sectional study recruited women with a first diagnosis of breast cancer at five sites 
in Nebraska and South Dakota. Sixty women were included in the study. Twenty-six circadian genes were 
selected for exome sequencing using the Nextera Rapid Capture Expanded Exome kit. 414 variants had 
a minor allele frequency of ≥5% and were included in the exploratory analysis. The association between 
Pittsburgh Sleep Quality Index (PSQI) score and genetic variants was determined by two-sample t-test 
or ANOVA.
Results: Twenty-five variants were associated with the PSQI score at p < 0.10, of which 19 were 
significant at p<0.05, although the associations did not reach statistical significance after adjustment 
for multiple comparisons. Variants associated with PSQI were from genes CSNK1D & E, SKP1, BHLHE40 & 
41, NPAS2, ARNTL, MYRIP, KLHL30, TIMELESS, FBXL3, CUL1, PER1&2, RORB. Two genetic variants were 
synonymous or missense variants in the BHLHE40 and TIMELESS genes, respectively.
Conclusions: These exploratory results demonstrate an association of genetic variants in circadian rhythm 
pathways with self-reported sleep in women with BC. Testing this association is warranted in a larger 
replication population.
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Introduction
Breast cancer remains the second leading cause of cancer 
deaths among women [1]. While overall survivorship has 
increased over time, sleep deficiency is one of the most 
frequent and distressing symptoms reported by women 
with breast cancer and has a negative impact on qual-
ity of life and functional status [2, 3]. About 30–60% of 
women with breast cancer report problems sleeping at 
diagnosis and the percent increases during chemotherapy 
treatments [4, 5]. One of the main adverse events from 
aromatase inhibitors that lead to drug discontinuance is 
sleep disorders [6]. Several predictors of sleep deficiency 
have been identified but mechanisms responsible for poor 
sleep in patients with cancer are poorly understood [7, 8].

Significant heritability of sleepiness, usual bedtime, 
and usual sleep duration has been discovered [9], which 
suggests that genetic factors may make some individuals 
more susceptible to sleep disturbance. A series of publica-
tions detail associations between cytokine gene variations 

and self-reported sleep or symptom clusters that included 
sleep in patients with cancer [10–14]. Also, evidence sug-
gests cytokine dysregulation is associated with sleep dis-
turbance in humans [15].

Circadian clocks synchronize physiological and behav-
ioral rhythms with time. Dysregulated expression of 
circadian clock-related genes is greatly affected by poly-
morphic variants and has been associated with cancer 
[16]. An interesting report by Truong and team [17] exam-
ined breast cancer risk, night work, and circadian clock 
gene polymorphisms. The team examined polymorphisms 
from 577 validated single nucleotide polymorphisms 
(SNPs) in 23 circadian clock genes in a large sample of 
breast cancer cases and controls. Two SNPs in retinoic acid 
receptor-related orphan receptor (RORA; rs1482057 and 
rs12914272) were associated with breast cancer in the 
whole sample and among post, but not pre-menopausal 
women. Authors summarize that the results support the 
hypothesis that circadian clock gene variants modulate 
breast cancer risk.

Little attention, however, has focused on genetic asso-
ciations between circadian clock genes and sleep defi-
ciency in patients with cancer. Two systematic reviews [18, 
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19] summarize genomic variants associated with cancer-
related fatigue but no circadian clock genes are included.

Based on this knowledge, the purpose of this exploratory 
study was to analyze correlations between self-reported 
sleep index values of sleep quality and genetic variants in 
26 circadian clock genes in women with breast cancer.

Methods
Design
A cross-sectional feasibility study design was used. The 
parent study examined data from the Breast Cancer 
Collaborative Registry (BCCR) questionnaire to under-
stand risk factors predicting sleep quality in patients with 
breast cancer [20].

Study population
The BCCR was used to locate cases collected by 
UNMC/Nebraska Medicine, Omaha, NE from January 
2008 to January 2017. Inclusion criteria in the parent 
study were: 1) women with a first breast cancer diagnosis; 
and 2) at any phase of the cancer trajectory. Additional 
inclusion criteria for this exploratory study included: 3) 
completed the Pittsburgh Sleep Quality Index (PSQI) in 
the BCCR questionnaire and 4) had a blood sample that 
had been analyzed using exome sequencing. Exclusion cri-
teria were those: 1) diagnosed with recurrent breast can-
cer, and 2) males. The Institutional Review Board (IRB) of 
the University of Nebraska Medical Center approved the 
study. At enrollment, patients provided informed consent 
for use of the data in clinical studies. Women were invited 
to participate during routine oncology appointments.

Breast Cancer Collaborative Registry (BCCR) 
Questionnaire
The BCCR, which is a part of the integrated Cancer 
Repository for Cancer Research (iCaRe2), was developed 
in collaboration with breast cancer experts and research 
questions were standardized to satisfy the needs of all the 
centers [21]. The questionnaire contains standard data to 
provide a comprehensive review of the patient’s demo-
graphic, medical, tumor, lifestyle, environmental, qual-
ity of life, and sleep quality that could influence breast 
cancer diagnosis and survivorship. Demographic data 
include variables such as participant’s age, race/ethnic-
ity, marital status, and educational status. Medical data 
include height/weight/BMI and a list of chronic condi-
tions but no comorbidity index; gynecologic data such 
as menstrual status, pregnancy, breast-feeding, and birth 
control; and breast cancer data such as therapies received, 
functional changes, and symptoms since surgery or com-
pleting therapy. Tumor data include stage and receptor 
status. Lifestyle data include history of smoking, alcohol 
consumption, and physical activity. Environmental factors 
include annual household income and history of night 
or rotating shiftwork. Measures of physical and mental 
health status and subjective sleep quality complete the 
questionnaire. More information about the BCCR is pub-
lished [20]. All participants completed the BCCR ques-
tionnaire either at a clinic appointment or at home and 
returned it by United States Postal Service.

Sleep
Subjective sleep quality during the past month was meas-
ured using the 19-item Pittsburgh Sleep Quality Index 
(PSQI) [22, 23]. A global score and seven component scores 
were obtained, including sleep quality, sleep latency, sleep 
duration, habitual sleep efficiency, sleep disturbances, 
sleeping medication use, and daytime dysfunction. Com-
ponents are scored on a 0–3 scale and combined with 
equal weights, yielding a global score (0–21). Higher scores 
indicate more severe complaints and poor sleep quality. 
Cronbach’s alpha for the global PSQI was reported as 0.80 
and was 0.71 in this study. A global PSQI score >5 has a sen-
sitivity of 89.6% and a specificity of 86.5% in identifying 
poor sleepers. Optional questions 10–11 were not included.

Genetic Analysis
Genomic DNA was isolated from blood and sequenced on 
n = 128 participants from the parent study. Twenty-six cir-
cadian genes were selected for analysis based on results 
from the 2008 Sleep Research Society Presidential Task 
Force on Sleep/Circadian Rhythm SNP Gene Array Initia-
tive and the report by Troung [17]. Exome sequencing was 
performed using the Nextera Rapid Capture Expanded 
Exome kit (Illumina, San Diego, CA). Target DNA included 
exons, untranslated regions (UTRs) and miRNAs. Following 
the manufacturers’ suggested protocol, 50 ng of genomic 
DNA from each sample was subjected to “tagmentation” 
to generate a genome wide library of fragments. The tar-
geted content was captured by hybridization of the library 
to the oligonucleotides provided by the manufacturer. The 
resultant exome library for each sample was quantified 
by qPCR and 10 pM of the pooled libraries were loaded 
three samples per lane on an Illumina HiSeq2500 DNA 
sequencer and 150 bp paired-end runs were performed.

Bioinformatic Methods
We used an established variant calling pipeline using 
bcbio-nextgen python toolkit (https://github.com/bcbio/
bcbio-nextgen) for the exome sequencing data. Initially, 
raw sequencing reads in FASTQ format were trimmed by 
the fqtrim tool.

(https://ccb.jhu.edu/software/fqtrim) to remove 
adapters, terminal unknown bases (Ns) and low qual-
ity 3’ regions (Phred score <30). The quality of trimmed 
sequence reads were assessed using quality control tool 
FastQC [24]. The trimmed reads passing FastQC were 
aligned to the hg19 reference genome with Borrows-
Wheeler Aligner [25] and further processed through the 
GATK pipeline [26, 27] for base quality score recalibration, 
INDEL realignment, and mark duplicates, according to 
GATK’s best practices recommendations [27, 28]. Four var-
iant callers, MuTect [29], freebayes [30], VarDict [31], and 
VarScan [32] were used to call variants from the sequenc-
ing data. All the called germline variants from the 128 
blood samples were saved into 128 Variant Call Format 
(VCF) files. We further wrote a perl script to extract vari-
ants within the range of the 26 candidate genes (with 1Kb 
flanking) from the 128 germline VCF files and a python 
script to format the extracted variants into an excel table 
for follow-up association analyses.

https://github.com/bcbio/bcbio-nextgen
https://github.com/bcbio/bcbio-nextgen
https://ccb.jhu.edu/software/fqtrim
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Data Analysis
Due to positive skew, the primary outcome of sleep 
index value (PSQI) was log transformed to meet normal-
ity assumptions. Genetic variants with a minor allele 
frequency (MAF) less than 5% were excluded in the 
analysis. For each genetic variant, the association between 
log-transformed sleep index value (PSQI) and the genetic 
variant was determined by two-sample t-test or ANOVA. 
SAS software version 9.4 (SAS Institute Inc., Cary, NC) was 
used for all analyses. Linkage disequilibrium was deter-
mined using Haploview software [33].

Results
Demographic and Clinical Characteristics of 
Participants
Participants’ baseline demographic and clinical character-
istics were representative of the breast cancer population 
(Table 1). Women’s mean age was 58.6 (SD = 13.6; range 
27–85; median 59.6) years and they were predominantly 
Non-Hispanic whites (88.3%); married (62.7%); had some 
post-secondary education (74.1%); and were diagnosed at 
Stage I or Stage II breast cancer (81.4%).

Selection of Genetic Variants
Sequencing data from 26 circadian rhythm genes were 
obtained from 128 subjects; however, only 60 subjects 
had both sequencing data and self-reported PSQI scores. 
For these 60 subjects, we identified 5,279 genetic variants, 
of which 4,865 were excluded in the analysis because of 
a minor allele frequency (MAF) less than 5%. The remain-
ing 414 variants were analyzed for their association with 
PSQI scores (continuous variable). Figure 1 illustrates the 
STROBE (Strengthening the Reporting of Observational 
studies in Epidemiology) diagram and the final sample 
for analysis.

Association between Genetic Variants and PSQI 
Score
Tables 2 and 3 list 25 genetic variants that were asso-
ciated with the global PSQI score at p < 0.10, and 19 
of these were significant at p < 0.05. The associations 
did not meet statistical significance after adjustment for 
multiple comparisons, possibly because of the explora-
tory nature of the study (large number of comparisons 
with a small samples). These genetic variants were 
found throughout the genome (chromosomes 2, 3, 5, 
7, 9, 11, 12, 13, 22) and represented 15 genes includ-
ing CSNK1D & E, SKP1, BHLHE40 & 41, NPAS2, ARNTL, 
MYRIP, KLHL30, TIMELESS, FBXL3, CUL1, PER1 & 2, and 
RORB. Most variants were found in intronic and untrans-
lated regions except for two, which were synonymous 
and missense variants in BHLHE40 and TIMELESS genes, 
respectively. Mean log-transformed PSQI scores were 
higher for 10 polymorphisms among heterozygous sub-
jects, relative to those with the homozygous genotype, 
the remaining variants were lower. Linkage disequilib-
rium was determined only on chromosome 3 (rs908078 
vs rs34870629, rs34883305, rs74439275; r2 = 0.52) and 
chromosome 5 (rs2110585 vs rs3815506, rs73791514; 
r2 = 0.85).

Discussion
Studies have reported that 30–60% of breast cancer 
patients have poor sleep quality before receiving adjuvant 
chemotherapy and continue to have these symptoms even 
one year after the start of chemotherapy [34, 35]. How-
ever, there is much variability in sleep quality symptoms 
among breast cancer patients, and it is not known why cer-
tain patients develop these symptoms and others do not.

Table 1: Study population characteristics, n = 60.

Variable Categories

Age, mean ± SD 58.6 ± 13.6

Ethnicity

White 53 (88.3%)

Non-White 7 (11.7%)

Hispanic

Yes 1 (1.9%)

No 53 (89.1%)

Marital Status*

Partnered 37 (62.7%)

Non-Partnered 22 (37.3%)

Education*

≤ High school 14 (25.9%)

Some College 19 (35.2%)

≥ College 21 (38.9%)

Income*

< 25k 13 (23.2%)

25k to 75k 22 (39.3%)

> 75k 21 (37.5%)

Ever Worked Night Shift*

Yes 11 (4.0%)

No 14 (56.0%)

Alcohol Drinks/Week*

<1/week 22 (51.2%)

1 day/week
2–3 days/week

8 (18.6%)
7 (16.3%)

4–5 days/week 4 (9.3%)

6–7 days/week 2 (4.7%)

Current Smoker*

Yes 5 (27.8%)

No 13 (72.2%)

Stage of Breast Cancer*

I 24 (40.7)

II 24 (40.7)

III 10 (16.9)

IV 1 (1.7)

* missing data.
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While environmental factors influence sleep, a grow-
ing body of evidence suggests genetic modulation of 
sleep quality [36]. Its genetic regulation is substantiated 
by the identification of polymorphisms in specific sleep 
disorders and the existence of familial sleep disorders 
[15]. Twin studies have shown sleep heritability (h2) of 
0.30–0.50. However, no study was located that evaluated 
the association of genetic variants in circadian pathway 
genes and sleep quality among breast cancer patients.

Findings from this exploratory study suggest that cir-
cadian genes may play a role in sleep quality in women 
with breast cancer. Twenty-five genetic variants were 
associated with the global PSQI score. The genetic vari-
ants found were throughout the genome (chromosomes 
2, 3, 5, 7, 9, 11, 12, 13, 22) and represented 15 genes 
including CSNK1D & E, SKP1, BHLHE40 & 41, NPAS2, 
ARNTL, MYRIP, KLHL30, TIMELESS, FBXL3, CUL1, PER1 
& 2, and RORB. These genes are critical components 
of the circadian pathway that may play a role in sleep 
quality. The primary transcription/translation feedback 
loop of the pathway includes ARNTL, which forms a 
heterodimer complex with either CLOCK or NPAS2 and 
activates transcription of PERs (PER1, 2 & 3) and CRYs 
(CRY1 & 2) (Figure 2). Then PER and CRY form a nega-
tive feedback loop that represses their own transcrip-
tion by acting on the heterodimer complex [37]. There 
is also evidence that TIMELESS is required for circadian 
regulation and interacts with CRY and PER proteins. The 
ARNTL heterodimers also induce another regulatory 
loop that activates RORA & B and subsequent transcrip-
tion of ARNTL. Many other circadian proteins undergo 
post-translational modifications that affect the function 
of the feedback loops, including phosphorylation, acety-
lation, sumoylation and ubiquitination (CSNK1D & E, 
FBXL3, SKP1, CUL1).

Previous studies have investigated genetic markers of 
sleep in the general population using circadian candidate 
gene and genome wide association (GWA) study designs. 
The effects of PER3 variants, especially the variable num-
ber tandem repeats (VNTR), have been associated with 
many phenotypes including diurnal preference and sleep 
loss/circadian misalignment. In our study we did not find 
an association of the VNTR with sleep quality; however, this 
lack of replication may be due to the small size of the cur-
rent study. In a candidate gene study, ARNTL (rs3816358) 
and NPAS2 (rs3768984) were associated with later acti-
graphic sleep and wake onset time in an elderly male 
population (n = 2,527) [38]. ARNTL was also found to be 
associated with sleep duration in a GWA study, though at a 
loci 40kb upstream of the gene, rs41348446 [39]. We also 
found associations between ARNTL and NPAS2 with sleep 
quality, however at different loci than previous studies.

Most variants found in this study are located in 
intronic and untranslated regions. The functional signifi-
cance of these variants is unclear due to their possible 
linkage with other polymorphisms nearby. We found a 
missense variant in TIMELESS that was associated with 
poorer sleep quality as assessed by PSQI. While no stud-
ies have documented this association, the missense 
variant could potentially alter protein folding and inter-
action with PER and CRY, and thereby inhibit the primary 
transcription/translation loop in the circadian pathway, 
thus resulting in sleep disturbance.

Not only can circadian genes directly affect an indi-
vidual’s susceptibility to sleep disturbances, studies have 
found that genetic variation in circadian genes are risk 
factors for breast cancer, most likely by impacting the bio-
logical pathways that regulate DNA damage and repair, 
carcinogen metabolism and or detoxification, cell-cycle 
progression and apoptosis. One of the first epidemiologic 

Figure 1: STROBE (Strengthening the Reporting of Observational studies in Epidemiology) diagram. Individuals were 
excluded from analysis for missing PSQI and genetic variant data and a MAF < 5%.
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studies correlated PER3 variants with increased risk of 
breast cancer [3]. This circadian-cancer link was confirmed 
in a meta-analysis showing association between risk of 
cancer and variants in NPAS2, RORA, RORB, and CLOCK 
[40–42]. As this study included only women with breast 
cancer, the link between breast cancer risk and genetic 
variants could not be ascertained.

There are several strengths and limitations of this study. 
To our knowledge, it is the first to include an extensive 
selection of variants and genes in the circadian rhythm 
pathway in association with self-reported sleep in a sample 
of women with breast cancer. We included 5,279 genetic 
variants found in 26 circadian genes. We used statistical 
methods to identify the association between self-reported 

Table 2: Top 25 genetic variants associated with PSQI (p-value < 0.1).

ID Chromosome 
#

Chromosome 
Location

Gene Name Variant Annotation

rs3841571 chr2 101582245 NPAS2 Deletion/Insertion 

rs1053095 chr2 101612584 NPAS2 3’UTR

rs7604810 chr2 239061627 KLHL30 Intergenic

rs4459687 chr2 239203368 ncRNA/PER2 Intronic SNV

rs1714416 chr3 40150543 MYRIP Intronic SNV

rs7627014 chr3 40309316 EIF1B-AS1 Intronic SNV 

(Near MYRIP)

rs908078 chr3 5024771 BHLHE40 Synonymous 

rs2249436 chr3 5019764 BHLHE40 Intronic SNV

rs34870629 chr3 5025650 BHLHE40 3’UTR

rs34883305 chr3 5025645 BHLHE40 3’UTR

rs74439275 chr3 5025654 BHLHE40 3’UTR

rs2110585 chr5 133512621 SKP1 5’ UTR SNV

rs3815506 chr5 133509736 SKP1 Intronic SNV

rs73791514 chr5 133509752 SKP1 Intronic SNV

rs1058023 chr5 133483382 TCF7 3’ UTR 

(Near SKP1)

rs243477 chr7 148456154 CUL1 Intronic SNV

rs10746964 chr9 77245494 RORB Intronic SNV

rs7939846 chr11 13303337 ARNTL Intronic SNV

rs4963957 chr12 26280533 SSPN Intronic SNV 

(Near BHLHE41)

rs61376834 chr12 56814656 TIMELESS Missense Ile/Thr

rs605153 chr13 77569901 CLN5 Intronic SNV

(Near FBXL3)

rs5822477 chr17 80200398 CSNK1D Deletion/Insertion 

rs56408410 chr17 8052415 PER1 Intronic SNV

rs5757055 chr22 38740853 CSNK1E Intronic SNV 

rs35351192 chr22 38740868 CSNK1E Insertion/Deletion

Abbreviations: CSNK1D: casein kinase 1 delta; SKP1: S-phase kinase associated protein 1; BHLHE40: basic helix-loop-
helix family member e40; TCF7: transcription factor 7 (T-cell specific, HMG-box); NPAS2: neuronal PAS domain protein 
2; ARNTL: aryl hydrocarbon receptor nuclear translocator like; MYRIP: myosin VIIA and Rab interacting protein; SSPN: 
sarcospan; EIF1B-AS1: EIF1B antisense RNA1; KLHL30: kelch like family member 30; CLN5: ceroid-lipofuscinosis, 
neuronal 5; FBXL3: FBOX leucine rich repeat protein 3; CUL1: cullin 1; RORB: RAR related orphan receptor B; PER1: 
period circadian clock 1; nc: non-coding; SNV: single nucleotide variation; UTR: untranslated region; PSQI: Pittsburgh 
Sleep Quality Index.
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sleep quality and circadian-related genetic variants. 
However, findings from this study must be interpreted with 
caution due to the small sample size. Larger studies repli-
cated in several populations are needed to fully understand 
the biological implications of circadian pathway genes 
and their role in sleep disturbance among breast cancer 
patients. Our results also indicate that the exome sequenc-
ing methodology detected not only coding polymorphisms 
in the genome, but also a significant number of non-coding 
variants. We have since modified our sequencing protocol 
to more precisely target exomes and will use this newer 
technology to increase the probability of detecting func-
tional coding genetic variants in a larger study. Another 
limitation of this study is that we used sleep quality as a 
subjective measure. The PSQI was completed only at one 

time and timing varied among participants. Future stud-
ies could focus on patterns of sleep and sleep-wake activity 
rhythm using objective measures and/or a biomarker such 
as melatonin, and their association with circadian genes.

Conclusions
Despite these limitations, findings from this study pro-
vide preliminary evidence for a role of circadian rhythm 
pathway genes in sleep quality among women with breast 
cancer. We conclude that these results merit further stud-
ies using larger sample sizes and more precise exome 
sequencing technology to allow for confirmatory analyses 
and identification of functional genetic variants, respec-
tively. This research team is seeking funding to conduct a 
larger study in the near future.

Table 3: Association of genetic variants with PSQI scores.

ID Major/Minor 
Genotypes

MAF PSQI Score p-value

(Log Mean ± SD)

Reference Alternative

rs5822477 TT/TTCTC 0.050 1.84 ± 0.57 0.96 ± 0.91 0.0015

rs2110585 CC/CA 0.058 1.84 ± 0.57 1.06 ± 0.90 0.0025

rs3815506 AA/AG 0.050 1.83 ± 0.57 1.01 ± 0.97 0.0028

rs73791514 AA/AT 0.050 1.83 ± 0.57 1.01 ± 0.97 0.0028

rs2249436 TT/TC 0.050 1.83 ± 0.59 1.01 ± 0.83 0.0029

rs1058023 CC/CT 0.092 1.86 ± 0.54 1.25 ± 0.92 0.0041

rs3841571 A/AG….GGGG 0.050 1.68 ± 0.64 2.38 ± 0.46 0.013

rs7939846 GG/GA 0.075 1.84 ± 0.64 1.26 ± 0.59 0.014

rs1714416 TT/TC 0.050 1.82 ± 0.61 1.15 ± 0.80 0.018

rs908078 TT/TC 0.108 1.65 ± 0.65 2.13 ± 0.58 0.018

rs4963957 TT/TC 0.075 1.83 ± 0.61 1.29 ± 0.76 0.022

rs5757055 CC/CG 0.158 1.62 ± 0.66 2.03 ± 0.57 0.023

rs7627014 AA/AT 0.058 1.68 ± 0.66 2.26 ± 0.31 0.028

rs1053095 TT/TA 0.217 1.91 ± 0.63 1.54 ± 0.64 0.030

rs7604810 GG/GA 0.142 1.87 ± 0.52 1.46 ± 0.88 0.030

rs61376834 AA/AG 0.075 1.67 ± 0.68 2.18 ± 0.32 0.033

rs605153 GG/GA 0.117 1.85 ± 0.53 1.44 ± 0.93 0.042

rs243477 CC/CT 0.058 1.81 ± 0.62 1.28 ± 0.79 0.042

rs35351192 ACAC/ACA 0.058 1.69 ± 0.67 2.22 ± 0.26 0.046

rs4459687 TT/TC 0.050 1.80 ± 0.63 1.32 ± 0.82 0.088

rs10746964 TT/TC 0.050 1.80 ± 0.60 1.32 ± 1.01 0.088

rs56408410 GG/GA 0.083 1.69 ± 0.62 2.07 ± 0.8 0.089

rs34870629 GG/GT 0.092 1.68 ± 0.69 2.05 ± 0.36 0.099

rs34883305 GG/GC 0.092 1.68 ± 0.69 2.05 ± 0.36 0.099

rs74439275 GG/GA 0.092 1.68 ± 0.69 2.05 ± 0.36 0.099

Abbreviations: MAF: minor allele frequency; PSQI: Pittsburgh Sleep Quality Index.
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