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Macrophages exist in most tissues of the body, where they perform various functions at
the same time equilibrating with other cells to maintain immune responses in numerous
diseases including cancer. Recently, emerging investigations revealed that metabolism
profiles control macrophage phenotypes and functions, and in turn, polarization can
trigger metabolic shifts in macrophages. Those findings implicate a special role of
metabolism in tumor-associated macrophages (TAMs) because of the sophisticated
microenvironment in cancer. Glucose is the major energy source of cells, especially for
TAMs. However, the complicated association between TAMs and their glucose
metabolism is still unclearly illustrated. Here, we review the recent advances in
macrophage and glucose metabolism within the tumor microenvironment, and the
significant transformations that occur in TAMs during the tumor progression.
Additionally, we have also outlined the potential implications for macrophage-based
therapies in cancer targeting TAMs.
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INTRODUCTION

Cancer is a major public health burden worldwide, with a significantly high incidence of mortality.
The environment around the tumor is called as tumor microenvironment (TME), which assists
cancer cells in growth and progression (1). Over the last few years, TME has extensively been
studied for the effective treatment of cancer. Though TME has diverse tumor-infiltrating immune
cells like the T-cells, regulatory T-cells (Treg), myeloid-derived suppressor cells (MDSC), tumor-
associated neutrophils, dendritic cells, and tumor-associated macrophages (TAMs), macrophages
are the most abundant (2). A large number of studies suggest that TAMs serve as a key promoter of
metastasis in cancer, by releasing extracellular signals, growth factors, proteolytic enzymes, and
inhibitory proteins for T cells (3). Thus, targeting TAMs to prevent tumor progression and
metastasis has been a hot spot in current cancer research.

Traditionally, macrophages are the large phagocytes that pose various forms in tissues
throughout the body (e.g., Kupffer cells in the liver, alveolar macrophages in the lungs, microglia
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in the cerebrum) and typically play an important role
in homeostatic and immune responses during the disease
process (4, 5). Moreover, macrophages are highly plastic and
can modify their properties subsequently according to the
microenvironment (6). Inactive macrophages (M0) typically
represent undifferentiated cells and can reprogram themselves
into polarized cells when exposed to certain stimuli. Depending
on the cell surface markers, cytokines release, and metabolic
signatures, macrophages are conventionally classified into two
subtypes, i.e. classically activated pro-inflammatory M1
macrophages, and alternatively activated anti-inflammatory M2
macrophages (5, 7–9).

In recent years, increasing evidence has put forward that
TAMs can unanimously adopt distinct metabolic signatures to
execute proper effector functions required for the TME (10–13).
It has been traditionally assumed that cancer cells primarily
metabolize glucose via glycolysis to produce sufficient energy and
other key metabolites necessary for survival (Warburg effect)
(14–17), which essentially perplexes the metabolic profiles of
immune cells especially TAMs (18). However, a fresh study
astonishingly revealed that TAMs are the main consumer of
glucose in cancers rather than cancer cells themselves (19). Yet,
how glucose metabolism influences TAMs functions in cancer
and vice versa are still obscure. Consequently, the complex
correlation between glucose metabolism and TAMs in TME is
worthy to investigate adequately. In this review, we have focused
on the modifications that consistently occur in glucose
metabolism and TAMs in TME, and the potential implications
for macrophage-based therapies in cancer.
GLUCOSE METABOLISM PATHWAYS

Glucose traditionally serves as the primary source of energy for
supporting the normal functions of the cells including
macrophages. After being transported across the plasma
membrane, glucose is principally metabolized through three
pathways, i.e. glycolysis, pentose phosphate pathway (PPP),
and Krebs or Tricarboxylic Acid (TCA) cycle (20, 21).
Glycolysis is a metabolic pathway typically takes place in the
cytosol, which breaks down glucose into pyruvate in aerobic
environment and lactate in anaerobic settings and produces
adenosine triphosphate (ATP). Pyruvate produced from
aerobic glycolysis further enters the Krebs cycle and is oxidized
through a series of reactions called oxidative phosphorylation
(OXPHOS) to produce more ATPs. On the other hand,
glycolysis also supplies glucose-6-phosphate to the PPP,
provoking the production of nicotinamide adenine
dinucleotide phosphate (NADPH) and ribose-5-phosphate.
Though glycolysis possesses a lower capacity for ATP
generation than OXPHOS, (only two ATP per molecule of
glucose), it is a more rapid source of energy for macrophages
and other cells and contributes metabolic intermediates for
biosynthetic pathways to support the synthesis of ribose,
amino acids, and fatty acids that are crucial for metabolic
adaptation (22, 23). Apart from the above-mentioned three
Frontiers in Immunology | www.frontiersin.org 2
glucose metabolism pathways, glucose can further be
metabolized via the hexosamine biosynthesis pathway (HBP)
(2–5%) and eventually leading to the generation of a donor
molecule uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) (24–26).

Macrophages preferentially attach the surface of glucose
transporter 1 (GLUT1) to meet their energy requirements (27).
Under normal conditions, naïve M0 macrophages get energy by
efficiently employing OXPHOS (28). Whereas, polarized
macrophages (M1 and M2) rely more on their characteristic
metabolic signatures for energy prerequisite within the tissue
microenvironment (23).
GLUCOSE METABOLISM AND THE M1
MACROPHAGES

Traditional pro-inflammatory cytokine such as interferon g
( IFN- g ) , t umor nec ro s i s f a c to r a (TNF-a ) , and
lipopolysaccharide (LPS) stimulates M0 macrophages to
differentiate into classical M1 phenotype (29–31). M1
macrophages exhibit profound inflammatory cytokines
secretion (including IL-1b, IL-6, IL-23, TNF-a) and precise
antigen presentation (Table 1). To uphold dramatic pro-
inflammatory functions, M1 macrophages trigger energy
expenditure by the magnified aerobic glycolysis and PPP in
conjunction with decreased OXPHOS and fatty acid oxidation
(FAO). Glycolysis and PPP are fundamental for macrophage
functional adjustments and preventing the body from harmful
events within an exigent time.

In parallel, glycolytic enzymes are found to have remarkable
alternations within the LPS microenvironment (32).
Traditionally, glycolysis is mainly regulated by three major
enzymes: hexokinase (HK), phosphofructokinase 1 (PFK1),
and pyruvate kinase (PK), which catalyze irreversible steps in
this process (21). Under LPS stimulation, HK acts as the glucose
sensor and mediates the phosphorylation of glucose for
subsequent utilization, crucially contributing to the pro-
inflammatory cytokine secretion in M1 macrophages (33).
Recently, an inducible form of PFK1, 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) stepped into
research (34, 35). Once PFKFB3 is stimulated with IFN-g/LPS,
it further induces progressive production of fructose 2,6-
bisphosphate, and thus, promotes overall glycolysis flux in M1
macrophages to meet its energy demand (36). On the other hand,
M1 macrophages significantly upregulate the key metabolic
regulator, an isoform 2 of the pyruvate kinase (PKM2) under
LPS activation to bind IL-1b promotor region concerning
increased inflammatory response (37, 38).

Besides, overexpression of GLUT1 in M1 macrophages
promotes glucose metabolism and metabolites production in
the PPP, striking a complex pro-inflammatory signature (39). It
has been found that long-term glucose exposure reduces the
phagocytic ability of M1 macrophages, probably because of
impaired glycolytic capacity (40). Interestingly, the constitutive
expression of sedoheptulose kinase (CARKL), a carbohydrate
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kinase-like protein that is involved in the conversion of
sedoheptulose into sedoheptulose-7-phosphate, decreases the
glycolytic flux of glucose and results in defective M1
polarization (41) These findings portray an interlaced network
that pro-inflammatory molecules stimulate glucose metabolism
in macrophages. Conversely, glucose uptake in macrophages
supervises pro-inflammatory phenotype. The pro-inflammatory
environment and increased glucose levels might guide each other
in a self-perpetuating cycle, among which hypoxia-induced
factor 1 alpha (HIF-1a) (37, 42–44) plays an essential role.

Previously, HBP was identified to promote inflammation in
macrophages that as soc ia ted wi th O- l inked b -N-
acetylglucosamine (O-GlcNAc) signaling (45, 46). Nevertheless,
a study surprisingly observed a decreased HBP activity and
protein O-GlcNAcylation in LPS-stimulated macrophages.
Subsequently, they proved that the O-GlcNAcylation of the
receptor-interacting serine/threonine-protein kinase 3
contributed to an unexpected inhibitory effect (47). Indeed,
Yang et al. observed a similar immunosuppressive role of O-
GlcNAc signaling in macrophage activation. Macrophages
presented suppressed O-GlcNAc signaling during M1
polarization even though the increased glucose uptake.
Therefore, macrophage O-GlcNAc signaling is an important
regulator of integrating glucose metabolism and inflammatory
response. Taken together, those results indicated that metabolic
changes are not just the result of the inflammatory response, but
rather a critical modulator of the entire process.
GLUCOSE METABOLISM AND THE M2
MACROPHAGES

Alternatively activated M2 macrophages are primarily induced
by IL-4 and IL-13 that are secreted from innate and adaptive
immune cells, and are characterized by an anti-inflammatory
profile mainly IL-10 and transforming growth factor-beta (TGF-
Frontiers in Immunology | www.frontiersin.org 3
b) (8, 29–31). In contrast to M1 macrophages, M2 macrophages
preferentially utilize FAO and OXPHOS to execute cellular
behaviors and activities (Table 1) (48–50). Although some
evidence demonstrated that FAO is typical for M2
polarization, researchers believe that M2 macrophages retain
the same dependence on glycolysis and exhibit modest glucose
consumption (51, 52). Glucose can fuel fatty acid synthesis to
support increased FAO in M2 macrophages, linking glycolysis,
fatty acid synthesis, and FAO.

An integrative analysis demonstrated that glucose oxidation,
but not that of fatty acids, is necessary for the early differentiation
of M2 macrophages and PDK-1 plays an ineffable role in this
conversion (53). Glucose uptake was increased over time in
macrophages when stimulated by IL-4. This observation
pioneeringly spiked interest of glycolysis in M2 macrophages
(54). Another point as recognized, CARKL is upregulated in M2
macrophages, which can lead to the production of ribose-5P,
enhancing the nonoxidative steps of PPP (41). Moreover, a
selective expression of the glycolytic enzyme 6-phosphofructo
2-kinase B1 (PFKFB1), was consistently found in M2
macrophage, it can catabolize fructose-2,6-bisphosphate more
efficiently than PFKFB3.

Alluringly, it was found that blocking glycolysis with 2-
deoxyglucose (2-DG) diminished the IL-4-induced expression
of the M2 phenotype, and the mTORC2 signaling upstream of
IRF4 expression played a critical role (54, 55). Interestingly,
similar results were acquired from macrophages cultured in a
glucose-free medium (55). Depletion of glucose or substitution of
glucose with galactose remarkably suppresses glycolysis but does
not affect OXPHOS and M2 macrophages activation (51). This
phenomenon indicates that glycolysis is not mandatory for M2
activation if OXPHOS is intact, but becomes necessary if
OXPHOS is compromised (56). At the same time, HBP was
also found dispensable for anti-inflammatory M2-like
polarization (57). Thus, glucose looks like energy support for
OXPHOS in M2 macrophages, probably triggering a spurt
mitochondrial respiratory activity.
TABLE 1 | The complexity between macrophage phenotypes and glucose metabolism.

M1 macrophage M2 macrophage Tumor-associated Macrophage

Activation stimuli IFN-g, LPS, TNF-a IL-4, IL-13 Tumor microenvironment, such as hypoxia, adenosine
Inflammatory
cytokines secretion

IL-1b, IL-6, IL-12, IL-23, TNF-a IL-1, IL-6, IL-10, TGF-b Both, mainly anti-inflammatory cytokines

Marker expression CD68, CD86, CD80, MHC-II,
INOS, TLR-4

CD163, CD206, MHC-II, CXCR1,
CXCR2, TLR1, TLR8

Both M1 & M2 markers, mainly immunosuppressive molecules

Chemokine
secretion

CXCL3, CXCL5, CCL2, CCL3,
CCL4, CCL5, CCL8-11

CCL17, CCL18, CCL22, CCL24 CCL1, CCL5, CCL10

Antigen
presentation

Yes No Yes

Glucose
metabolism pattern

Glycolysis, PPP, HBP OXPHOS, FAO, HBP OXPHOS & FAO, with increased glycolysis, PPP, HBP

Glucose
metabolism
enzymes

HK, PFKFB3, PKM2, PDK1 PDK1, CARKL, PFKFB1 both

Signaling pathways HIF-1a, STAT1, STAT5, IRF3,
IRF5, NF-kb

mTORC2, IRF4, STAT3, STAT6 AKT/mTOR, HIF-1a, NF-kb

Functions Pro-inflammatory, tissue damage Anti-inflammatory, phagocytosis; tumor
formation and progression

M2a, M2b, M2c, M2d and others subtypes; promoting tumor
progression; immune suppression; immune scape
June 2021 | Volume 12 | Article 702580
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GLUCOSE METABOLISM SIGNATURE OF
TUMOR-ASSOCIATED MACROPHAGES

As stated earlier, TAMs constitute the largest population of
immune cells within the tumor, and are immunosuppressive in
nature during tumor progression. Upregulation of the expression
of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD
also known as CD39), 5’-nucleotidase Ecto (NT5E also known as
CD73) (58, 59), or programmed cell death ligand 1 (PDL-1) (60)
were comprehensively detected in TAMs. As cancer cells
themselves are typically dependent on glucose, they consume
most glucose from the surrounding microenvironment and
administrate glycolysis to supply rapidly growing energy
requirements. Consequently, TAMs domestically shift toward
OXPHOS and FAO metabolism and exhibit functions primarily
similar to M2 macrophages in a poor glucose TME to maintain
their immunosuppressive roles (61, 62). Wenes et al. recently
revealed that in hypoxic conditions of solid tumors, TAMs
promoted neoangiogenesis and tumor metastasis by shift
towards oxidative metabolism with decreased glycolysis
through activation of mTOR signaling pathways (63). In the
meanwhile, results showed that enhanced glucose flux through
the HBP propelled cancer progression by boosting O-
GlcNAcylation in TAMs (64).

However, slightly distinction of environment stimulus can
elicit substantially different macrophage phenotypes and
metabolism profiles (65, 66). Even though given the same
stimuli, macrophages can display differential responsiveness.
Considering the complexity of the TME, the plasticity and
adaptability of macrophages, it should be noted that such a
defined 2D spectrum of M1–M2 polarization adopted from in-
vitro experiments may not properly map the metabolism
signatures of macrophage in-vivo, it has to be considered as an
extremely dynamic and mixed 3D spectrum. More recently
researches revealed that TAMs actually have higher glucose
uptake (67) and a high level of glycolytic metabolism similar to
M1 macrophages to support their cytokine profiles and
functions. Proteomic analyses revealed that glycolytic enzymes
including hexokinase 2 are upregulated in macrophages
stimulated by tumor extract solution from breast cancer
patients (68), consistent with the findings in pancreatic ductal
adenocarcinoma (PDAC) (69) and non-medullary thyroid
carcinoma (70). Simultaneously, lactic acid released by
glycolytic cancer cells into the TME also upregulates HIF-1a
expression in TAMs responsible for increased glycolysis and M2-
like state (71, 72). Additionally, in-vivo, macrophages are capable
of repolarization from M2 to dichotomous M1 phenotype, they
can co-express both M1 and M2 polarization hallmarks
following tumor progression (56). We recently identified a
subtype of pro-inflammatory M2-type (CD206+IL-1b+) TAMs
characterized as stable mitochondrial respiration, enhanced
glycolysis, and elevated O-GlcNAcylation protein levels in
hepatocellular carcinoma. This novel subtype of macrophages
shares similar cell markers and cellular metabolism with classic
M2-like phenotype while playing a pro-inflammatory M1-like
function (73). Other researchers too have found such enhanced
Frontiers in Immunology | www.frontiersin.org 4
glycolysis in TAMs and have recognized more subtypes of TAMs
in cancer like CD68+ TAM in non-small cell lung cancer
(NSCLC) (74), CD169+ macrophages in PADC (75, 76),
CD163+ macrophages in epithelial ovarian cancer (77), and
PD-1+ macrophages in primary mouse and human cancer
(78). Hence, all various phenotypes of TAMs can contribute to
the tumor progression, depending on the metabolism balance
in TME.

By integrating data from the ImmGen project, Schultze et al.
proposed a core signature for human and murine macrophages
expanding our understanding (79). Correspondingly, Sarukhan
et al. discussed the potential underlying mechanisms regulating
TAMs specialization (80). These studies allowed us better
understand the heterogeneity of TAMs in tumors. Nevertheless,
the question that how glucose metabolism influence
macrophages’ switch in the tumor microenvironment, involving
the recruitment of circulating precursors or the re-education of
cells in situ still existed. Our group recently identified a novel
subtype of CD19+ TAMs in HCC, results showed that glycolysis
may be an innate feature that prefers the tumor progression
(unpublished data). A recent study also supported that glucose
use was modulated by cell-intrinsic programs of cells through
mTORC1 signaling in tumor (19). In fact, tumor cells rely more
on glucose to support their growth than TAMs, such nutrient
competition between tumor cells and immune cells apparently are
adverse for the ready proliferation of tumor cells. Additionally,
how macrophages glucose metabolism affects other immune cells
in tumor is incompletely explored. Hence, more profound work is
required to develop the underlying process.

Delightfully, advances in technology for single-cell RNA
sequencing (81, 82) and high-dimensional cytometry by
fluorescence or mass cytometry (cytometry by time of flight
(CyTOF)) (83) significantly promoted the high-dimensional
single-cell analyses. In the past few years, numerous profound
and novel views of metabolic flux and TAMs have been stated
(84, 85). In further study, the complete and elaborate description
of TAMs subpopulations landscape remains to establish to
explain the macrophages evolution and glucose metabolism.
TARGET GLUCOSE METABOLISM IN
MACROPHAGE FOR CANCER THERAPY

Given the important role of TAMs in promoting tumor
development and the complex landscape of the macrophages
which are heterogeneously evolved under the selective pressure
of TME, manipulating macrophages tentatively may serve as a
promising approach for controlling tumor progression
(Figure 1A). Previously, TAMs-targeted antitumor strategies
were mainly based on the inhibition of macrophages
recruitment (86, 87) or depletion of M2-like TAMs. However,
a recent study discovered that interruption of C–C motif
chemokine ligand 2 (CCL2) inhibition was associated with
increased cancer cell mobility and neovascularization, leading
to accelerated metastasis and cancer death (88). Furthermore,
June 2021 | Volume 12 | Article 702580
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far-ranging macrophage depletion could bring outside effects,
such as other immunosuppressive cells’ compensation (89–91).

Since macrophages glucose metabolism is inextricably
connected to its functionality, metabolic reprogramming of M2-
like TAMs toward an anti-tumoral phenotype at the same time
rupture cancer cell metabolism might be an elegant way. In the
context of a profound relationship between OXPHOS and the
differentiation of M2 macrophages especially in TAMs, inhibiting
OXPHOS pathway (Figure 1B) has been explored as a promising
approach to promote TAMs transition to M1 macrophages (92).
Blocking the expression of succinate dehydrogenase complex
flavoprotein subunit A (SDHA) and oxidative phosphorylation
Frontiers in Immunology | www.frontiersin.org 5
activities of macrophages with dimethyl malonate treatment
exhibited markedly delayed tumor growth (93). Similarly, FAO
inhibitors are developed to achieve the phenotypic transition of
macrophages and inhibit tumor development. Furthermore,
researchers have revealed that acriflavine (ACF), a heteroaromatic
dye with an antibacterial and antiviral effect, shifted macrophage
polarization to an M1-like anti-tumoral phenotype by blocking the
HIF-1a pathway and enhancing glucose uptake in PDAC (94). This
phenomenon shows that increasing the glucose utilization of TAMs
may be a promising direction.

As above mentioned, glycolysis is important in the early
differentiation of TAMs, the maintenance of an M2-like profiles
A

B

FIGURE 1 | Glucose metabolism basis macrophage-targeted therapy for cancer. (A) Overview of promising cancer therapy based on glucose metabolism
characteristic in tumor-associated macrophage. 2-DG, 2-deoxyglucose. (B) Specific presentation of OXPHOS (oxidative phosphorylation) inhibitors involved
mitochondrial complex I, II, III, IV, V. CAI, carboxyamidotriazole; MPTP, 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine; mIBG2, meta-iodobenzylguanidine; aTOS, a-
tocopheryl succinate; NO, nitric oxide; CO, carbon monoxide.
June 2021 | Volume 12 | Article 702580
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also dependent on a high glycolytic flow. Consequently, glycolysis
inhibition (with decreased lactate derived from the tumor) of TAMs
is certainly hopeful for cancer therapy. Chitin administration
significantly decreased anti-inflammatory M2 macrophage
polarization and prevented disease progression in a series of
mouse models (95). Also, dichloroacetic acid profoundly prevented
macrophage migration in a lung tumor xenograft model by
inhibiting macrophages glycolysis (42). Several O-GlcNAcylation
inhibitors had been proved to inhibit cancer cell growth (96, 97).
Nevertheless, specific targeting of one of the metabolic pathways for
macrophages is potentially deflective. Proper adjustment of glucose
metabolism in macrophages, instead of a simple one-way increase or
decrease, presents a potential therapeutic strategy.

In addition, owing to distinct cell populations of the TME share
common metabolic profiles and all metabolic pathways are
important for normal cells, sustained modifications of core
metabolic pathways may have marginally immunological effects
that are difficult to predict. Alternatively, the use of prodrugs that
are specifically activated macrophages according to the
embellishment of glucose metabolism in TME could be
considered for future therapy. For instance, esterase-sensitive
motif (ESM) inhibitors were prosperously tested as clinical
agents targeting macrophages (98). More than that, with the
development of nanotechnology, drug delivery systems based on
nanoparticles (NPs) have been in the generation of therapeutic
agents for several features, they are avirulent and can easily
penetrate physiological barriers with a stable consistency.
Glucose-based NPs have been used as biocompatible polymers
to re-educate TAMs (99). Meanwhile, 18F-FDG PET (100–102)
has been proposed as a non-invasive strategy to detect glucose
uptake and orbit underlying macrophage polarization
mechanisms. The application of biological or chemical materials
in targeted therapy makes it possible for the natural modulation of
macrophage glucose metabolism in-vivo, favoring an optimal
metabolic balance of macrophages to display functions in TME.
Frontiers in Immunology | www.frontiersin.org 6
CONCLUSION

As previously described, macrophages might respond diversely
depending on the heterogeneity in miscellaneous tissue
microenvironment and cell subpopulations ongoing changed.
Hence, macrophages should be considered as dynamic
alternations in the different phases of cancer where they adapt
various phenotypes and also metabolic signatures; the enhanced or
decreased glucose metabolism of macrophages should also not be
taken as favorable or harmful effects for TME. On the other hand,
advanced tools such as spatial transcriptomics and multiplex
immunohistochemistry need to be developed to dig the
association of glucose metabolism and macrophages. Whatever,
currently, the most effective strategies to target cancer will have to
precisely combine TAM-targeted prodrugs delivery systems with
complex cell glucose metabolism pathways and real-time imaging
systems in cancer. In summary, depth work is required to probe
the macrophage-response specificity, tissue-type sensitivity, and
metabolism-pattern availability, especially constricting the gap
between research and clinic with the help of precision medicine.
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