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ABSTRACT: The high sensitivity and functional group selectivity
of surface-enhanced Raman scattering (SERS) make it an attractive
method for enzyme sensing, but there is currently a severe lack of
enzyme substrates that release SERS reporter molecules with
favorable detection properties. We find that 2-mercaptopyridine-3-
carbonitrile (o-MPN) and 2-mercaptopyridine-5-carbonitrile (p-
MPN) are highly effective as SERS reporter molecules that can be
captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm−1. p-MPN is a
more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel
substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by β-glucosidase (Km = 228 and
162 μM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters
(o-MPN or p-MPN) enabled sensing of β-glucosidase activity and β-glucosidase inhibition. Comparative experiments using a crude
almond flour extract showed that the presence of β-glucosidase activity could be confirmed by SERS detection in a much shorter
time period (>10 time shorter) than by UV−vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic
tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.

■ INTRODUCTION

Enzyme assays are ubiquitous in biomedical research, clinical
diagnostics, drug discovery, and environmental monitoring.1−3

The range of assay designs and experimental conditions
continues to expand, creating an ongoing need to develop new
ways of detecting enzymes and evaluating enzyme inhibition.
Classic enzyme assays use optical techniques to monitor
changes in color,4 electronic absorption,5 fluorescence,6 or
chemiluminescence.7 While these methods are broadly useful,
they have application-specific drawbacks such as insensitivity,
background interference, high cost, or long preparation time.8,9

These technical concerns have been motivating research efforts
to develop enzyme assays with alternative detection
strategies.10,11 Advances in nanotechnology have led to new
classes of nanoparticles with plasmonic properties that have
great promise for exploitation within next-generation enzyme
assays.12,13 Surface-enhanced Raman scattering (SERS) is
attracting a lot of attention because of its high sensitivity and
functional group selectivity.14−16 In principle, SERS is capable
of enhancing the Raman scattering of the reporter molecules
adsorbed on rough metallic surfaces by a factor of ∼106−
1010.17,18 The metallic surface is often in the form of silver
nanoparticles (AgNPs) or gold nanoparticles (AuNPs), which
are easily prepared as monodispersed suspensions or
aggregated clusters.19

Although the idea of incorporating SERS detection into
bioanalytical methods, including enzyme assays, has been

discussed for two or more decades,17,20−22 there has been a
limited applied impact. A major roadblock slowing the
development of effective SERS enzyme assays is the challenge
of designing suitable enzyme substrate molecules with a
favorable combination of properties, including (a) rapid and
selective cleavage by a target enzyme and (b) release of a
reporter molecule that can be captured by AgNPs and made to
elicit a large SERS response.23 To date, only a few enzyme
substrates have been reported based on a small number of
releasable SERS reporter molecules such as azo, coumarin, or
naphthol dyes.17,24,25 We decided to expand the structural
scope in a new direction and develop a novel set of versatile
SERS reporter molecules. We were drawn to the possibility of
enzyme substrates that release derivatives of 2-mercaptopyr-
idine, which are known to have very high affinity for AgNPs
and produce distinctive SERS spectral patterns.26−30 However,
there was very little literature precedence indicating if, and
how, an enzyme substrate could be designed to release a
suitable 2-mercaptopyridine derivative for SERS detection.
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Here, we report two modified versions of 2-mercaptopyr-
idine as highly effective SERS reporters that are captured by
AgNPs with very high affinity. The compounds include a nitrile
group whose vibrational stretching band is readily apparent at
2230 cm−1 within the open window that has very little
interference from other vibrational bands (Scheme 1a).23

Moreover, we describe a protype SERS-active enzyme assay,
which compares enzymatic cleavage of two new substrates, (2-
mercaptopyridine-3-carbonitrile β-D-glucoside) (Glc-o-MPN)
and 2-mercaptopyridine-5-carbonitrile β-D-glucoside (Glc-p-
MPN), by the enzyme β-glucosidase (β-Glcase), to give the
SERS reporters o-MPN and p-MPN, respectively (Scheme
1b). We chose to focus on β-Glcase sensing for several related
reasons. It is an industrially important enzyme that is
distributed widely throughout the biosphere,31 and it is
employed extensively in the industry for production of food
and biofuels.32−34 It is also a biomarker for several different
diseases that require new classes of β-Glcase sensors.35,36 From
a technical perspective, β-Glcase is a good choice for early-
stage, validation studies because it commercially available and
its substrate selectivity profile is well-defined with reliable
benchmark kinetic data (Table S1). We find that Glc-o-MPN
and Glc-p-MPN are both excellent substrates for the β-Glcase
enzyme, although cleavage of Glc-p-MPN produces a more
intense SERS spectrum. The results lead us to infer that o-
MPN or p-MPN can be broadly applied as reporter molecules
for many bioanalytical applications using SERS detection.

■ EXPERIMENTAL SECTION
Synthesis and Characterization of SERS Substrates.

Substrate synthesis and compound characterization are
described in the Supporting Information. In short, Glc-o-
MPN was synthesized in 98% yield through a modified
Koenig−Knorr glycosidation between 2,3,4,6-tetra-o-acetyl-α-
D-glucopyranose bromide and 2-mercaptopyridine-3-carbon-

itrile (o-MPN) using 2 molar equivalents of cesium carbonate
in acetonitrile. The acetylated intermediate was purified by
column chromatography (silica gel) and then deacetylated
using aqueous triethylamine to produce Glc-o-MPN in 89%
yield. The substrate Glc-p-MPN (2-mercaptopyridine-5-
carbonitrile β-D-glucoside) was synthesized in one step by
conducting a nucleophilic aromatic substitution reaction.
Equimolar equivalents of 1-thio-β-D-glucose sodium salt and
2-chloro-5-cyanopyridine were stirred overnight in methanol
to produce Glc-p-MPN in 38% yield after purification by
column chromatography. Chemical stability studies revealed
that stock supplies of Glc-o-MPN and Glc-p-MPN are highly
stable when stored as dry powders (Figure S2).

Enzyme Studies Using UV−Vis Absorption. Stock
solutions of 1 mM Glc-o-MPN and Glc-p-MPN were prepared
in distilled water and used within a few hours. A 1 mg/mL
stock solution of commercial β-glucosidase (purchased from
Sigma who derived it from almonds) was prepared in 1X PBS
buffer, pH 5.33, and stored at 2−8 °C. An aliquot of Glc-o-
MPN (50 μM) and Glc-p-MPN was added in a cuvette
containing 1× PBS buffer, pH 5.33, followed by the addition of
200 μg/mL β-glucosidase. The final 1 mL reaction mixture was
mixed by inversion five times before monitoring the change in
the absorption spectra over an hour. Enzyme inhibition studies
were also performed using castanospermine (CAT) (10 μg/
mL), a plant alkaloid inhibitor of β-glucosidase (purchased
from Sigma). The order of addition was Glc-o-MPN or Glc-p-
MPN (50 μM), CAT (10 μg/mL), and β-glucosidase (200 μg/
mL). The Michaelis−Menten kinetic parameters were
determined in 1× PBS buffer, pH 5.33, at room temperature
by varying the concentration of Glc-o-MPN (10−500 μM) or
Glc-p-MPN (5−200 μM) in the reaction solutions. β-
Glucosidase (100 μg/mL) was added to each reaction, and
the change in absorption at 300 nm for the appearance of o-
MPN and 312 nm for the appearance of p-MPN was measured
at 5 min intervals over an hour. A Lineweaver−Burk plot was
created, and the Michaelis−Menten constant (Km) and
maximum rate (Vmax) were calculated.

Synthesis and Characterization of Silver (Ag) Nano-
particles. AgNPs were prepared using the Lee and Meisel
method.37 Briefly, 91 mg of silver nitrate in 500 mL of water
was brought to boiling under continuous stirring. Then, 10 mL
of 1% (w/v) sodium citrate was added dropwise and boiled
with stirring for 30 min. Upon cooling to room temperature,
the colloidal dispersion was diluted to 1 L. Transmission
electron microscopy (TEM) analysis of the AgNPs revealed an
average particle diameter of roughly 50 nm, and UV−vis
absorption showed λmax = 405 nm (Figure S6).

Synthesis and Characterization of Gold (Au) Nano-
particles. Quasispherical AuNPs were synthesized according
to a modified Frens method.38 Briefly, 180 mL of 10−2% (by
wt) tetrachloroaurate trihydrate salt solution was brought to
boiling. Then, 1.2 mL of 1% (by wt) trisodium citrate was
added rapidly under vigorous stirring. Boiling was continued
for 30 min before the deep red suspension with hues of yellow
was allowed to cool to room temperature. SEM analysis of the
AuNPs revealed an average particle diameter of 60 nm, and
UV−vis absorption showed λ = 540 nm (Figure S12).

Enzyme Studies Using SERS. For all SERS studies
involving AgNPs, an aliquot of Glc-o-MPN or Glc-p-MPN (10
μM) was added to a 1 mL vial containing preaggregated
AgNPs (monodisperse NPs aggregated by addition of 1 M
NaBr) and 1× PBS buffer, pH 5.33, followed by addition of β-

Scheme 1. (a) Capture of 2-Mercaptopyridine-carbonitrile
Reporter Molecules by Aggregated AgNPs (or AuNPs)
Enables Detection Using SERS and (b) Structure and
Enzymatic Cleavage of the Substrates Glc-o-MPN or Glc-p-
MPN by the β-Glucosidase Enzyme Gives the SERS-Active
Reporter Molecules o-MPN or p-MPN, Respectively
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Glcase (200 μg/mL). For the enzyme inhibition studies, CAT
(5 μg/mL) was added prior to the addition of β-Glcase. SERS
spectra were measured with a custom-built Raman setup using
a 633 nm HeNe laser (Thor Labs). The laser was focused onto
the sample using an inverted microscope objective (Nikon,
20×, NA = 0.5) with 120 μW power, measured at the sample.
The backscattered radiation was passed through a Rayleigh
rejection filter (Semrock) and then dispersed with a
spectrometer (Princeton Instruments Acton SP2300, grating
= 600 g/mm). Light was detected using a back-illuminated,
deep depletion CCD camera (PIXIS, Spec-10, Princeton
Instruments) and recorded using Winspec32 software (Prince-
ton Instruments) with a typical acquisition time of 60 s. All
experiments were conducted in triplicate.
The studies that compared UV−vis and SERS detection

(Figure 5) used the following conditions. The UV−vis assay
tracked the changes in the spectral profile for a single 1 mL
solution of Glc-p-MPN (50 μM) + almond flour extract
(protein concentration of 200 μg/mL) in 1× PBS buffer, pH
5.33. The SERS assay employed a 2 mL solution of Glc-p-
MPN (10 μM) + almond flour extract (protein concentration
of 200 μg/mL) in buffer and removed a 1 mL aliquot at two
incubation time points (1 and 24 h). Each 1 mL aliquot was
added to a vial containing preaggregated AuNPs (preaggre-
gated by addition of 1 M NaBr solution to monodisperse
AuNPs), and the SERS spectrum was acquired.
Almond Flour Extract. Food-grade almond flour was

purchased from a local baker and washed three times with
ethyl acetate and two times with acetone to remove lipids and
water. The powder was then dried immediately in a vacuum
desiccator and stored at 4 °C. Afterward, 1 g of defatted flour
was added to 25 mL of PBS (50 mM, pH 7.0). The
supernatant (crude almond flour extract) was collected after
centrifugation (room temperature, 4.4 rpm, 15 min). A
Bradford assay was performed using BSA as a standard to
determine the protein concentration in the crude extract
(Figure S14), and a sample of the crude extract solution with a
protein concentration of 200 μg/mL was subsequently tested,
by UV−vis or SERS assay, for the capacity to cleave Glc-p-
MPN (β-Glcase activity).39

■ RESULTS AND DISCUSSION

The results of UV−vis absorption assays (Figure 1) show that
β-Glcase catalyzes the cleavage of Glc-o-MPN or Glc-p-MPN,
releasing o-MPN or p-MPN, respectively, which has red-
shifted absorption bands. In the case of Glc-p-MPN, the
cleavage reaction was confirmed by thin-layer chromatography
analysis of the assay solution (Figure S3). Enzyme inhibition
studies were performed to confirm that the enzyme is

responsible for the substrate cleavage. As shown by the UV−
vis spectra in Figure S5, addition of the known β-Glcase
inhibitor CAT to a solution containing Glc-o-MPN or Glc-p-
MPN followed by addition of the enzyme greatly slowed the
appearance of absorption bands corresponding to the cleavage
products, o-MPN or p-MPN.
Enzyme efficiency was quantified by conducting a series of

kinetic assays that determined the Michaelis−Menten kinetics
for both substrates (Figure S4). The measured values of Km
and Vmax for Glc-o-MPN and Glc-p-MPN are similar to the
values reported in the literature for other β-Glcase substrates
(Table S1). The Km for Glc-o-MPN (228 μM) was slightly
higher than the Km for Glc-p-MPN (162 μM), but Glc-o-MPN
exhibited a slightly higher turnover number and catalytic
efficiency (kcat = 0.33 s−1 and kcat/Km = 1445 M−1 s−1) than
Glc-p-MPN (kcat = 0.21 s−1 and kcat/Km = 1300 M−1 s−1).
Combined, these results indicate that Glc-p-MPN has a
slightly higher affinity for the active site of the β-Glcase
enzyme; however, the enzyme active site can more efficiently
convert Glc-o-MPN to o-MPN than Glc-p-MPN to p-MPN.
The efficient cleavage of Glc-o-MPN and Glc-p-MPN by β-

Glcase is a remarkable finding since aryl thioglycosides are
known to resist the action of glucosidase enzymes. Indeed,
thioglycosides are often prepared and evaluated as nonreactive
glucosidase inhibitors.40 However, substrate cleavage has been
reported before when the glucoside leaving group is a thiol-
substituted heterocycle with an ortho nitrogen atom.41 This
reactivity trend suggests that the pyridyl nitrogen in Glc-o-
MPN and Glc-p-MPN is protonated in the β-Glcase active site,
which activates C−S bond cleavage as illustrated in Scheme 2a.

An absorption titration experiment determined the pKa of p-
MPN to be 6.46 (Figure S1); thus, it favors the acid form at
the working pH of 5.33 used throughout this study. It is worth
noting that the acidic forms of 2-mercaptopyridine compounds
exist in a tautomeric equilibrium as illustrated in Scheme
2b.42−44 The “thione” tautomer, shown on the left of the

Figure 1. Representative UV−vis absorption spectra and Lineweaver Burk plots for solutions containing 50 μM Glc-o-MPN or Glc-p-MPN + 100
μg/mL β-glucosidase (β-Glcase) over a one-hour period in 1× PBS Buffer pH 5.33. (a,b) Glc-o-MPN and (c,d) Glc-p-MPN.

Scheme 2. (a) Proposed Active Site Catalysis of Glc-o-MPN
and Glc-p-MPN Cleavage by the β-Glcase Enzyme and (b)
Tautomers of o-MPN and p-MPN
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equilibrium arrows, is the more prevalent species in aqueous
solution; however, both tautomers are very likely to form the
same Ag-bonded structure when o-MPN or p-MPN is
captured by the surface of the AgNP as shown in Scheme
1a.28,29

After proving that Glc-o-MPN and Glc-p-MPN are efficient
substrates for the β-Glcase enzyme, the study moved to
experiments using SERS analysis. The AgNPs were prepared
by standard methods, and TEM images indicated an average
particle diameter of 50 nm (Figure S6). Shown in Figure 2 are

SERS spectra for separate samples of o-MPN and p-MPN
captured by AgNPs. The normalized spectra in Figure 2a show
that both reporters produced a peak at 2230 cm−1, which
represents stretching of the CN bond. However, at other
spectral locations, there are noticeable differences in the peak
wavenumber, and especially notable are the very intense peaks
at 1064 cm−1 for o-MPN and at 1096 cm−1 for p-MPN. This
suggests that o-MPN and p-MPN have high potential for
incorporation into multiplex detection methods that quantify
the amount of each reporter in the same sample, and a
demonstration of this concept is provided in Figure S11.45,46 A
comparison of the relative intensity spectra in Figure 2b shows

that p-MPN produces a substantially more intense spectrum
than o-MPN, suggesting that it is likely to be a more useful
reporter for a high sensitivity detection assay using a single
substrate. Indeed, serial dilution experiments showed that low
nanomolar concentrations of p-MPN can be captured by the
AgNPs and easily detected at 1096 cm−1 (Figure 3).

The greater SERS sensitivity of p-MPN was apparent in
enzyme experiments that used AgNPs to capture the p-MPN
or o-MPN that was released when Glc-p-MPN or Glc-o-MPN
was cleaved by β-Glcase. The standard conditions for these
enzyme experiments added an aliquot of Glc-o-MPN or Glc-p-
MPN (10 μM) to a vial containing preaggregated AgNPs in
PBS buffer, pH 5.33, followed by addition of β-Glcase (200
μg/mL) in the presence or absence of the CAT inhibitor (10
μg/mL). Control experiments proved that the SERS spectra
for the enzyme-cleaved substrates matched the spectra for
separate samples of AgNPs with added amounts of authentic p-
MPN or o-MPN (Figure S7), thus confirming that the SERS
spectra were reporting capture of the released SERS reporter
molecules by the AgNPs. In the case of Glc-p-MPN, the
intensity of the SERS spectrum before enzyme addition was
very weak, and there was a large increase in signal intensity
once β-Glcase had cleaved all the substrate and the AgNPs had
captured all the released p-MPN (Figure S8a). As expected,
much less p-MPN was produced over the standard 1 h
incubation period when the assay was repeated in the presence
of the inhibitor CAT (Figure S8b). The bar graph in Figure 4a
shows a 20-fold increase in the SERS peak area upon complete
cleavage of the substrate and substantial reduction of the peak
area when β-Glcase was strongly inhibited by CAT. Similar
SERS changes were also observed with Glc-o-MPN (Figure
S9), but enzymatic cleavage of the substrate to release o-MPN

Figure 2. SERS spectra of separate samples containing equal amounts
of o-MPN or p-MPN (10 μM) in the presence of preaggregated
AgNPs. (a) Normalized intensity and (b) relative intensity.

Figure 3. SERS spectra of p-MPN at different concentrations in the
presence of AgNPs. The spectra were collected using a 633 nm laser,
1200 g/mm grating, and 120 μW power for an acquisition time of 30
s.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c00139
ACS Omega 2022, 7, 6419−6426

6422

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00139/suppl_file/ao2c00139_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00139/suppl_file/ao2c00139_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00139/suppl_file/ao2c00139_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00139/suppl_file/ao2c00139_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00139/suppl_file/ao2c00139_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00139/suppl_file/ao2c00139_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00139/suppl_file/ao2c00139_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00139?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


as the reporter molecule only produced a sixfold increase in the
CN peak area at 2230 cm− 1 (Figure 4b).
The selectivity of this SERS-based enzyme assay was tested

by conducting a set of experiments that mixed separate samples
of Glc-p-MPN with high amounts of other analytes that might
have affinity for the AgNPs and thus possibly produce an

artifact (i.e., bovine serum albumin, cysteine, glutathione,
glycine, or lipase).47 As shown in Figure S10, only β-Glcase
produced a large SERS signal corresponding to released p-
MPN. Additional experiments proved that the SERS-based
assay worked equally well with preaggregated AuNPs (Figure
S13).

Figure 4. (a) (Left) Representative SERS spectra of 10 μM Glc-p-MPN after incubation for 1 h in the presence or absence of 200 μg/mL β-Glcase
and 5 μg/mL CAT (1:8 molar ratio) in 1× PBS, pH 5.33, and (Right) bar graph showing the average peak area at 2230 cm−1. (b) (Left)
Representative SERS spectra of 10 μM Glc-o-MPN after incubation for 1 h in the presence or absence of 200 μg/mL β-Glcase and 5 μg/mL CAT
in 1× PBS, pH 5.33, and (Right) bar graph (N = 3) showing the average peak area at 2230 cm−1. The peak area has units of counts mW−1 s−1 cm−1.

Figure 5. (a) Representative UV−vis spectra of 50 μM Glc-p-MPN before and after 1 h or after 24 h of incubation with crude almond flour extract
(protein concentration of 200 μg/mL). (b) Representative SERS spectra of 10 μM Glc-p-MPN before and after 1 h or after 24 h of incubation with
a crude almond flour extract (protein concentration of 200 μg/mL). In all cases, the assay solution was 1× PBS, pH 5.33.
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The corollary of the high sensitivity gained by SERS
detection is the possibility of diagnostic tests that can detect
enzyme activities in a much shorter time period compared to
detection by UV−vis absorption. We tested this idea by
performing an experiment that compared the relative
capabilities of the SERS and UV−vis detection methods to
report positive evidence for cleavage of Glc-p-MPN by β-
Glcase. The comparative experiment employed a sample of
crude almond flour extract and mimicked a real-world
circumstance, namely quality control screening of a food
source for evidence that it contains a desired threshold level of
flavor-enhancing β-Glcase activity.32−34 Since the β-Glcase
activity in a typical crude almond flour extract is quite low, a
practically useful diagnostic test needs to detect the appearance
of p-MPN with high sensitivity.
Two separate samples from the same stock solution of crude

almond extract were tested for capacity to cleave Glc-p-MPN
and produce p-MPN (β-Glcase activity). One sample was
assessed by UV−vis, and the other was assessed by SERS. In
both cases, the spectrum for a solution of Glc-p-MPN was
acquired before extract addition and again at 1 or 24 h after the
addition of the crude almond extract (protein concentration of
200 μg/mL). Inspection of the UV−vis spectra in Figure 5a
shows that appearance of the p-MPN band at 312 nm (or 360
nm) was not very clear after 1 h but was quite apparent after
24 h, with both spectra exhibiting significant background
absorption at <300 nm due to other proteins present in the
crude extract. In contrast, the SERS spectra in Figure 5b show
that appearance of the p-MPN peak 2230 cm−1 was very
apparent after 1 h with no evidence of any background SERS
signal due to other proteins. The results clearly show that the
presence of β-glucosidase activity in the crude almond extract
is confirmed by SERS detection in a much shorter time period
(>10 times shorter) than by UV−vis absorption detection.
Obviously, this substantial time saving would greatly facilitate
any industrial food production process that must perform a
large number of quality assurance measurements to confirm
the threshold levels of β-glucosidase activity.
Close inspection of the SERS data in Figures 3 and 5

suggests that dependence of the SERS signal intensity on the
p-MPN concentration is not perfectly linear, which we
attribute to the use of preaggregated nanoparticles for the
SERS measurements. Thus, future work to optimize the assays
will need to develop a suitable immobilized metal surface for
SERS detection, in particular a surface with a more uniform
and reproducible morphology that enables improved quanti-
tative analysis. This is an ongoing community-wide research
challenge that must be solved before SERS-based assays will be
routinely used for quantitative enzyme detection.25,48,49

■ CONCLUSIONS
The two 2-mercaptopydrine-carbonitrile compounds, o-MPN
or p-MPN, have great potential as reporter molecules for
efficient capture by silver or AuNPs and detection by SERS.
The specific focus of this study was on enzyme sensing, and the
results show that Glc-p-MPN and Glc-o-MPN are efficient
substrates for the β-Glcase enzyme, which enable SERS
detection of β-Glcase activity and β-Glcase inhibition. The
substrate Glc-p-MPN is superior because the released p-MPN
is detected with higher sensitivity. Comparative sensitivity
experiments using an almond flour extract showed that the
presence of β-glucosidase activity in the crude extract could be
confirmed by SERS detection in a much shorter time period

(>10 times shorter) than by UV−vis absorption detection.
With further development, it is possible that β-Glcase assays
using Glc-p-MPN will be broadly useful in environmental
science31 and disease diagnosis.35,36 SERS detection will be
especially helpful with heterogeneous samples such as saliva50

or bacterial cell culture,33 where optical assays fail due to
strong scattering of light and background interference.
Beyond the specific application of β-Glcase sensing, it is very

likely that many other enzyme assays can be developed using
released 2-mercaptopydrine-carbonitriles as SERS reporter
molecules. In addition to single-use assays, it should be
possible to spatially pattern the AgNP capture agent in an array
format that enables high-throughput screening of enzyme
inhibitors for drug discovery.8,48 Alternatively, enzyme−
antibody conjugates can be developed for enzyme-catalyzed
signal amplification with SERS detection in ELISA-based
diagnostics.51 The narrow peaks and high signal dispersion of
SERS spectra favor multiplex diagnostics and imaging, which
raises the possibility of additional 2-mercaptopydrine-carbon-
itrile compounds, beyond o-MPN and p-MPN, as reporter
molecules with distinct spectral SERS signals that can act as
detection barcodes.52
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