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Objective. To investigate the diagnostic gene biomarkers for hepatocellular carcinoma (HCC) and identify the immune cell
infiltration characteristics in this pathology. Methods. Five gene expression datasets were obtained through Gene Expression
Omnibus (GEO) portal. After batch effect removal, differentially expressed genes (DEGs) were conducted between 209 HCC
and 146 control tissues and functional correlation analyses were performed. Two machine learning algorithms were used to
develop diagnostic signatures. The discriminatory ability of the gene signature was measured by AUC. The expression levels
and diagnostic value of the identified biomarkers in HCC were further validated in three independent external cohorts.
CIBERSORT algorithm was adopted to explore the immune infiltration of HCC. A correlation analysis was carried out
between these diagnostic signatures and immune cells. Results. A total of 375 DEGs were identified. GPC3, ACSM3, SPINK1,
COL15A1, TP53I3, RRAGD, and CLDN10 were identified as the early diagnostic signatures of HCC and were all validated in
external cohorts. The corresponding results of AUC presented excellent discriminatory ability of these feature genes. The
immune cell infiltration analysis showed that multiple immune cells associated with these biomarkers may be involved in the
development of HCC. Conclusion. This study indicates that GPC3, ACSM3, SPINK1, COL15A1, TP53I3, RRAGD, and
CLDN10 are potential biomarkers associated with immune infiltration in HCC. Combining these genes can be used for early
detection of HCC and evaluating immune cell infiltration. Further studies are needed to explore their roles underlying the
occurrence of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is a highly aggressive malig-
nant solid tumors and remains the major cause of cancer death
across the world [1]. The development of HCC is closely asso-
ciated with the infection of hepatitis B virus (HBV) and/or hep-
atitis C virus (HCV) [2]. There are multiple therapy strategies
for various clinical characteristics of HCC. Hepatectomy, trans-
plantation, ablation, immunotherapy, transarterial chemoem-
bolization, and chemotherapy have been indicated to yield
survival benefits [3, 4]. Among these, surgical resection can
only be conducted in early-stage HCC patients. However, its
mortality is still high, which largely due to early-stage tumors
symptoms which are typically asymptomatic and limited treat-

ments for individuals with advanced HCC [5]. The high mor-
bidity and mortality rates make early screening and diagnosis
of HCC even more important. The optimal curative therapy
strategies for early HCC individuals include surgical resection
and liver transplantation, and individuals who finished those
treatments generally show a favorable outcome, with a five-
year overall survival (OS) rate between 60% and 80% [6]. From
a clinical perspective, improving early screening for HCC will
provide the patients more opportunity for curative treatment.
Thus, developing a stable and precise model for the diagnosis
of individuals with early HCC will present a considerable influ-
ence on clinical outcomes. Presently, application of ultrasonog-
raphy as well as serum α-fetoprotein (AFP) is a commonly
noninvasive approach for HCC supervision. However, the
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sensitivity and specificity for early-stage HCC diagnosing is
unsatisfactory [7]. Thus, identification of reliable and robust
diagnostic biomarkers is urgent for HCC treatment.

With the increasing development in genome-sequencing
technologies as well as bioinformatic algorithms, numerous
molecular signatures and genetic biomarkers have been devel-
oped to enhance the diagnosis and prognosis prediction in
individuals with HCC [8–10]. Recently, immunotherapy has
presented promising findings [11]. Tumor-infiltrating
immune cells (TIICs) are involved in the prognosis and treat-
ment of multiple cancer types, including HCC [12–14]. How-
ever, diagnostic gene biomarkers associated with immune cell
infiltration in HCC were still limited. Thus, it is still a great
need to identify novel gene biomarkers for the diagnosis of
HCC, especially for early-stage HCC, in clinical practice.
Machine learning (ML) belongs to a subset of artificial intelli-
gence that is widely used to solve prediction problems in
human diseases by providing the machine the ability to learn
from data without giving specific instructions [15, 16].

Therefore, in this study, we downloaded multiple large-
scale datasets diagnosed with HCC from the GEO portal
and merged into a discovery cohort after batch effect was
removed. After performing differentially expressed gene
(DEG) analysis, ML algorithms, including support vector
machine-recursive feature elimination (SVM-RFE) and
LASSO, were applied to screen candidate diagnostic genes
between HCC and controls. The shared genes identified by
the two methods were validated in three external validation
cohorts and were used to construct the diagnostic score for
early-stage HCC screening using a logistic regression
method. Then, the putative abundance of immune cell sub-
types via CIBERSORT algorithm was calculated. Further,
the association between the gene markers and infiltrating
immune cells was explored to present a reference for future
research in HCC.

2. Materials and Methods

2.1. HCC Datasets. We searched and downloaded five HCC
microarray expression profile datasets (GSE121248,
GSE45267, GSE65372, GSE51401, and GSE14520-GPL571)
from the GEO portal (http://www.ncbi.nlm.nih.gov/geo)
for DEG analysis, which is a public functional genomics data
repository. The characteristics of the multiple cohorts uti-
lized in the study are presented in Table 1. GSE14520-
GPL3921 cohort contained 225 HCC samples and 220 con-
trols; gene expression data was used for external validation
of the diagnostic score. Gene expression matrix of 374
HCC tissues and 50 control tissues collected from The Can-
cer Genome Atlas (TCGA) was used for another external
validation. To yield robust diagnostic performance, the
Japan Project from International Cancer Genome Consor-
tium (ICGC-LIRI-JP) collected the RNA-Seq data of 243
HCC patients and 202 controls which was used as the third
external validation cohort. Next, the probes’ ID in every
cohort was annotated and transformed into gene symbols
according to platform annotation documents, and the
probes falling to match any gene symbols were excluded. If
multiple probes match to a same gene symbol, average value

was used value. The gene expression files of the five datasets
(GSE121248, GSE45267, GSE65372, GSE51401, and
GSE14520-GPL571) were merged into a discovery cohort
for subsequent analysis. The batch effects between different
datasets were corrected by the R package “SVA” containing
the “Combat” function [17].

2.2. DEG Identification. Five datasets were combined, and
batch effects were eliminated by using the “Combat” algo-
rithm. Then, these datasets were merged into a discovery
cohort. There are 209 patients with HCC and 146 normal
individuals in the cohort. The present study analyzed differ-
entially expressed gene (DEG) by the “limma” R package via
the comparison of the expression matrixes of HCC and con-
trol samples. The volcano plot was plotted to show the
DEGs, which with thresholds of adjusted P < 0:05 and ∣log2
FC ∣ >1 being statistically significant.

2.3. Functional Correlation Analysis. Gene Ontology (GO)
enrichment was conducted and visualized using the “Clus-
terProfiler” R packages. Disease Ontology (DO) enrichment
was implemented via the “ClusterProfiler” and DOSE pack-
ages [18, 19]. Gene set enrichment analysis (GSEA) was per-
formed to seek the foremost regulated pathways and
functional terms between the HCC and normal samples
[20]. The “c2.cp.kegg.v7.0.symbols.gmt” was adopted as the
reference gene set. The cutoff point of significance was
deemed as notably enriched if a P < 0:05 as well as false dis-
covery rate < 0:025.

2.4. Identification and Validation of Candidate Biomarkers.
To construct a gene-based diagnostic score using the discov-
ery cohort, two machine learning algorithms were selected to
perform the disease status predictions. A LASSO-based algo-
rithm, which is a regression analysis algorithm, was used for
data dimensionality reduction. LASSO runs a covariate
selection, which contributes to the prediction accuracy as
well as the interpretability through regularization. LASSO
was implemented with the “glmnet” R package to investigate
the variables notably related to the discrimination of HCC
and controls [21]. SVM is a supervised machine learning
classification algorithm that has been commonly utilized
for disease classification through predicting the extent of
an individual belonging to a specific class [22]. To identify
the set of genes with highest discriminative power, SVM-
RFE was used to choose the suitable feature genes. The inter-
section genes identified by the two ML procedures were used
as candidate biomarkers, and the expression values of these
genes were additional confirmed in three independent exter-
nal datasets.

2.5. Feature Gene Biomarker Selection and Diagnostic Score
Construction. The validated biomarkers were used for model
construction. The gene-based diagnostic score was devel-
oped via logistic regression model analysis in the discovery
cohort using the following formula: diagnostic score = ðβ1
∗ Expgene1Þ + ðβ2 ∗ of Expgene2Þ +⋯+ðβn ∗ ExpgenenÞ.
The predictive significance of the diagnostic score was mea-
sured using receiver operating curve (ROC) analysis. The
diagnostic scores in three external cohorts were calculated

2 Gastroenterology Research and Practice

http://www.ncbi.nlm.nih.gov/geo


using the same formula, respectively. ROC curve was gener-
ated based on the gene expression value from HCC and nor-
mal tissues in the discovery cohort and three validation
cohorts. The AUC was adopted to measure the diagnostic
efficiency in separating HCC from normal samples and fur-
ther verified in the validation cohorts. Moreover, the effec-
tiveness of the diagnostic score in identifying early stage of
HCC individuals (stage I) from control ones was addition-
ally quantified in three validation cohorts via the AUCs.

2.6. Analysis of Immune Cell Infiltration. Infiltrating
immune cells derived from the gene expression matrix in
the discovery cohort in HCC were calculated by the CIBER-
SORT algorithm (https://cibersortx.stanford.edu/). To infer
the relative abundance of infiltrating immune cells, a refer-
ence set with 22 sorted kinds of immune cell subtypes
(LM22) with 1,000 permutations was adapted [23]. The R
package “corrplot” was used to analyze the correlation anal-
ysis and visualize the 22 kinds of infiltrating immune cells.
The “vioplot” package in R was adapted to plot violin plots
and visualize the differences of immune cell infiltration
between the HCC and normal tissues.

2.7. Investigating the Link between Selected Biomarkers and
Infiltrating Immune Cells. We used CIBERSORT in R lan-
guage to analyze the differences in the infiltration of 22
immune cells between the HCC and normal tissues. Spear-
man’s rank correlation analysis was adapted to obtain the
relationship between each diagnostic gene and immune cell
infiltration and was visualized with “ggplot2” package.

2.8. Statistical Analysis. The LASSO regression analysis was
implemented using the “glmnet” R package, and the SVM
algorithm was carried out using the “e1071” R package.
ROC curve analysis was performed to quantify the diagnos-
tic efficacy of the diagnostic score. All statistical analyses
were performed using R software (version 3.6.1), and a P <
0:05 was deemed statistically significant.

3. Results

3.1. Screening of Predictive Genes in HCC. DEGs were per-
formed between 146 normal individuals and 209 patients
with HCC in the discovery cohort after eliminating the batch
effects (Figure 1(a)). Initially, 375 DEGs were acquired,
which included 130 significantly upregulated genes and
245 significantly downregulated genes (Figure 1(b)).

3.2. Functional Enrichment Analysis of DEGs. The GO and
KEGG analysis results show that DEGs are significantly
enriched in cellular senescence, cell cycle, tubulin binding,
mitotic spindle, and mitotic nuclear division (Figure 2(a)).
Moreover, the functional enrichment demonstrated that dis-
eases enriched by DEGs were generally related to non-small-
cell lung carcinoma, liver cirrhosis, kidney cancer, bile duct
adenocarcinoma, renal carcinoma, and breast carcinoma
(Figure 2(b)). The GSEA results revealed that changed genes
were enriched in several common pathways that are mainly
involved in DNA replication, mismatch repair, proteasome,
pyrimidine metabolism, and progesterone-mediated oocyte

maturation (Figure 2(c)). These findings strongly suggest
that cell cycle and cancer-related pathways play an essential
role in the pathogenesis of HCC.

3.3. Development and Confirmation of an Immune-Related
Diagnostic Gene Biomarker-Based Diagnostic Score. We per-
formed two different bioinformatic algorithms to screen the
potential biomarkers of HCC. By using the LASSO regression
algorithm, DEGs were narrowed down to 29 variables as diag-
nostic biomarkers for HCC (Figure 3(a)). By using the SVM-
RFE algorithm, we identified a subset of 40 genes among the
DEGs (Figure 3(b)). The 8 overlapping feature genes (GPC3,
ACSM3, SPINK1, COL15A1, TP53I3, RRAGD, CLDN10, and
GPR88) were finally identified (Figure 3(c)). Moreover, in order
to yield precise and reliable gene expression results, the
GSE14520-GPL3921 dataset, ICGC, and TCGA-HILC cohorts
were adapted to check the expression values of the 8 genes.
Finally, the expression values of GPC3, ACSM3, SPINK1,
COL15A1, TP53I3, RRAGD, and CLDN10 in HCC samples
were particularly lower than individuals in the control cohort
(Figures 4(a)–4(c); all P < 0:05), while the expression values of
GPR88 in HCC samples were not greatly higher than individ-
uals in the control group in GSE14520-GPL3921 dataset and
ICGC (P > 0:05). Thus, the seven selected biomarkers were
adapted to construct a diagnostic score via a logistic regression
procedure. After obtaining the coefficients viamultivariate logis-
tic regression algorithm, the diagnostic score was established.
Diagnostic score = ð0:6325 ∗GPC3Þ + ð−0:9191 ∗ACSM3Þ +
ð0:2633 ∗ SPINK1Þ + ð0:7349 ∗ COL15A1Þ + ð0:8170 ∗ TP53
I3Þ + ð0:4756 ∗ RRAGDÞ + ð−0:8263 ∗ CLDN10Þ. Therefore,
the diagnostic scores in four cohorts were obtained, respectively.

3.4. Diagnostic Effectiveness of the Diagnostic Score in HCC.We
further quantified the discrimination ability by the area under a
ROC curve (AUC). As demonstrated in Figure 5(a), the diag-
nostic capability of the seven genes in separating HCC from
the normal tissues presented an excellent diagnostic perfor-
mance, with all AUCs > 0:8. Considering the discriminatory
ability of the diagnostic score, ROC curve analysis was per-
formed. TheAUCwas 0.980 (95%CI = 0:960 − 0:990), demon-
strating a high prediction efficacy of the diagnostic score gene
signature for HCC. The robustness of the seven-gene diagnos-
tic score was further confirmed in three validation cohorts for
predicting diagnosis in individuals with HCC with an AUC
of 0.962 in GSE14520 validation cohort (Figure 5(b)), AUC
of 0.963 in ICGC cohort (Figure 5(c)), and AUC of 0.942 in
TCGA-HILC cohort (Figure 5(d)), suggesting that the identi-
fied gene biomarkers had a high and strong diagnostic ability.

Additionally, we further calculated the diagnostic role of
the diagnostic score gene signature for HCC at early stage
(stage I). The detailed stage information was available in three
validation cohorts. Surprisingly, the diagnostic score displayed
high discriminability for early-stage HCC in the GSE14520
validation cohort (HCC-stage I vs. non-HCC, AUC = 0:955,
Figure 6(a)), ICGC cohort (HCC-stage I vs. non-HCC, AUC
= 0:952, Figure 6(b)), and TCGA-HILC cohort (HCC-stage
I vs. non-HCC,AUC = 0:944, Figure 6(c)). These results dem-
onstrate that the selected gene biomarkers presented a high
diagnostic power for the early diagnosis of HCC.
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3.5. Investigation of Immune Cell Infiltration.We explored the
composition of immune cells in HCC cases and healthy con-
trols using the CIBERSORT algorithm. The abundance of 22
immune cells in HCC and control samples was shown using
a bar plot (Figure 7(a)). The proportions of CD8+ T cell
(P = 0:004), resting memory CD4+ T cells (P = 0:006), gamma
delta T cells (P < 0:001), resting NK cell (P = 0:001), mono-
cytes (P = 0:004), M2 macrophages (P = 0:021), and neutro-
phils (P < 0:001) in HCC were significantly lower than in
healthy controls (Figure 7(b)). However, the proportion of reg-
ulatory T cells (P < 0:001), activated NK cell (P < 0:001), M0
macrophages (P < 0:001), resting dendritic cell (P < 0:001),
and activated mast cell in HCC was significantly higher than
that in healthy controls (Figure 7(b)).

3.6. Association between the Seven Gene and Infiltrating
Immune Cells.As exhibited in Figure 8, CLDN10 was positively
associated with naive CD4+ T cells (r = 0:132, P = 0:049), CD8+
T cells (r = 0:147, P = 0:003), neutrophils (r = 0:149, P = 0:025
), and gamma delta T cells (r = 0:246, P = 0:0002) and nega-
tively correlated with M0 macrophages (r = −0:366, P < 0:001
), activated mast cells (r = −0:212, P = 0:001), regulatory T cells
(r = −0:199, P = 0:003), and activated NK cells (r = −0:137, P
= 0:042). GPC3 was positively correlated with regulatory T
cells (r = 0:145, P = 0:031), activated memory CD4+ T cells
(r = 0:151, P = 0:025), activated NK cells (r = 0:208, P = 0:002
), and M0 macrophages (r = 0:487, P < 0:001) and negatively
correlated with resting NK cells (r = −0:259, P < 0:001), M2
macrophages (r = −0:252, P = 0:0001), monocytes (r = −0:248
, P = 0:0001), gamma delta T cells (r = −0:225, P = 0:0007),
and neutrophils (r = −0:221, P = 0:0009). ACSM3 was posi-
tively correlated with CD8+T cells (r = 0:136, P = 0:043), rest-
ing memory CD4+ T cells (r = 0:156, P = 0:020), M1
macrophages (r = 0:204, P = 0:002), resting NK cells
(r = 0:259, P < 0:001), and delta gamma T cells (r = 0:321, P
< 0:001) and negatively correlated with naive CD4+ T cells
(r = −0:144, P = 0:032), plasma cells (r = −0:151, P = 0:024),

activated NK cells (r = −0:221, P = 0:001), regulatory T cells
(r = −0:267, P < 0:001), and M0 macrophages (r = −0:385, P
< 0:001). SPINK1 was positively correlated with M0 macro-
phages (r = 0:346, P < 0:001), activated NK cells (r = 0:205, P
= 0:002), and regulatory T cells (r = 0:163, P = 0:015) and neg-
atively correlated with monocytes (r = −0:144, P = 0:033), rest-
ing NK cells (r = −0:162, P = 0:016), CD8+ T cells (r = −0:245,
P = 0:0001), and delta gamma T cells (r = −0:258, P = 0:0001).
COL15A1 was positively correlated with regulatory T cells
(r = 0:134, P = 0:047), resting dendritic cells (r = 0:175, P =
0:009), activated NK cells (r = 0:175, P = 0:009), and M0 mac-
rophages (r = 0:415, P < 0:001) and negatively correlated with
delta gamma T cells (r = −0:307, P < 0:001), resting NK cells
(r = −0:305, P < 0:001), neutrophils (r = −0:261, P < 0:001),
and CD8+ T cells (r = −0:243, P < 0:001). TP53I3 was positively
correlated with M1macrophages (r = 0:161, P = 0:016), resting
dendritic cells (r = 0:189, P = 0:005), regulatory T cells
(r = 0:226, P < 0:001), activated NK cells (r = 0:315, P < 0:001
), and M0 macrophages (r = 0:424, P < 0:001) and negatively
correlated with delta gamma T cells (r = −0:361, P < 0:001),
resting NK cells (r = −0:323, P < 0:001), CD8+ T cells
(r = −0:258, P < 0:001), resting memory CD4+ T cells
(r = −0:221, P < 0:001), neutrophils (r = −0:217, P = 0:001),
and activated dendritic cells (r = −0:170, P = 0:011). RRAGD
was positively correlated with M0 macrophages (r = 0:439, P
< 0:0001), activated NK cells (r = 0:241, P < 0:001), regulatory
T cells (r = 0:202, P = 0:003), plasma cells (r = 0:161, P = 0:017
), and activated mast cells (r = 0:146, P = 0:030) and negatively
correlated with neutrophils (r = −0:148, P = 0:028), resting NK
cells (r = −0:188, P = 0:005), resting memory CD4+ T cells
(r = −0:211, P = 0:002), CD8+ T cells (r = −0:301, P < 0:001),
and delta gamma T cells (r = −0:472, P < 0:001).

4. Discussion

In recent years, numerous reports have endeavored to dem-
onstrate the pathogenesis and pathomechanism of HCC.

Table 1: Details of the multiple datasets included in this study.

Datasets Platform Sample size (tumor/control) Application

GSE121248
GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array
107 (70/37) Identification of DEGs

GSE45267
GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array
87 (48/39) Identification of DEGs

GSE65372
GPL14951 Illumina HumanHT-12 WG-DASL

V4.0 R2 expression beadchip
54 (39/15) Identification of DEGs

GSE51401
GPL570 [HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array
64 (30/34) Identification of DEGs

GSE14520
GPL571 [HG-U133A_2] Affymetrix Human

Genome U133A 2.0 Array
43 (22/21) Identification of DEGs

GSE14520
GPL3921 [HT_HG-U133A] Affymetrix HT Human

Genome U133A Array
445 (225/220) Validation of DEGs

ICGC-JP cohort 445 (243/202) Validation of DEGs

TCGA-HILC 424 (374/50) Validation of DEGs
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Despite that huge development on surgical treatment and
drug therapy has been acquired, the outcome of HCC is still
unsatisfactory. Without powerful diagnosis approach on the
early stage often results in poor progression of HCC. There-
fore, developing stable prognostic biomarkers that reveal the
biological progression of the HCC will be vital for its preven-
tion and treatment.

In the current study, we constructed an integrated bioin-
formatic analysis to determine diagnostic genes that are

involved in immune cell infiltration in individuals with
HCC. Seven potential immune-related diagnostic gene bio-
markers (GPC3, ACSM3, SPINK1, COL15A1, TP53I3,
RRAGD, and CLDN10) were identified for HCC using two
machine learning algorithms. In addition, these candidate
biomarkers were strongly related to multiple immune cells.
These feature genes and immune cells may offer new prom-
ising early diagnostic and immunotherapeutic strategies for
HCC. The diseases enriched by DEGs were observed to be
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Figure 1: Differentially expressed genes (DEGs) identified between HCC and control samples. (a) Heatmap of DEG distribution and (b)
volcano plots of DEG distribution.
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Figure 2: Functional enrichment analysis. (a) GO and KEGG functional enrichment analyses of the DEGs. (b) Disease Ontology
enrichment analysis of the DEGs between HCC and control samples. (c) Enriched gene set enrichment analysis (GSEA) terms between
HCC and controls.
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mainly associated with cancer-related pathways. GO and
KEGG analysis results show that DEGs are significantly
enriched in cell cycle, tubulin binding, mitotic spindle, and
mitotic nuclear division, highly associated with HCC onco-
logical diseases, suggesting cell cycle exerts a strong influ-
ence on the development and homeostasis of HCC.
Deregulated cell cycle process is a hallmark of malignancy,
and targeting CDKs to inhibit cell proliferation has been
approved as a helpful anticancer therapy [24] [25]. Abnor-
malities in cell cycle mechanisms often accompany HCC
carcinogenesis. Based on these findings, the results in our
study may present potential targets for the therapy of HCC.

HCC is a highly heterogeneous malignant solid tumor.
Cells of the immune system are indispensable regulators
for tumor microenvironment (TME) homeostasis. The
TME comprises the stromal as well as immune cells which
interact with or infiltrate a particular cancer [26]. Among
the TME, immune cells are the key factors of tumor progres-
sion. At the same time, immunotherapy is a promising
tumor-killing method. The degree of infiltration of immune
cells can reflect the response of HCC cells to immunother-
apy, as well as different prognoses. However, despite the

development of immunotherapy for HCC, the results have
not been satisfactory. Immune cell infiltration and distribu-
tion are highly heterogeneous and complex, and the search
for factors driving immune infiltration or key biomarkers
is crucial to reveal this heterogeneity. In HCC, TME is
immunosuppressive and contributes to immune tolerance
and evasion via multiple processes, boosting cancer prolifer-
ation, invasion, and metastasis [26]. Presently, increasing
investigations have illustrated that the effector of CD8+, reg-
ulatory T cells, CD4+ cells, and dendritic cells could affect
the effectiveness of immune checkpoint inhibitors [27, 28].
In this present study, by using CIBERSOTR algorithm, a
great diversity of the infiltrated immune cells was found to
be participating in the process of HCC. In detail, regulatory
T cell, activated NK cells, M0 macrophages, resting dendritic
cell, and activated mast cell were decreased in HCC cohort.
This evidence is in general agreement with our results that
multiple immune cells are associated with these biomarkers,
suggesting that a substantial amount of immune cell is
involved in HCC. Therefore, identifying potential gene bio-
markers correlated with immune cell infiltration for HCC
will contribute to its diagnosis and treatment.
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Figure 3: Screening for potential diagnostic gene biomarkers of HCC by two machine learning strategies. (a) Screening diagnostic gene
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Figure 4: Continued.
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GPC3, ACSM3, SPINK1, COL15A1, TP53I3, RRAGD,
and CLDN10 were identified as potential new immune-
related diagnostic biomarkers with high diagnostic value,
which may serve as ideal biomarkers for the diagnosis of
HCC, as well as for the early stage of HCC. In recent years,
machine learning has been applied to various fields of biomed-
icine. Compared with most traditional statistical methods, the
advantage of machine learning is that it can identify potential
rules through massive data learning. Machine learning algo-
rithms have been applied to identify cancer prognostic charac-
teristic genes and tumor classification [29]. Machine learning
is a crucial discipline of artificial intelligence, utilizes proce-
dures that identify patterns within existing data, and trains
itself to perform predictions on other data [30]. Glypican-3
(GPC3) belongs to a member of the glypican family, which
has been utilized as a potential diagnostic biomarker for
HCC owning to its preferential expression in HCC [31].
GPC3 was highly expressed in HCC samples than in benign
liver lesions, which may play an important role in HCC diag-
nosis than alpha-fetoprotein (AFP) [32]. ACSM3 was down-
regulated in HCC, and individuals with little expression of
ACSM3 presented miserable prognosis. High expression of
ACSM3 weakened migration and invasion of HCC cells
in vitro and in vivo as well as downregulated the phosphoryla-
tion of WNK1 and AKT [33]. SPINK1 is highly expressed and
contributes to cancer progress in multiple cancers, including
HCC. It has been proved that SPINK1 increased proliferation
and promoted migration and invasion capability of HCC cell
lines [34]. CLDN10 expressed highly in HCC cells, and grow-

ing evidence demonstrates that CLDN10 is functionally
involved in HCC invasion and is a possible target for HCC
therapy [35]. Furthermore, knockdown of CLDN10 by siRNA
reduced HCC cell migration [36]. COL15A1 is a novel athero-
sclerosis gene that is involved in vascular smooth muscle cell
phenotype, which is regulated by epigenetic state in passaged
cells and located in atherosclerotic tissue [37]. However, the
diagnostic and prognostic role of COL15A1 in HCC remains
unknown. TP53I3, one of the p53-induced genes, is an
oxidoreductase-like protein that is transcriptionally activated
by the tumor suppressor TP53 and involved in TP53-
mediated apoptosis as well as DNA damage response [38].
As we know, TP53 mutation is one of the common alterations
in multiple cancers, including HCC. Mutations in the TP53
gene could yield genetic instability and result in cancer pro-
gression [39]. RRAGD encodes a small Rag guanosine tripho-
sphatase, which is an important component of the nutrient-
sensing pathway that activates mTOR signaling [40]. The rela-
tionship between mTOR signaling pathway and the pathogen-
esis of HCC has been widely confirmed previously [41, 42].

To deeply evaluate the diagnostic performance of the
model, this signature was sufficiently validated and evaluated
in multiple different external validation datasets, revealing
the robustness and reliability of the diagnostic score. Despite
the use of bioinformatics and machine learning algorithms
in our study and the discovery of the diagnostic value of
key genes in HCC patients, several limitations still exist in
present study. First, the findings concluded from bioinfor-
matics analysis need RT-PCR in clinical tissues to additional
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Figure 4: Verification of the expression levels of selected diagnostic gene markers in three validation cohorts. (a) GSE14520-GPL3921
cohort. (b) ICGC-LIRI-JP cohort. (c) TCGA cohort.
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Figure 7: The view of immune infiltration between HCC and controls. (a) Violin diagram of the proportion of 20 types of immune cells
between HCC and normal controls. (b) The difference of immune infiltration between HCC and normal controls.

13Gastroenterology Research and Practice



Correlation coefficient of ACSM3

Macrophages M0

T cells regulatory (tregs)

NK cells activated

Plasma cells

T cells CD4 naive

Dendritic cells resting

T cells CD4 memory activated

T cells follicular helper

B cells memory

Dendritic cells activated

Mast cells activated

Eosinophils

Mast cells resting

Neutrophils

B cells naive

Macrophages M2

Monocytes

T cells CD8

T cells CD4 memory resting

Macrophages M1

NK cells resting

T cells gamma delta

<0.001

<0.001

<0.001

0.024

0.032

0.052

0.397

0.436

0.545

0.798

0.922

0.913

0.742

0.119

0.084

0.058

0.057

0.043

0.020

0.002

<0.001

<0.001

–0.4 –0.2 0.0 0.2 0.4

abs (cor)
0.1
0.2
0.3

pvalue

1

0.8

0.6

0.4

0.2

0

0.4
0.5

Correlation coefficient of CLDN10

Macrophages M0

Mast cells activated

T cells regulatory (tregs)

NK cells activated

T cells follicular helper

Dendritic cells activated

Dendritic cells resting

Macrophages M1

B cells memory

NK cells resting

Eosinophils

Macrophages M2

T cells CD4 memory activated

Plasma cells

Monocytes

B cells naive

Mast cells resting

T cells CD4 memory resting

T cells CD4 naive

T cells CD8

Neutrophils

T cells gamma delta

<0.001

0.001

0.003

0.042

0.166

0.565

0.654

0.731

0.831

0.862

0.677

0.631

0.348

0.325

0.205

0.123

0.117

0.087

0.050

0.028

0.025

<0.001

–0.4 –0.2 0.0 0.2 0.4

abs (cor)
0.1
0.2
0.3

pvalue

1

0.8

0.6

0.4

0.2

0

0.4
0.5

Correlation coefficient of COL15A1

T cells gamma delta

NK cells resting

Neutrophils

T cells CD8

B cells naive

Dendritic cells activated

T cells CD4 naive

T cells follicular helper

Plasma cells

Monocytes

Mast cells resting

B cells memory

Eosinophils

Mast cells activated

Macrophages M2

T cells CD4 memory resting

T cells CD4 memory activated

Macrophages M1

T cells regulatory (tregs)

Dendritic cells resting

NK cells activated

Macrophages M0

<0.001

<0.001

<0.001

<0.001

0.082

0.169

0.235

0.382

0.574

0.644

0.647

0.816

0.911

0.961

0.949

0.788

0.252

0.130

0.047

0.009

0.009

<0.001

–0.4 –0.2 0.0 0.2 0.4

abs (cor)
0.1
0.2
0.3

0.4
0.5

pvalue

1

0.8

0.6

0.4

0.2

0

Correlation coefficient of GPC3

NK cells resting

Macrophages M2

Monocytes

T cells gamma delta

Neutrophils

T cells CD8

Dendritic cells activated

Eosinophils

T cells CD4 memory resting

B cells memory

Mast cells activated

Mast cells resting

B cells naive

Macrophages M1

T cells follicular helper

Plasma cells

T cells CD4 naive

Dendritic cells resting

T cells regulatory (tregs)

T cells CD4 memory activated

NK cells activated

Macrophages M0

<0.001

<0.001

<0.001

<0.001

<0.001

0.067

0.078

0.119

0.342

0.574

0.907

0.368

0.354

0.286

0.215

0.190

0.140

0.058

0.031

0.025

0.002

<0.001

–0.4 –0.2 0.0 0.2 0.4

abs (cor)
0.1
0.2
0.3

0.4
0.5

pvalue

1

0.8

0.6

0.4

0.2

0

Correlation coefficient of RRAGD

T cells gamma delta

T cells CD8

T cells CD4 memory resting

NK cells resting

Neutrophils

Dendritic cells activated

B cells memory

B cells naive

Eosinophils

T cells CD4 memory activated

Mast cells resting

T cells follicular helper

T cells CD4 naive

Monocytes

Macrophages M1

Macrophages M2

Dendritic cells resting

Mast cells activated

Plasma cells

T cells regulatory (tregs)

NK cells activated

Macrophages M0

<0.001

<0.001

0.002

0.005

0.028

0.138

0.160

0.166

0.416

0.649

0.861

0.864

0.825

0.610

0.566

0.473

0.057

0.030

0.016

0.002

<0.001

<0.001

–0.4 –0.2 0.0 0.2 0.4

abs (cor)
0.1
0.2
0.3

0.4
0.5

pvalue

1

0.8

0.6

0.4

0.2

0

Correlation coefficient of SPINK1

T cells gamma delta

T cells CD8

NK cells resting

Monocytes

Macrophages M2

T cells CD4 memory resting

Dendritic cells activated

Eosinophils

B cells memory

B cells naive

Macrophages M1

Mast cells resting

T cells CD4 naive

T cells follicular helper

Neutrophils

T cells CD4 memory activated

Mast cells activated

Dendritic cells resting

Plasma cells

T cells regulatory (tregs)

NK cells activated

Macrophages M0

<0.001

<0.001

0.016

0.033

0.106

0.193

0.229

0.253

0.344

0.351

0.696

0.921

0.772

0.602

0.588

0.352

0.261

0.131

0.063

0.015

0.002

<0.001

–0.4 –0.2 0.0 0.2 0.4

abs (cor)
0.1
0.2
0.3

0.4
0.5

pvalue

1

0.8

0.6

0.4

0.2

0

Correlation coefficient of TP53I3

T cells gamma delta

NK cells resting

T cells CD8

T cells CD4 memory resting

Neutrophils

Dendritic cells activated

B cells naive

B cells memory

Monocytes

Mast cells resting

Eosinophils

Macrophages M2

T cells CD4 memory activated

T cells follicular helper

T cells CD4 naive

Plasma cells

Mast cells activated

Macrophages M1

Dendritic cells resting

T cells regulatory (tregs)

NK cells activated

Macrophages M0

<0.001

<0.001

<0.001

<0.001

0.001

0.011

0.123

0.359

0.615

0.733

0.737

0.964

0.697

0.650

0.649

0.445

0.334

0.016

0.005

<0.001

<0.001

<0.001

−0.4 −0.2 0.0 0.2 0.4

abs (cor)

0.1
0.2
0.3

0.4
0.5

pvalue

1

0.8

0.6

0.4

0.2

0

Figure 8: Correlation analyses between diagnostic gene biomarkers and infiltrating immune cells in HCC. Correlation between GPC3,
ACSM3, SPINK1, COL15A1, TP53I3, RRAGD, CLDN10, and infiltrating immune cells. The size of the dots represents the strength of
the correlation between feature genes and immune cells; the larger the dots, the stronger the correlation.
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verify. Besides, most of the identified genes need in vitro and
in vivo validation experiments in HCC, and further evidence
provided by a well-designed study is required.

5. Conclusion

In summary, we identified GPC3, ACSM3, SPINK1,
COL15A1, TP53I3, RRAGD, and CLDN10 as diagnostic
immune-related biomarkers with potential clinical utility,
which might have the ability to accurately early diagnosis of
HCC, enable earlier access to intervention, and improve the
clinical outcomes. Moreover, multiple immune cells may be
involved in the occurrence and development of HCC and
could be used as potential targets for future immunotherapy
in patients with HCC that warrant further investigations.
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