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Pericytes (PCs), known as mural cells, play an important blood vessel (BV) supporting
role in regulating vascular stabilization, permeability and blood flow in microcirculation
as well as blood brain barrier. In carcinogenesis, defective interaction between PCs and
endothelial cells (ECs) contributes to the formation of leaky, chaotic and dysfunctional
vasculature in tumors. However, recent works from other laboratories and our own
demonstrate that the direct interaction between PCs and other stromal cells/cancer cells
can modulate tumor microenvironment (TME) to favor cancer growth and progression,
independent of its BV supporting role. Furthermore, accumulating evidence suggests
that PCs have an immunomodulatory role. In the current review, we focus on recent
advancement in understanding PC’s regulatory role in the TME by communicating with
ECs, immune cells, and tumor cells, and discuss how we can target PC’s functions to
re-model TME for an improved cancer treatment strategy.

Keywords: pericyte, mural cell, tumor microenvironment, angiogenesis, immunomodulation

INTRODUCTION

Pericytes (PCs) are embedded in the basement membrane of blood microvessels (Bergers and
Song, 2005), which play a vital role in regulating physiological and pathological events, including
vascular development, homeostasis, fibrosis, and stroke. Generally, PCs are responsible for the
regulation of vascular stabilization, vascular permeability, blood flow, and angiogenesis along with
endothelial cells (ECs) in blood vessels (BVs) (Hellstrom et al., 2001; Pallone and Silldorff, 2001;
Enge et al., 2002). In angiogenesis, sprouting ECs secrete platelet derived growth factor (PDGF)
to recruit platelet derived growth factor receptor-beta (PDGFR-β) positive mural cells (including
PCs), which then interact with ECs and stabilize the newly formed BVs (Carmeliet and Jain, 2000).
Unlike other stromal cells, PCs can be distinguished by dynamic molecular marker expression
pattern under different conditions, such as PDGFR-β, CD13 (alanine aminopeptidase), Cluster of
differentiation 146 (CD146), alpha-smooth muscle actin (α-SMA) (Dermietzel and Krause, 1991;
Lindahl et al., 1997; Ozerdem et al., 2001). In recent years, PCs are defined as heterogeneous,
tissue-specific, and multipotent cell population in BVs (Ferland-McCollough et al., 2017), which
are mainly due to their tissue/organ-specific roles (Shepro and Morel, 1993; Armulik et al., 2005;

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2021 | Volume 9 | Article 676342

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.676342
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.676342
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.676342&domain=pdf&date_stamp=2021-06-11
https://www.frontiersin.org/articles/10.3389/fcell.2021.676342/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-676342 June 5, 2021 Time: 17:14 # 2

Sun et al. Pericytes in the Tumor Microenvironment

Corselli et al., 2013; Kitano and Bloomston, 2016) and ability to
give rise to various cell populations (Dore-Duffy et al., 2006;
Dellavalle et al., 2007; Crisan et al., 2008; Olson and Soriano,
2011). During tumor angiogenesis, defective EC–PC interaction
is one of the major causes of the formation of dysfunctional
tumor vasculature and hypoxic tumor microenvironment
(TME), which favors cancer growth and metastasis (Song et al.,
2005). Therefore, it is important to investigate the underlying role
of PCs in modulating tumor angiogenesis and TME in order to
develop an improved anti-cancer treatment.

Anti-angiogenetic therapy is recognized as a promising
treatment strategy for cancer, while many anti-angiogenic drugs
have been approved for certain types of cancers, including
anti-vascular endothelial growth factor (VEGF) drug (i.e.,
Bevacizumab, Ranibizumab) and some tyrosine kinase inhibitors
(i.e., Sorafenib, Sunitinib) (Meng et al., 2015; Ramjiawan
et al., 2017; Li et al., 2018). However, the resistance to anti-
angiogenetic therapy have jeopardized their clinical benefits
in cancer patients (Ramjiawan et al., 2017; Li et al., 2018).
Previous studies suggested that PCs can protect ECs from
anti-angiogenic therapies probably by secreting pro-angiogenic
factors (Franco et al., 2011) or soluble factors (Prete et al., 2018).
In addition, PCs may increase their coverage around tumor BVs
adaptively and cause resistance to anti-angiogenetic therapy in
preclinical models (Benjamin et al., 1999; Bergers and Hanahan,
2008). Nevertheless, combination treatment with PDGF receptor
kinase inhibitor erlotinib/imatinib and bevacizumab showed very
limited benefits in the clinical trials and even displayed an
additive toxicity in some cancer patients (Hainsworth et al.,
2007). The failure behind these trials suggests that PC may
have other potential roles in controlling tumor growth and
progression. Indeed, recent work from our laboratory shows
that PC can regulate tumor cell growth via paracrine signals
controlled by β3-integrin (Wong et al., 2020), independent of its
BV supporting function, suggesting that its regulatory role in the
TME is far more complicated than we previously thought.

In this review, we will exploit the current progress of
understanding the role of PC in regulating TME, and discuss
its functions in regulating tumor cells and other stromal cells
to dictate cancer growth and progression. For comprehensive
reviews of its role in BV formation and supporting function,
please see Betsholtz and Crivellato (Armulik et al., 2011;
Ribatti et al., 2011).

CROSSTALK BETWEEN PERICYTES
AND TUMOR/STROMAL CELLS IN
TUMOR MICROENVIRONMENT

Although the composition of TME varies in different cancer
types, some features seem to be typical characteristics in
most solid tumors. Indeed, TME consists of cancer cells
and some non-malignant cells, including ECs, PCs, immune
inflammatory cells, cancer-associated fibroblasts (CAFs), and also
extracellular matrix (ECM) components (including cytokines,
chemokines, matrix metalloproteinases, integrins, and other
secreted molecules) (Hanahan and Weinberg, 2011). In this

section, we review and discuss the multifaceted roles of PCs in
regulating tumor cell and stromal cell’s functions in details.

Abnormal Endothelial Cell–Pericyte
Interaction and Signaling in Tumor
Vasculature
Endothelial cells are the fundamental cells lining the interior
face of BV walls, which are surrounded by quiescent mural
cells (including PCs). PCs are capable of interacting with newly
proliferating ECs to form nascent BVs and secrete angiogenetic
factors to stabilize the newly-formed vessels (Abramsson et al.,
2003). In tumorigenesis, defective EC–PC interaction leads
to the formation of disorganized tumor vasculature (Ferland-
McCollough et al., 2017). This is because PC is an essential
mediator to maintain the integrity of tumor BVs, while PDGF-
B/PDGFR-β signaling is critical for controlling PC migration
during angiogenesis. Preceding findings have suggested that
PDGFR-β mediated paracrine loop activates ECs to produce
PDGF-B in order to recruit PDGFR-β-positive PCs, which
in return releases VEGF-A and Ang-1 to stabilize the newly
formed BVs (Armulik et al., 2005). Afterward, Ang-1 regulates
the maturation and integrity of BV through binding to the
endothelial cell-Tie-2 receptor (Harrell et al., 2018). During
sprouting angiogenesis, ECs can also secrete Ang-2 to compete
with Ang-1 for the binding to endothelial cell-Tie-2 receptor,
which in turn destructs EC–PC interaction and destabilizes BVs
(Saharinen et al., 2017). Interestingly, overexpression of PDGF-
B by ECs causes an increase in PC coverage and vascular
stability as well as accelerated tumor progression (Guo et al.,
2003; Furuhashi et al., 2004). Moreover, tumor-derived PDGF-B
induces endothelial cell-SDF-1α secretion, which then promotes
PC migration and recruitment during tumor angiogenesis
(Song et al., 2009). Furthermore, EC- and PC-derived HB-EGF
(heparin-binding epidermal growth factor-like growth factor)
activates EGFR (epidermal growth factor receptor) specifically
in tumor-associated perivascular cells, resulting in increased PC
coverage and enhanced angiogenesis (Nolan-Stevaux et al., 2010).
Conversely, it has been suggested that inadequate PDGF-B in the
stroma results in inappropriate attachment of PCs to ECs (Raza
et al., 2010). Previous works have demonstrated that the blockade
of Notch signaling inhibits vascular co-option and disrupts the
EC-PC interaction during tumor angiogenesis (Hernandez et al.,
2013), while Jagged-1 expression and Notch signaling are shown
to be important for the growth of ECs and PCs as well as the
maintenance of EC–PC interaction (Tattersall et al., 2016). In
the study of Meng et al. (2015), they discover that ECs and PCs
can build an “EC-PC shield” to protect tumor cells from cancer-
directed therapy and immune surveillance in the TME, while
the maintenance of BV integrity ensures an adequate oxygen
and nutrient supply to tumor cells, which in turn promotes
cancer growth and progression (Ferland-McCollough et al.,
2017). Indeed, clinical studies show that high BV’s PC coverage
is associated with increased tumor growth and poor prognosis
(Furuhashi et al., 2004), while it is correlated with reduced
distant metastasis in colorectal cancer patients (Yonenaga et al.,
2005). Overall, these findings suggest that PC overabundance and
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deficiency occur in different tumor types during vascularization
with mixed clinical outcome, implying that targeting PC coverage
may not be an ideal strategy for anti-cancer treatment. Instead,
our recent study indicates that PC-derived paracrine signals can
modulate tumor cell growth independent of its BV supporting
role and coverage (Wong et al., 2020), suggesting that targeting
PC derived paracrine signals could be an alternative method for
cancer therapy.

Direct Paracrine Crosstalk Between
Tumor Cells and Pericytes Determines
Cancer Growth and Progression
Although PCs have been considered as a critical compartment
of the TME, the underlying mechanism of tumor cell–
PC interaction has yet to be elucidated. Recently, we have
shown that high percentage of mural-β3-integrin negative
BVs correlates with increased tumor size and progression
in multiple cancers (Wong et al., 2020), while PC specific
knock out of β3-integrin expression enhances tumor growth
independent of its BV supporting role. Further mechanistic
study shows that loss of PC-β3-integrin expression increases the
production of paracrine factors, including CCL2, CXCL1, and
TIMP1, via activation of the FAK-HGFR-Akt-NF-κB signaling
pathway, while PC-derived CCL2 enhances MEK1-ERK1/2-
ROCK2 mediated tumor growth, suggesting that inhibition
of ROCK in tumors with low PC-β3-integrin expression
could potentially control cancer growth (Wong et al., 2020).
Interestingly, a recent study from Lechertier et al. (2020) show
that loss of PC FAK enhances p-Pyk2-Gas6-Axl-Akt signaling
and its downstream Cyr61 expression to stimulate tumor
angiogenesis, while PC-derived Cyr61 is also able to enhance
tissue factor expression in tumor cells and its mediated cell
proliferation. This work provides first evidence that PCs can
crosstalk with ECs and tumor cells via the same paracrine
signal (Lechertier et al., 2020). Furthermore, Caspani et al.
study shows that a pathogenic crosstalk between PCs and tumor
cells determines glioblastoma progression in mouse models
(Caspani et al., 2014).

Pericytes Modulate Immunosuppressive
Tumor Microenvironment
Inflammatory cells, an important component in the TME, are
often associated with the inflammatory and immune responses
in carcinogenesis. It is known that solid tumors are infiltrated
by various innate and adaptive immune cells with both pro-
tumor and anti-tumor functions (Turley et al., 2015). Previous
works have shown that PCs release chemokines and cytokines
in response to the pro-inflammatory stimulus, such as CCL2,
CCL3, CXCL1, IFN-γ, and IL-8 (Navarro et al., 2016), while
they also express some functional pattern-recognition receptors
(i.e., TLR4, TLR2, NOD1) and macrophage markers (i.e., ED-2),
implying that they may also have a role in modulating immune
response (Navarro et al., 2016). Interestingly, PCs display
phagocytic and pinocytic ability and regulate different types of
leukocytes trafficking (Navarro et al., 2016). Accordingly, tumor
PCs have distinct effects on tumor-associated macrophages

(TAMs) in TME, while IL-33 produced by PDGF-BB-stimulated
PCs has been shown to recruit TAMs in order to promote
cancer metastasis in several human and mouse xenograft models
(Figure 1, process À) (Yang et al., 2016). PC-derived chemokine
CXCL12 (SDF-1) can trigger the EGF/CSF-1 paracrine invasion
loop to mediate the co-migration of TAM and tumor cells,
after binding to its receptor CXCR4 on both TAMs and
tumor cells (Figure 1, process Á) (Qian and Pollard, 2010).
Meanwhile, crosstalk between M2-like macrophages and PCs in
glioblastoma (GBM) promotes PC recruitment and upregulates
the expression of the proangiogenic ECM component periostin
deposition in PCs through the CECR1–PDGF-B–PDGFR-β
signaling pathway (Zhu et al., 2017). In the pdgfbret/ret mouse
model, PCs deficiency-driven hypoxia result in IL-6 upregulation
and an increased myeloid-derived suppressor cell (MDSC)
transmigration in tumors, and the MDSC accumulation leads
to increased tumor growth, while the amounts of circulating
malignant cells can be abrogated upon the recovery of PC
coverage (Figure 1, process Â) (Hong et al., 2015).

Newer evidence suggests that tumor-derived PCs regulate the
activity and proliferation of T lymphocytes in TME (Figure 1).
In a mouse spontaneous model of pancreatic cancer (RIP1-
Tag5), knocking out RGS5 (regulator of G-protein signaling
5) gene results in PC maturation, vascular normalization and
consequently a marked reduction in tumor hypoxia and vessel
leakiness, while these changes enhance immune cell infiltration
and extend the survival of tumor bearing mice (Hamzah et al.,
2008). Furthermore, PC-RGS5 overexpression has been observed
in several types of human tumors including kidney, liver, and
head and neck cancers (Furuya et al., 2004; Hamzah et al., 2008).
Coincidently, Bose et al. show that the expression of PC-RGS5
is upregulated after co-cultured with tumor-derived supernatant
or established subcutaneous tumors (Bose et al., 2013). Tumor
derived PCs inhibit CD4+ T cell proliferation and activation
while promoting CD4+ T cell anergy in vitro, which is also
regulated by RGS5- and IL-6-dependent signaling pathways
(Figure 1, process Ã). In addition, the expression of PD-L1 is
up-regulated in PCs after co-cultured with tumor fragments
(Bose et al., 2013). These results suggest that the combined
effect of PC-PD-L1 and RGS5 expression might protect tumor
cells from cytotoxic T cells. In a different study, the authors
show that human malignant glioma-derived pericytes (HMGP),
which co-expressed CD90, CD248, and PDGFR-β, are capable
of inhibiting the proliferation of mitogen- and allogeneic-
stimulated T cells via the release of prostaglandin E2 (PGE2),
serum human leukocyte antigen G (sHLA-G), hepatocyte growth
factor (HGF), and transforming growth factor-beta (TGF-β)
(Figure 1, process Ä). Clinically, the expression level of CD90 in
perivascular cells positively correlates with glioma malignancy,
while it is negatively associated with BV-associated leukocytes
and CD8+ T cell infiltration (Ochs et al., 2013). Recently,
Valdor et al. report that GBM-conditioned-pericytes (GBC-PCs)
can secrete a high level of anti-inflammatory cytokines and
immunosuppressive molecules while reducing their surface
co-stimulatory molecule expression, which in turn suppresses
CD4+ T cell response and IL-2 production in vitro (Figure 1,
process Å) (Valdor et al., 2017). Further study shows that
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FIGURE 1 | Schematics diagram represents the emerging immunomodulatory role of pericytes in tumor microenvironment. ÀRecruitment of tumor-associated
macrophage (TAM). PDGF-BB-stimulated PCs release IL-33 to recruit more TAMs. Á Increased co-migration of TAMs and tumor cells. PC-derived chemokine
CXCL12 (SDF-1) contributes to the co-migration of TAMs and tumor cells during innate immune response. Â Increased myeloid-derived suppressor cells (MDSCs)
transmigration. PC loss causes leaky blood vessels and inadequate oxygen supply leading to tumor hypoxia, which then induces IL-6 expression in tumor cells to
increase MDSC transmigration, resulting in suppression of the T cell-mediated anti-tumor response. Ã Induced CD4+ T cell anergy. Tumor PCs act as negative
regulators of CD4+ T cell activity. Ä Inhibition of mitogen- and allogeneic-stimulated T cell proliferation. Human malignant glioma-derived pericyte (HMGP) releases
PGE2, NO, sHLA-G, HGF, and TDF-β to suppress T cell proliferation, while CD90-positive PCs may function as suppressors of the infiltration of leukocytes and
CD8+ T cells in malignant glioma. Å Inhibition of T cell and antigen presenting cell activity, and increased recruitment of regulatory T cells. Glioblastoma
conditioned-pericyte (GBC-PC) not only negatively regulates T cell and antigen presenting cell (APC) but also recruits regulatory T cell (T reg). Æ Regulation of blood
vessel normalization and immune cell infiltration. In the positive feedback loop between type 1 T helper (TH1) and blood vessel normalization, PC coverage has a
certain impact on TH1-mediated immune cell infiltration. Ç Enhanced CD8+ T cell recruitment and malignant B cell migration. Perivascular cell derived CXCL9 and
CXCL12 can recruit CD8+ T cell effectors by binding to their corresponding receptor CXCR3 and CXCR4 respectively. Besides, CXCL9 forms a heterocomplex with
CXCL12, which then enhances CXCR4-dependent malignant B cell migration to accumulate on the vessel wall (Created with BioRender.com).

GBC-PCs upregulate chaperone-mediated autophagy (CMA) to
enhance the expression of anti-inflammatory cytokines TGF-β
and IL-10, which then inhibit T cell and antigen presenting
cell activity and recruit regulatory T cells (Figure 1, process Å)

(Valdor et al., 2019). Additionally, PCs contribute to the
subsequent positive feedback loop of type 1 T helper cells-
mediated vessel normalization and immune response (Figure 1,
process Æ) (Tian et al., 2017).
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TABLE 1 | Phase 3 clinical trials of Pericyte-related antitumor therapy.

Cancer type Treatment Targets Results References

Temozolomide-resistant
progressive GBM

Imatinib + hydroxyurea vs hydroxyurea PDGFR, c-Kit, and BCR-Abl Imatinib does not improve PFS in
combination therapy.

Dresemann et al.,
2010

GIST (failure of imatinib and
sunitinib treatment)

Imatinib vs placebo Resumption of imatinib improves PFS
and disease control at 12 weeks.

Kang et al., 2013

Unresectable or metastatic
GIST

Imatinib vs nilotinib PDGFR, c-Kit, and BCR-Abl;
PDGFR, BCR-Abl, DDR1, and
c-Kit

PFS is higher in the imatinib group than
in the nilotinib group.

Blay et al., 2015

Radioiodine-refractory thyroid
cancer

Lenvatinib vs placebo PDGFR,VEGFR, FGFR, c-Kit,
and Ret

Lenvatinib improves in PFS and the
response rate but has more adverse
effects.

Schlumberger et al.,
2015

Advanced HCC Sorafenib vs placebo PDGFR, VEGFR, Raf, and
c-Kit

Sorafenib prolongs median survival and
time-to-radiologic-progression in
patients.

Rimassa and
Santoro, 2009

Advanced HCC Sorafenib vs placebo Sorafenib improves median OS
significantly.

Cheng et al., 2009

HCC Sorafenib vs placebo Sorafenib therapy is not efficacious after
HCC resection or ablation.

Bruix et al., 2015

Radioiodine-refractory, locally
advanced or metastatic
differentiated thyroid cancer

Sorafenib vs placebo Sorafenib significantly improves PFS. Brose et al., 2014

Non-metastatic RCC Sorafenib or sunitinib vs placebo PDGFR, VEGFR, Raf, and
c-Kit; PDGFR, VEGFR, c-Kit,
Flt3, CSF-1R, and Ret

Sorafenib or sunitinib adjuvant treatment
shows no survival benefit relative to
placebo.

Haas et al., 2016

Advanced GIST Sunitinib vs placebo PDGFR, VEGFR, c-Kit, Flt3,
CSF-1R, and Ret

Sunitinib shows significant clinical
benefit.

Demetri et al., 2006

PNET Sunitinib vs placebo Sunitinib improves PFS and OS. Raymond et al.,
2011

ccRCC Sunitinib vs placebo Sunitinib improves the median duration
of disease-free survival.

Ravaud et al., 2016

Metastatic RCC Sunitinib vs interferon α PDGFR, VEGFR, c-Kit, Flt3,
CSF-1R, and Ret

Sunitinib improves PFS and response
rates.

Motzer et al., 2007

Advanced RCC Axitinib vs sorafenib VEGFR; PDGFR, VEGFR, Raf,
and c-Kit

Axitinib results in prolonged PFS. Rini et al., 2011

Advanced NSCLC Anlotinib vs placebo PDGFR, VEGFR, FGFR, c-Kit,
and Ret

Prolongs OS and PFS. Han et al., 2018

Advanced or metastatic RCC Pazopanib vs placebo PDGFR, VEGFR, FGFR, and
c-Kit

Pazopanib improves PFS and tumor
response.

Sternberg et al.,
2010

Metastatic non-adipocytic
soft-tissue sarcoma (failure of
standard chemotherapy)

Pazopanib vs placebo Pazopanib improves PFS significantly. van der Graaf et al.,
2012

Soft tissue sarcoma Pazopanib vs placebo Pazopanib improves PFS significantly. Kawai et al., 2016

Metastatic CRC Regorafenib vs placebo PDGFR, VEGFR, Tie2, FGFR,
c-Kit, Ret, and Raf

Regorafenib shows survival benefits. Grothey et al., 2013

HCC (progressed on sorafenib) Regorafenib vs placebo Regorafenib provides survival benefits. Bruix et al., 2017

Advanced GIST (failure of
imatinib and sunitinib)

Regorafenib vs placebo Regorafenib improves PFS. Demetri et al., 2013

Advanced ovarian cancer Carboplatin and paclitaxel + placebo vs
carboplatin and paclitaxel + nintedanib

PDGFR, VEGFR, and FGFR Nintedanib in combination with
carboplatin and paclitaxel increases
PFS.

du Bois et al., 2016

Recurrent ovarian cancer Paclitaxel + placebo vs
paclitaxel + trebananbib

Ang-1 and Ang-2 Trebananib prolongs PFS in paclitaxel
treatment.

Monk et al., 2014

Recurrent partially
platinum-sensitive/resistant
ovarian cancer

Pegylated liposomal
doxorubicin + placebo vs Pegylated
liposomal doxorubicin + trebananbib

Trebananbib improves ORR and DOR
but does not improve the PFS.

Marth et al., 2017

Advanced ovarian cancer Carboplatin and paclitaxel + placebo vs
carboplatin and paclitaxel + trebananbib

Trebananbib does not improve PFS. Vergote et al., 2019

ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; CSF-1R, colony-stimulating factor 1; DDR1, discoidin domain receptor 1; DOR, duration of response;
FGFR, fibroblast growth factor receptor; GBM, glioblastoma; GIST, gastrointestinal stromal tumor; HCC, hepatocellular carcinoma; NSCLC, non-small-cell lung cancer;
ORR, objective response rate; OS, overall survival; PDGFR, platelet-derived growth factor receptor; PFS, progression-free survival; PNET, pancreatic neuroendocrine
tumor; RCC, renal cell carcinoma.
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Interestingly, Daniel et al., show that PCs may also possess
a potential regulatory role of malignant B cell recruitment in
primary central nervous system lymphoma (Figure 1, process
Ç). Clinically, the localization and density of activated CD8+

T cells within tumors is correlated with the expression level of
inflammatory chemokine CXC chemokine ligand 9 (CXCL9),
which is an agonist of the CXC chemokine receptor 3 (CXCR3),
mainly secreted by PCs and perivascular macrophages. In the
perivascular TME, CXCL9 can form heterocomplex with B-cell
chemoattractant CXCL12 to enhance CXCL12-induced CD8+ T
cell as well as malignant B cell recruitment toward BV walls in
the primary central nervous system lymphomas (Venetz et al.,
2010). In addition, our recent work shows that β3-integrin
controls the secretion of CCL2, CXCL1, and TIMP1 from PCs via
the FAK-HGFR-Akt-NF-κB signaling (Wong et al., 2020), while
these cytokines have been linked to immune cell infiltration and
activity in TME (Navarro et al., 2016), suggesting that targeting
PC-β3-integrin and its downstream signaling pathway can be a
potential strategy to modulate immunosuppressive TME.

The Role of Pericytes-Fibroblast
Transition in Tumor Microenvironment
As a fundamental component of the tumor stroma, cancer
associated fibroblast (CAFs) have a role in modulating TME
and changing the behavior of neoplastic cells in either a
tumor-promoting or tumor-inhibiting manner (Kalluri, 2016).
In the tumor-promoting property, CAFs support carcinogenesis
through secretion of cytokine, growth factors and angiogenic
factors, production and remodeling of the ECM, as well as
suppression of immune surveillance in the TME (Matsuda
and Seki, 2020). Recently, PC is considered to be one of the
major sources of CAFs in tumors and fibrosis (Öhlund et al.,
2014; Kalluri, 2016). A novel finding reveals that PDGF-BB-
PDGFRβ signaling can induce pericytes-fibroblast transition
(PFT), while the detached PCs from tumor microvasculature can
transdifferentiate to fibroblasts that significantly contributed to
tumor invasion and metastasis (Hosaka et al., 2016).

TARGETING PERICYTES AS A CANCER
TREATMENT STRATEGY: CHALLENGES
VS OPPORTUNITIES

It has become a research hot topic for developing direct/indirect
PC-targeted agents against angiogenesis and cancer growth in
the last decades (Supplementary Table 1). However, majority
of these agents showed modest or no effect on tumor growth
and progression as a single agent in preclinical animal models,
especially for PDGFR-targeted therapy. Combining anti-PDGFR
agent with chemotherapy or other agent-targeted therapy
displayed slightly better anti-tumor effect in mouse models of
certain cancer types (Supplementary Table 1). Furthermore, the
phase 3 clinical trials of PC-related antitumor therapy have so
far shown modest clinical benefits in certain cancers (Table 1).
Besides, the combination therapy of anti-PDGFB and anti-VEGF
had very limited effect in the clinical trials and even showed

additive side effects in some patients (Hainsworth et al., 2007).
After interpreting these studies, we speculate that drug dosing
strategy is a critical variable which may determine whether
PC-targeted drugs promote vascular function and immune cell
infiltration or induce tumor vasculature destruction and cancer
metastasis. Therefore, it is a clinically unmet need to investigate
how to target PC coverage or recondition PC functions (i.e.,
immunomodulatory role) for preferred immunobiology/vascular
function in TME. Apart from targeting PCs directly, Cantelmo
et al. show that inhibition of the glycolytic activator PFKFB3
in ECs induces tumor vessel normalization to improve PC
coverage and chemotherapy delivery in the preclinical models.
The authors also claimed that depletion of PFKFB3 significantly
inhibits placenta derived PC proliferation, while improves PC
coverage and adherence to ECs in tumor BVs (Cantelmo et al.,
2016). However, the short-term effect of BV normalization
raises a question about its application in the clinic (Wong
et al., 2015). Recently, we discover that loss of mural-β3-
integrin expression significantly enhances FAK-p-HGFR-p-Akt-
p-p65 mediated CCL2 cytokine production, which in turn
activates CCR2-MEK1-ROCK2 dependent tumor growth (Wong
et al., 2020). These findings suggest that cancer patients with low
PC-β3-integrin expression can be potentially treated with CCR2
or ROCK inhibitors.

CONCLUSION

As an obligatory constituent of the TME, PCs modulate the
TME by interacting with tumor cells, ECs, immune cells,
and CAFs, beyond their BV supporting role. Recent work
supports direct cross-talk between PCs and tumor cells in
the TME, which can promote tumor growth independent
of tumor angiogenesis. Also, the interplay between ECs and
PCs in regulating vascular formation and remodeling has
been demonstrated in numerous studies. Disrupting EC-PC
interactions in tumor vasculature not only affects PC coverage
on tumor BVs but also alter vascular and perivascular TME to
influence the efficacy of anti-tumor therapies. Indeed, new studies
have highlighted that PCs protect tumor cells from immune
surveillance through suppressing the proliferation or response
of inflammatory cells around the tumor parenchyma, which
could be a new potential target for cancer immunotherapy.
Besides, the observation of PC-fibroblast transition suggests
the potential progenitor cell property of PC in the TME.
In this review, we provide new information to support an
integral role for PCs in promoting tumor progression in part
through their regulatory activities of tumor cells and dominated
stromal cells, suggesting that PCs can serve as a therapeutic
target for anticancer treatment in addition to anti-angiogenesis.
Meanwhile, the stromal cells within TME may also provide
potential therapeutic targets for intending anti-angiogenesis
combination therapy since their underlying relationships with
PCs. Future studies should focus on exploring the underlying
mechanisms of PC-stromal cell/tumor cell interaction in the
TME in order to identify new therapeutic targets for an improved
cancer treatment strategy.
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