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Strokes, both ischemic and hemorrhagic, are the most common underlying cause

of acute, non-progressive encephalopathy in dogs. In effect, substantial information

detailing the underlying causes and predisposing factors, affected vessels, imaging

features, and outcomes based on location and extent of injury is available. The features

of canine strokes on both computed tomography (CT) and magnetic resonance imaging

(MRI) have been described in numerous studies. This summary article serves as a

compilation of these various descriptions. Drawing from the established and emerging

stroke evaluation sequences used in the investigation of strokes in humans, this summary

describes all theoretically available sequences. Particular detail is given to logistics of

image acquisition, description of imaging findings, and each sequence’s advantages and

disadvantages. As the imaging features of both forms of strokes are highly representative

of the underlying pathophysiologic stages in the hours to months following stroke onset,

the descriptions of strokes at various stages are also discussed. It is unlikely that canine

strokes can be diagnosed within the same rapid time frame as human strokes, and

therefore the opportunity for thrombolytic intervention in ischemic strokes is unattainable.

However, a thorough understanding of the appearance of strokes at various stages can

aid the clinician when presented with a patient that has developed a stroke in the days

or weeks prior to evaluation. Additionally, investigation into new imaging techniques may

increase the sensitivity and specificity of stroke diagnosis, as well as provide new ways

to monitor strokes over time.

Keywords: ischemic stroke, hemorrhagic stroke, canine, MRI, CT

INTRODUCTION

Strokes, also commonly referred to as cerebrovascular accidents, are becoming increasingly
recognized as a common cause of acute neurologic dysfunction in dogs. Frequency data are lacking,
however, the incidence reported at one referral hospital was an estimated 1.5–2% of neurological
referrals (1). Stroke is the sudden onset of focal neurological deficits resulting from an intracranial
vascular event with clinical signs lasting for at least 24 h (1–3). Cerebrovascular disease refers to any
abnormality in the brain resulting from a pathological process of the cerebral blood vessels, such as
thrombosis, embolism, or hemorrhage (1–3).

It is suspected that the prevalence of strokes is higher than previously considered, as advanced
imaging modalities have become more widely used and validated. The purpose of this review is to
describe the imaging sequences, both established and emerging, that are available for evaluation of
both ischemic and hemorrhagic strokes in dogs. Firstly, a summary of cerebral vascular anatomy
as it applies to the development of strokes in dogs is followed by a review of the pathophysiology
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associated with the development of ischemic and hemorrhagic
strokes in dogs. Subsequently, through a review of the sequences
used in both human and veterinary medicine, the applications,
benefits, drawbacks, and special considerations of each sequence
are described.When possible, direct examples of their application
in veterinary medical patients are described.

Anatomy Review (Figure 1)
As the focus of this review is to describe established and

emerging imaging modalities for characterizing vascular
accidents, knowledge of the vascular anatomy of the brain is
essential. Five major paired arteries supply the dog brain, namely,

the rostral, middle, and caudal cerebral arteries and the rostral
and caudal cerebellar arteries (1, 4). All but the caudal cerebellar

arteries branch from a ring at the base of the brain, called the
cerebral arterial circle or the Circle of Willis, which is formed

from the paired internal carotid arteries and the basilar artery
(1, 4). The caudal cerebellar arteries branch from the basilar
artery (4).

These main arteries branch into deep and superficial
perforating arteries. The proximal, distal and caudal deep
perforating arteries arise from the caudal communicating arteries
and the basilar artery and supply the thalamus, midbrain, and
part of the pons (1, 4–6). Striate arteries emerge from the arterial
circle, supplying the basal nuclei, internal capsule, amygdala,
optic tract and thalamus (1, 4, 7). Superficial perforating arteries
supply the brain surface and deep white matter (1, 6–8). The
rostral cerebral artery sends branches that supply the rostral
cerebral cortex, and deeper gray and white matter (4). Themiddle
cerebral artery is the largest artery of the brain. As it courses

FIGURE 1 | (A) Lateral and (B) ventral views of arterial blood supply to the canine brain. These illustrations were created by Allison L. Wright MS CMI, Athens,

Georgia, USA and are reproduced with permission from the BSAVA Manual of Canine and Feline Neurology 4th edition.

along the ventral surface of the brain, it divides into two large
branches that each supplies the whole cerebral cortex on the
lateral surface of the cerebral hemisphere (4). The caudal cerebral
artery supplies the medial aspect of the occipital lobe and caudal
aspect of the marginal gyrus (4).

The rostral cerebellar artery arises either from the basilar
artery or the caudal cerebral artery. The cerebellar arteries have
variable distributions to the cerebellum and cerebellar peduncles.
Generally, the rostral cerebellar artery supplies the cerebellar
hemispheres and the vermis (9–13).

SECTION 1: STROKE CLASSIFICATION
REVIEW

Broadly, two forms of stroke occur (ischemic and hemorrhagic),
with major differences in frequency and imaging characteristics.

Ischemic Strokes in Dogs: Epidemiology
and Pathophysiology
The majority of strokes in dogs are ischemic strokes. Ischemic
strokes result from vascular obstruction from emboli originating
in other vascular beds, from the heart, or from local thrombus
formation within a vessel (14, 15). Ischemic strokes are also
referred to as cerebral ischemic strokes. As a result of ischemia,
tissue infarction occurs. In dogs, one study found that the most
common artery to develop emboli is the rostral cerebellar artery
(47%), followed by the perforating arteries of the caudal thalamus
and rostral brainstem (42%), the cerebral striate arteries (26%),
middle cerebral artery (21%) and rostral cerebral artery (10%)
(16). Depending on the location and extent of vessel occlusion,
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ischemic strokes are classified as territorial if affecting a large
artery or lacunar if affecting a small, perforating artery (1).

Several underlying disorders in dogs are associated
with embolic strokes, including septic diseases such as
endocarditis, parasites such as Dirofilaria immitis, primary
or metastatic neoplasia and various endocrine disorders and
organ dysfunctions (9, 10, 13, 15, 17–23). Hypercoagulable
states associated with hyperadrenocorticism, protein-losing
nephropathy, hypothyroidism-induced and diabetes mellitus-
induced atherosclerosis, as well as secondary hypertension
have been detected in dogs with ischemic strokes, although
the causal relationship between these conditions and ischemic
stroke has not been definitively linked (13, 17, 21, 22, 24).
In one retrospective study, a concurrent medical condition
was found in 18/33 (54%) of dogs with ischemic strokes, with
chronic kidney disease and hyperadrenocorticism being most
common (13, 15).

In ischemic strokes, insufficient blood supply diminishes
maintenance of normal cellular functions (1–3, 25–28). A
reduction of cerebral blood flow below an ischemic threshold
leads to hypoxia, decreased tissue glucose, and accumulation
of potentially toxic metabolites that contribute to cell damage
(1, 3). Hypoperfusion leads to anaerobic glycolysis and a decrease
in production of adenosine triphosphate (ATP) (1, 3). Reduced
intracellular ATP supply limits energy-dependent processes
required to maintain homeostasis, including the maintenance of
a resting transmembrane electrochemical potential, leading to
cytotoxic edema (1). Focal ischemia also causes a breakdown
of the blood-brain barrier that leads to a net influx of
water into the affected tissue, resulting in vasogenic edema
and extension of ischemic lesions (29). Complete obstruction
of blood flow for >4–5min produces irreversible cellular
damage (1, 10).

Following arterial occlusion, a core of brain tissue dies
rapidly as an area of infarction due to severe hypoperfusion
(1, 3). Surrounding this core is an area of brain tissue that is
hypoperfused but still viable, having retained borderline levels
of blood flow and metabolic function (1, 26). This peripheral
tissue is called the penumbra (1, 26). The penumbra is at risk for
devitalization but is comprised of potentially salvageable tissue
(1, 3, 16, 26). The evolution of the infarct core and penumbra is a
dynamic process. The ratio between core and penumbra depends
on the availability of collateral flow, and timing and extent of
reperfusion of the ischemic tissue (30).

Differentiation of the infarct core and ischemic penumbra
is based on the concept of cerebral vascular autoregulation
(30–33). Complex neurobiochemical mechanisms maintain the
stability of regional cerebral blood flow across a wide range of
local metabolic activity and local arterial perfusion pressure (30–
33). In the infarcted core, cerebral blood flow is low, leading
to low cerebral blood volume and loss of ability to maintain
autoregulatory vasodilatory compensation. Comparatively, in
the penumbra, the autoregulation is intact or only mildly
jeopardized (30–33).

Additionally, the relationship between cerebral blood flow,
cerebral blood volume, and mean transit time differs between the
infarcted core and the penumbra (34–38). Cerebral blood flow

(CBF) is calculated as cerebral blood volume (CBV) divided by
mean transit time (MTT) (34–38). MTT is the time difference
between arterial inflow and venous outflow, designated by the
average time required for a contrast bolus to cross a capillary
network (30, 31, 34–39) It is the most sensitive measure used
to evaluate cerebral blood flow abnormalities (34–38). The
infarcted core has both decreased CBF and CBV due to loss of
the autoregulatory ability (34–38). Decreased CBV is the most
specific indicator that the area will infarct and therefore will be
non-salvageable (34–38). Alternatively, the penumbra will have
prolonged MTT, but the CBV is maintained or increased due to
compensatory vasodilation (34, 40).

Hemorrhagic Strokes in Dogs:
Epidemiology and Pathophysiology
The prevalence of hemorrhagic strokes in dogs is unknown, but
is estimated to account for the same percentage of strokes as it
does in people (15–22%) (1, 9, 14, 41, 42). Hemorrhagic strokes
are associated with a vessel rupture, with or without an obvious
underlying cause, or a coagulopathy (1, 43–45) Hemorrhage can
also occur as a secondary effect of ischemic strokes following
reperfusion or if venous drainage is occluded (1).

There are numerous reported underlying etiologies for
hemorrhagic strokes in dogs. Both primary and metastatic brain
tumors can develop spontaneous intracranial hemorrhage (1, 46).
Extracranial diseases that lead to disseminated intravascular
coagulopathy or other causes of spontaneous bleeding, such as
ingestion of anticoagulant rodenticide, can result in spontaneous
intracranial hemorrhage. Additionally, bacterial infection,
congenital vascular malformations, necrotizing vasculitis and
brain atrophy leading to tearing of blood vessels have been
reported as causes of hemorrhagic strokes (1, 45, 47, 48). In
people, the main primary cause of hemorrhagic strokes is
spontaneous rupture of an otherwise normal vessel secondary
to hypertension. Conversely, hypertension leading to primary
hemorrhagic strokes is rarely reported in dogs (1, 43, 46).
Cerebral amyloid angiopathy results from amyloid deposits
in cerebral arteries, leading to weakening of arterial walls (1).
This condition is a common cause of intracranial hemorrhage
in people and has been reported in a population of older dogs
(1, 45, 49, 50). Hypertensive lesions are typically deep (such as in
the thalamus and basal nuclei) and cerebral amyloid angiopathy
spares these regions, being typically at the gray/white matter
junction (51).

Hemorrhagic stroke results in extravasation of blood and
formation of an intraparenchymal hematoma or diffuse infiltrate
within the parenchyma (25, 45, 52). If the vessel rupture or
coagulopathy occurs in the ventricles, subdural or subarachnoid
space, then an extraparenchymal hematoma develops (25, 45, 52).
Hemorrhagic strokes lead to an increase in cerebral volume, brain
edema, and herniation (25, 45, 52). Clot expansion occurs mainly
within the first 6 h of hemorrhage. It is often self-limiting due
to increased cerebral perfusion pressure and brain tissue elastic
resistance. Edema surrounding the clot can develop over several
days, and ischemia can occur as a consequence of compressed
brain tissue or limited blood flow (1, 49).
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SECTION 2: ESTABLISHED STROKE
IMAGING MODALITIES

According to established guidelines of the National Institute
of Neurological Disorders and Stroke and the American
Stroke Association, components of a hyperacute stroke
imaging evaluation should include parenchymal, penumbral,
susceptibility-weighted imaging and vascular imaging in a single
study, consisting of either multimodal computed tomography
(CT) or magnetic resonance (MR) (30, 53). These components
fulfill the following criteria: (1) characterize the form of stroke
(ischemic or hemorrhagic) and exclude other ischemic stroke
mimics; (2) provide reliable information about the location and
extent of ischemia in ischemic strokes; (3) identify the existence
and extent of potentially salvageable brain; and (4) identify the
site of vascular occlusion and degree of collateral flow (30, 53)

EVALUATING PARENCHYMAL CHANGES

Computed Tomography (Figure 2)
In people, non-contrast CT (NCT) is typically used to rule out
hemorrhage and stroke mimics and to potentially detect the
presence of early, subtle acute ischemic signs (30, 54–56). A
major benefit of CT imaging is the rapidity of image acquisition;
a complete protocol using NCT, perfusion CT (CTP), and CT-
angiography (CTA) can be performed in <10min (30, 53).

NCT is used primarily based on its high sensitivity for
detecting hemorrhage due to differences in Hounsfield units
(HU) of acute hemorrhage (40–60 HU) compared to gray (39
HU) or white (32 HU) matter (57). Within hours of the onset
of hemorrhage, attenuation of the hematoma rapidly increases
up to 60–80 HU due to the formation of a fibrin and globulin
meshwork, and remain visible on NCT for approximately 1 week
(58, 59).

Overall, NCT is inferior to MRI for detection of ischemic
infarction (15, 30). Infarct detection with NCT in the first 3 h
following a stroke has poor sensitivity, as low as 25% (30, 60).

FIGURE 2 | CT of a dog head, dorsal plane reconstruction. In the right lateral

aspect of the cerebellum, there is a triangular, sharply margined and

hypoattenuating lesion (red arrow) corresponding to an ischemic stroke in the

territory of the right cerebellar artery. Image courtesy Wiley (Paul AEH, Lenard

Z and Mansfield CS. Computed tomography diagnosis of eight dogs with

brain infarction. Aust Vet J 2010; 88(10): 374-380.

Another major drawback of NCT is that it provides solely
structural rather than physiologic information. It cannot reliably
differentiate between penumbral and irreversibly damaged tissue
(30). Nonetheless, there are three main stages (acute, subacute,
and chronic) used to describe NCT manifestations in ischemic
strokes (34).

In the acute stage (<24 h), cytotoxic edema changes are subtle
on NCT and include loss of normal gray matter to white matter
interface and effacement of cortical sulci, which may result in
“loss of the insular ribbon sign” or in the “disappearing basal
nuclei sign,” which are established changes observed in middle
cerebral artery strokes in people. These findings occur due to
partial disappearance or loss of definition of the gray-white
matter interface (30, 61). A thrombus in the proximal middle
cerebral artery may also be observed in the acute phase as an area
of hyper-attenuation (30, 34).

In the subacute stage (24 h to 5 days), vasogenic edema
leads to greater mass effect, hypoattenuation, and well-defined
margins (34).

In the chronic stage (>5 days to weeks), loss of brain tissue
and hypoattenuation are observable on NCT (34). In these
tissues, hypo-attenuation is highly specific for tissue infarct
(30, 62) In addition, its extent is predictive for the risk of
hemorrhagic transformation, clinical outcome, and final infarct
volume (30, 63).

NCT studies for strokes in veterinary patients are subject
to the same benefits and drawbacks as in people (64, 65). The
lesions observed on NCT with stroke can be either hyper-
attenuating or hypo-attenuating, depending on whether they are
hemorrhagic or ischemic, with varying degrees and distribution
of contrast enhancement and distinction from surrounding
tissue. Furthermore, hemorrhagic lesions can be associated with
mass effect. Since numerous other etiologies can cause similar
imaging findings on NCT, and the more specific yet subtle
findings are not always present or appreciable, interpretation
of NCT findings should be interpreted with caution when
considering potential vascular accidents (30, 64).

MRI: CONVENTIONAL T1- AND
T2-WEIGHTED PRE- AND
POST-CONTRAST IMAGING

For Ischemic Strokes (Figure 3)
The classic appearance of an ischemic stroke is a sharply
delineated lesion primarily within the gray matter that is
hypointense to surrounding tissue on T1-w, hyperintense on T2-
w and fluid attenuated inversion recovery (FLAIR), with weak
to no contrast enhancement in the periphery 7–10 days after
the onset of stroke (4, 7, 29, 66, 67). Cerebral ischemia becomes
visible on T2-w images 6–12 h after the onset of signs, but is
usually not seen until at least 8 h after the ischemic insult (68,
69). Furthermore, changes consistent with cerebral ischemia are
evident earlier on T2-w FLAIR images than conventional T2-w
images (68).

The overall sensitivity and specificity of conventional MRI
protocols that include T2-w, T2-w FLAIR, and post-contrast

Frontiers in Veterinary Science | www.frontiersin.org 4 May 2020 | Volume 7 | Article 279

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Arnold et al. Canine Stroke Imaging

FIGURE 3 | 3T MR of the brain of a 10-year-old spayed female Pug with acute right-sided vestibular syndrome of estimated 6–16 h duration at time of imaging. In

T2-w sagittal (A), the reference line indicates the orientation of the transverse planes. In T2-w (B) the territory of the right rostral cerebellar artery (white arrows) is

hyperintense and swelling causes mild leftward midline shift. This region is hypointense in T1-w (C) with patchy contrast enhancement of the cerebellar cortex and

meninges (D). Findings are consistent with ischemic stroke; however, this combination of signals suggests a lesion several days older than the reported history. The

dog is facing to the left in A, and the patient’s right is shown on the left in transverse images; this image orientation is maintained throughout this review.

images for ischemic strokes shortly after injury in dogs is poor
(70–72). Substantial overlap in signal characteristics and lesion
morphology between vastly different intracranial pathologies in
dogs has been observed (70–72). In one study using conventional,
high-field MRI to compare gliomas and cerebral infarcts in
dogs, as many as 12% of histologically confirmed gliomas were
incorrectly classified as infarcts (71)/ Additionally, the sensitivity
for histologically-confirmed vascular events was 38.9% (70).
Furthermore, as many as 47% of presumed cerebrovascular
accidents were misdiagnosed as gliomas by reviewers who
retrospectively reviewed MR images without knowledge of basic
case information (70). Gliomas are characterized as round or
ovoid enhancing lesions surrounded by some degree of vasogenic
edema, which are features that are generally not encountered
in the initial hours following stroke onset (73) Ultimately, the
delay between canine stroke onset and imaging contributes to
the challenge in distinguishing strokes from gliomas. Additional
sequences (see below in Diffusion Weighted Imaging section)
have been demonstrated to aid in the distinction.

For Hemorrhagic Strokes (Figure 4)
In the case of hemorrhagic strokes, T1- and T2-w sequences
are fairly sensitive for blood detection, but lack specificity (72).

Hemorrhagic strokes can be confirmed on MR imaging because
blood breakdown products are paramagnetic (74).

The appearance of intracranial hemorrhage is multifactorial
and depends on intrinsic technical and biological variables
(57). While the age of the hematoma is considered the main
intrinsic contributor to its signal intensities, size of the lesion,
intra- or extra-parenchymal location, and episodes of recurrent
bleeding will influence MRI findings (7) Higher field strengths
result in an increased T1 relaxation time (75). A near linear
relationship has been described between field strength and
magnetic susceptibility. Higher field strengths result in an
increased T1 relaxation time, which reduces contrast between
gray and white matter (74).

The transition from hyperacute to acute hemorrhage is
characterized by a transition from oxygenated to deoxygenated
blood (7). The different stages have different magnetic properties
based on whether or not they contain unpaired electrons (7). This
process generally starts at the periphery, leading to a rim effect to
the lesion (7).

Five distinct stages of MRI appearance of intracranial
hemorrhage have been defined (7, 57, 76–78) (Table 1)
(Figure 5). The hyperacute (<12 h) stage appears isointense on
T1 and hyperintense on T2-w images (7, 57, 76–78) The acute (1–
3 days) stage is associated with intracellular deoxyhemoglobin,
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FIGURE 4 | 3T MR of the brain of an 11-year-old female American Hairless Terrier, 3 days after acute onset of mentation changes and compulsive circling to the left.

The reference line in T2-w sagittal (A) indicates the orientation of the transverse planes. In T1-w (B), a large hemorrhagic stroke is present in the left thalamus. The

hyperintense ring in T1-w matches a hypointense ring in T2-w (C), consistent with early subacute stage of 3 days or more. The center of the lesion is of intermediate

signal intensity in these same sequences, suggesting an earlier stage of hemorrhage. GRE sequences including SWI (D) demonstrate signal drop out, confirming the

presence of blood products. The patient showed steady improvement on progress examination 3 weeks later.

TABLE 1 | T1-w and T2-w characteristics of hemorrhagic stroke lesions by stages of hemoglobin breakdown.

Phase Time Compartment Hb product T1-w T2-w

Hyperacute <24 h Intracellular OxyHb Isointense Hyperintense

Acute 1–3 days Intracellular DeoxyHb Isointense Hypointense

Early subacute >3 days Intracellular MetHb Hyperintense Hypointense

Late subacute >7 days Extracellular MetHb Hyperintense Hyperintense

Chronic >14 days Extracellular Hemosiderin Hypointense Hypointense

Five distinct stages occur based on the hemoglobin (Hb) breakdown product. OxyHb, Oxyhemoglobin; DeoxyHb, deoxyhemoglobin; MetHb, methemoglobin.

appearing iso- to hypointense on T1-w and hypointense on T2-w
(7, 57, 76–78). The early subacute (4–7 days) stage is associated
with intracellular methemoglobin with intact red blood cells,
appearing hyperintense on T1-w and hypointense on T2-w
images (7, 57, 76–78).Methemoglobin produces T1-w shortening
effects on adjacent hydrogen nuclei in water and other molecules,
leading to intrinsically high signal intensity on T1-w images
(7, 57, 76–78). The late subacute (7–14 days to 1 month) is
associated with extracellular methemoglobin and erythrolysis,
appearing hyperintense on both T1-w and T2-w (7, 57, 76–
78). In the chronic (>14 days) stage, ferritin and hemosiderin
conversion and storage within macrophages results in iso- to
hypointense T1-w and hypointense T2-w lesions (7, 57, 76–78).
This final stage may last indefinitely, although recent evidence
suggests that it may also resolve with time (79).

Three pulse sequence strategies are routinely employed for
evaluation of cerebral hemorrhage and should be simultaneously
examined: T1-w, T2-w, and GRE (below). T1-w hyperintensity
alone is unspecific and may represent various blood breakdown
products, fat, proteinaceous fluid, melanin, calcification, necrosis
and other paramagnetic substances such as iron, manganese, and
copper (1, 73, 80–86).

T2-w Fluid Attenuated Inversion Recovery
(FLAIR) (Figure 6)
FLAIR, along with several other sequences, was developed to
evaluate white matter, including in strokes (87, 88). Canine
models have been used to track the appearance of ischemic
strokes over time on T2-w FLAIR (88–90). Based on these

FIGURE 5 | Graphic depiction of appearance of the 5 temporal stages of

hemorrhage on T1-w and T2-w sequences. (SI = signal intensity). Modified

from Maizlin Z, Shewchuk J, Clement J. Easy ways to remember the

progression of MRI signal intensity changes of intracranial hemorrhage.

Canadian Assocn of Radiologists Journal 2009; 60:88-90.

studies, ischemic stroke generally becomes visible within the
first 3–8 h after a stroke (7, 30, 88–93). T2-w FLAIR images are
also highly sensitive in detecting any fluid-rich lesions, including
subarachnoid hemorrhage and acute cerebral venous sinus
thrombosis, which both appear hyperintense on T2-w FLAIR
(30, 34, 94–96). T2-w FLAIR is particularly useful for evaluating
possible lesions adjacent to areas filled with cerebrospinal fluid or
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FIGURE 6 | 3T brain MR of a 7-year-old neutered male Pug with ischemic stroke of the territory of the left rostral cerebellar artery (not shown). Depicted are T2-w

transverse plane at the level of the caudal colliculus (A) and matching slice in T2-w FLAIR (B). Depicted in B, a hyperintense vessel sign is present (white arrow). This

vessel, consistent with the base of the rostral cerebellar artery, may be followed in T1-w post-contrast MPR in dorsal reconstruction arrows, (C).

in areas normally filled with cerebrospinal fluid, because FLAIR
suppresses the signal intensity of bulk water (97).

Inter-observer agreement on T2-w FLAIR sequences of
ischemic lesions is considered excellent (69). T2-w FLAIR
specificity and positive predictive value are high for ischemic
lesions <5 h old, but sensitivity and negative predictive value
are low (92, 98–100). Therefore, in people, a substantial number
of patients in this hyperacute time window who could benefit
from thrombolytics are missed if solely evaluated based on T2-
w FLAIR, as the intravenous use of this drug is only effective if
given within 4.5 h of stroke onset (98).

Strokes in many dogs are diagnosed in the subacute stage,
between 24 h to 6 weeks following vascular insult (9, 16, 88, 101).
This delay relative to diagnosis in people is due to time lag
between onset of signs and referral for diagnostic imaging as
well as lack of standardized imaging protocols for strokes in
dogs (9, 16, 88, 101). In dogs, the median interval between onset
of signs and MRI exceeds 2 days, which explains why reported
lesions have been hyperintense on T2-w FLAIR (9, 16, 88, 101).
Over time, the sensitivity of T2-w FLAIR increases, which can
help in identifying strokes even if the interventional window has
long passed (90). Although reaching a diagnosis of an ischemic
stroke within the critical time window of 4.5 h for administration
of thrombolytics is an unlikely expectation in dogs, these studies
have provided insight regarding the appearance of strokes over
time, which can aid in demarcating lesion size and predicting
recovery time (89, 90).

T2-w FLAIR can be used to evaluate two findings consistent
with strokes <24 h old: hyperintense vessel signs and
hyperintense, swollen cortical gyri (97, 102). In some cases,
a hyperintense vessel sign can be the only indication of infarction
(97, 102). This sign has been established to result from slow flow,
in both anterograde and retrograde leptomeningeal directions,
which may explain why its detection is substantially reduced in
post-contrast T2-w FLAIR images (103–105).

The sensitivity of these findings is highest during the first 6 h
after stroke onset and declines over time (96, 105). In people,
the most common locations for this finding on T2-w FLAIR

are the sylvian fissure (87%), cortical sulci (54%) and horizontal
segments of the middle cerebral arteries (97, 106). Furthermore,
infarcts with a signal intensity ratio of<1.37 on FLAIR are<36 h
old (68).

Additionally, in people, delayed post-contrast T1-w FLAIR
images can be used to detect the presence of the hyperintense
acute reperfusion marker (HARM) sign, which is potentially
an indicator of early blood-brain barrier disruption (53). In
evaluating chronic ischemic infarcts, lesion outlining on FLAIR
compared to T2-w images leads to superior inter-rater agreement
for lesion borders because it causes a more distinct border
between tissue and cerebrospinal fluid compared to T2-w
images (107).

Susceptibility-Weighted Imaging/Gradient
Echo (Figures 4, 7)
Combining susceptibility-weighted imaging (SWI) or gradient
echo (GRE) imaging such as T2-∗ with conventional T1-w and
T2-w images can increase both the sensitivity and specificity
for hemorrhagic strokes (29, 73, 80, 108). GRE MRI uses a
gradient to rephase protons, which makes susceptibility effects
more visually prominent (7, 109). Hemorrhage appears an-
intense (signal void) lesions on these sequences, as hemosiderin
is strongly paramagnetic (7, 74, 109–113). Although several other
substances can create hypointense lesions on T2∗-GRE and SWI,
such asmineralization, gas, fibrous tissue, and iron deposits, these
alternative findings (aside from iron deposits) are both T1-w and
T2-w hypointense, unlike hemorrhagic stroke lesions (45, 74).
On T2∗-w images, chronic hemorrhage is characterized by a
hyperintense center surrounded by a hypointense rim (114).

Compared to CT, GRE is equally, if not more, sensitive for
detection of acute intracranial hemorrhage (115–117). Currently,
T2∗-GRE is the most commonly used sequence for evaluating
hemorrhage in dogs and has been demonstrated to be the most
accurate of all MR pulse sequences and more accurate than CT
in dog models in predicting the extent of hemorrhage (23, 80).
T2∗-GRE sequences are not 100% sensitive for the detection of
all stages of intracranial hemorrhage because after erythrolysis,
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FIGURE 7 | 3T MR of the brain of an 8-year-old neutered male Greyhound with ischemic stroke to the left caudate nucleus. In SWI (A), Susceptibility Vessel Sign is

present (bold arrow). In TOF (B), a branch of the rostral cerebral artery is not identified (arrow), corresponding to the vessel shown in A, and to the recurrent artery of

Heubner which feeds the basal nuclei in this region. In T2-w (C), immediately caudal to the level shown in A, the left caudate nucleus is hyperintense (black arrow).

methemoglobin moves into the extracellular space and becomes
homogeneously distributed in plasma (73) This means that the
magnetic field within the voxel also becomes homogeneous,
which causes loss of susceptibility artifact (73, 118). Furthermore,
the artifact distortion is directly proportional to the magnetic
field strength, so the size of hemorrhage can vary between
scanners (23, 73). Subsequently, SWI has been demonstrated to
be more reliable for cerebral microbleeds than T2∗-GRE (98).

Diffusion-Weighted Imaging (Figure 8)
Diffusion-weighted imaging (DWI) provides an image signal
that is dependent on the molecular motion of water (30, 35).
The disruption in energy metabolism that results from ischemic
stroke leads to failure of the sodium-potassium pump, resulting
in cytotoxic edema (30, 119). Intracellular water flow leads to
reduced extracellular volume. Within the extracellular space,
water mobility is more facilitated than within the intracellular
space. Given the altered distribution of water between these two
compartments, a net reduction of Brownian motion and osmosis
results (30, 35, 120). This diffusion impairment is detected on
DWI within minutes of vessel occlusion as a well-demarcated
hyperintense signal on DW source images (30, 34, 35, 120).
The defined area tends to be larger than the area of tissue that
directly experiences ion pump failure, amplifying its visibility
(67, 121). Additional pathologic processes can contribute to the
DW source images’ hyperintensity, including alterations in pH at
the periphery due to anaerobic metabolism (67, 121).

An apparent diffusion coefficient (ADC) map is constructed
to quantify the extent of restricted diffusion observed on the
DWI image (30). ADC maps quantify the degree of water proton
mobility between magnetic fields. Normal ADC values vary
substantially depending on the brain region and the age of the
dog (122, 123). True reduced diffusion, as occurs in cytotoxic
edema, appears hypointense on the ADC map, confirming acute
ischemia (7, 29, 72, 124, 125). The comparison between the
DWI and ADC is necessary because DWI hyperintensity is not
exclusively specific for restricted diffusion. Additional conditions
that lead to restricted diffusion include pyogenic abscesses,

highly cellular tumors, status epilepticus, and global ischemia
(126). Areas of high signal, such as vasogenic edema, can also
appear hyperintense on DWI because DWI is T2-w-based (7,
9, 34, 125). Vasogenic edema, being extracellular edema, will
not show restricted diffusion and will appear hyperintense on
an ADC map, by a phenomenon termed T2-w-shine through
(7, 9, 34, 123). Over time, the appearance of the DWI and ADC
abnormalities reverse as the stroke moves into a subacute phase
within 24 h to 5 days (34, 35). This progression makes it possible
to estimate the age of the infarct core to some degree (34, 35, 88).

DWI is most sensitive for detecting ischemic strokes
immediately following onset. Changes can be observed as early
as 45min following a stroke (127). In addition to T2-w FLAIR,
it is the most sensitive method for detecting ischemic infarcts
with high diagnostic accuracy and is considered the gold standard
for identifying acute stroke in people (115). Once a hemorrhagic
stroke has been ruled out, DWI improves stroke detection from
50% to more than 95% (34, 40, 128). On DWI, the sensitivity
and specificity in diagnosing hyperacute cerebral infarction is
88–100% and 86–100%, respectively (126). DWI is also more
sensitive for smaller lesions than CT and more accurately reflects
pathophysiologic changes induced by acute ischemia compared
to T2-w images and is also a better predictor of final infarct
volume (30, 127, 129). Another advantage of DWI is its capability
to discern between acute vs. chronic ischemia, which is useful
in identifying new lesions in patients with prior ischemic injury
(30). It also is useful in distinguishing between ischemic stroke
and glioma. As the ADC value is inversely proportional to cell
density, high grade gliomas generally have a classically lower
ADC value in comparison to ischemic tissue (73).

Comparing findings between FLAIR and DWI can help
determine the age of an ischemic stroke (Figure 9). In patients
evaluated shortly after development of signs, a DWI lesion and
normal FLAIR image suggests a time window of<3 h with>90%
specificity and positive predictive value for an ischemic stroke
(30, 89, 92, 100). This mismatch is critically important in human
medicine in identifying candidates for thrombolysis, which is
only effective if delivered within 4.5 h of injury (30, 89, 92, 98,
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FIGURE 8 | 3T MR of an 11-year-old spayed female boxer dog with ischemic stroke of the left rostral cerebellar artery, 2 days after onset of signs. The patient

presented mentally appropriate in lateral recumbency with opisthotonus and decerebellate rigidity. Shown are (A) T2-w sagittal with a reference line for the transverse

planes (B) T2-w transverse, (C) T1-w FLAIR dorsal after administration of contrast (D) Trace DW, and (E) ADC map in transverse plane. In the left rostral cerebellum,

there is a well-defined, wedge-shaped T2-w hyperintense area (B, arrow). This lesion is hyperintense in Trace DW (D) and hypointense in ADC map, consistent with

restricted diffusion. In dorsal plane (C), the edge of the lesion is marked by the long arrow. Intravascular enhancement of the left rostral cerebellar artery is present

(thick white arrow, compare with the right, thick black arrow); vascular enhancement is a common finding and is related to slow flow. No predisposing causes were

found on bloodwork and abdominal ultrasound. The patient gradually improved over 14 days and was subsequently discharged as ambulatory with mild

cerebellovestibular ataxia.

FIGURE 9 | 3T MR of the brain of an 8-year-old neutered male Cavalier King

Charles Spaniel with severe endocardiosis. In T2-w FLAIR (A) the territory of

the left middle cerebral artery is moderately hyperintense and swollen. The

same lesions are much more conspicuous in Trace DW, with the hyperintensity

being consistent with edema (B). Similar lesions in the left cingulate gyrus are

consistent with ischemic stroke of a branch of the rostral cerebral artery.

Following the patient’s cardiovascular arrest 2 days later, necropsy confirmed

acute to subacute ischemic stroke.

130). Furthermore, use of a calculated DWI-FLAIR mismatch
increases sensitivity over visual mismatch analysis (89).

There are several limitations and important considerations
regarding DWI and ADC imaging. For one, DWI lesions
can be at least partially reversible in the early stages of

ischemia. The initial DWI abnormality therefore does not
necessarily reflect the infarct core (30, 131). Additionally, in
the time frame in which DWI is most sensitive for detecting
strokes, the greatest variability in lesion measurement between
observers has been documented (132). Even with manual editing
and the development of threshold values, ADC can include
visibly normal tissue and miss visibly abnormal tissue (133).
Furthermore, changes on ADC 3 h after an ischemic event are
not reliable predictors of the reversibility of tissue damage (89).

Currently, DWI and comparison to the ADC map is the
most widely used and most sensitive and specific sequence used
in evaluating strokes in dogs (7, 9, 64). In a study of 40 dogs
with suspected infarcts that underwent MRI within 1–5 days of
presumed stroke onset, lesions were more readily visible on DWI
than on conventional fast spin echo images (16).

PERFUSION STUDIES

MR Perfusion-Weighted Imaging (MR-PWI)
Comparison of DWI images with perfusion-weighted imaging
(PWI) images can be useful in determining the fate of ischemic
tissue. PWI provides a measurement of cerebral perfusion by
tracking the passage of an intravenously delivered bolus of
contrast agent (115, 134). The temporal passage of contrast
is tracked in repeated contiguous slices throughout the brain
using gradient echo techniques (115). The tissue signal change
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caused by the susceptibility effect of contrast is used to create
a hemodynamic time-to-signal intensity curve (115, 135). This
curve is then used to generate a set of semiquantitative perfusion
maps (112, 132). The maps establish relative cerebrovascular
hemodynamic measures such as relative CBF, MTT, CBV and
time-to-peak (TTP) (115, 129, 130, 136, 137). Ischemic tissue has
increased MTT, decreased CBF, and normal CBV (61). Infarcted
brain tissue, or necrosis due to complete and prolonged ischemia,
has increased MTT, decreased CBF, and markedly decreased to
no CBV (61).

One of the major uses of PWI in stroke patients is to
identify at-risk yet salvageable penumbra tissue by detecting
perfusion-diffusion mismatches when comparing lesions on
DWI to PWI (61, 138–141). DWI detected abnormality reflects
the irreversibly damaged infarcted core, whereas PWI reflects the
overall area of hypoperfusion (61). Mismatch is defined as PWI
lesion volume that exceeds the DWI lesion volume by at least
20% (137).

There are substantial drawbacks to evaluating the PWI/DWI
mismatch. The model does not take into consideration that
DWI lesions do not necessarily turn into infarction and that
PWI abnormalities might represent areas of benign oligemia
that are not at risk (115, 132, 141). Despite reported correlation
of the PWI/DWI mismatch with salvageable vs. irreversible
tissue damage, there are reports of salvageable tissue that was
hyperintense on initial DWI (67, 142, 143). Therefore, the
reliability of this comparison might not be as strong as previously
considered (67).

Although PWI is not performed conventionally in veterinary
medical practice, numerous studies using canine models have
been performed (88). Therefore, PWI could be employed
in MRI protocols in canine patients with suspected strokes.
However, as currently there are no specific therapies aimed at
restoring penumbral or oligemic tissue, its application may be
impractical and could prolong time under general anesthesia.
Another limitation of PWI in veterinary medicine is the highly
equipment-dependent variation in resolution and/or strong
distortion artifact.

CT Perfusion Imaging
Perfusion imaging is also feasible using CT and offers several
advantages over non-contrast CT and over MR-PWI. CT
perfusion imaging is performed using a single injected bolus
of iodinated contrast material. The passage of the bolus is
tracked through the cerebral circulation under sequential helical
CT scanning. Similar to MRI-PWI, CBF, CBV, TTP, and MTT
are all acquired using CT perfusion imaging, and the same
patterns attributable to infarcted and penumbral tissue are
visible on CT perfusion. Both CT perfusion imaging and
MR-PWI may derive CBV, CBF, and MTT, among others,
as quantitative data (144). The main advantages of CT
perfusion imaging over NCT is the ability to use hemodynamic
differences to evaluate intracranial vascular physiology. The
main advantage of CT perfusion imaging over MRI-PWI is
the shorter time to image acquisition with CT perfusion
imaging (145).

VASCULAR STUDIES

Computed Tomography Angiography (CTA)
This is the most common first-line diagnostic modality for
vascular imaging in acute strokes in people (146, 147). This
minimally invasive study requires a time-optimized bolus
injection of intravenous contrast material and thin-section helical
CT images obtained in the arterial phase (132, 146, 148, 149).
CTA can reliably detect intracranial proximal arterial occlusions
and stenosis (146, 150). The presence of occlusion on CTA
predicts functional outcome, final infarct size, and response to
intravenous thrombolytics (146, 149, 151). It can also provide
information on the quality of collateral circulation if the scanner
possesses sufficient spatial resolution capability and can improve
the sensitivity in identifying ischemic areas that are not apparent
on non-enhanced CT (30, 146, 152–155). Post-processing
techniques can also be used to create three-dimensional images
that can aid in detection of arterial occlusions (146, 155, 156).
CTA is widely available and well-tolerated by the majority of
patients, and provides crucial information in a short period of
time (34, 146).

Although CTA is the established modality for evaluating
strokes in people, there are no published studies on using CTA in
dogs. This paucity is likely due to several reasons. For one, most
dogs undergo imaging long after the possible administration of
thrombolytic agents would have any benefit. The main reason
that CTA is the most commonmodality chosen for human stroke
patients is its rapidity and high sensitivity for arterial occlusion
and hemorrhagic infarcts. This means that it can provide the
fastest way to reach a diagnosis and provide an opportunity for
administration of thrombolytic agents within a 4-h window of
stroke onset. Additionally, the clinical signs of stroke in dogs
overlap with other etiologies, such as brain tumors and immune-
mediated meningoencephalitis. Whereas, strokes are one of the
most common neurologic diseases in people and their signs are
more apparent to the general public, the same principles do not
apply to strokes in dogs. Therefore, MRI is preferred over CT,
and CTA is not often pursued because the standardMRI protocol
for dogs generally yields a definitive diagnosis for stroke patients.
Furthermore, in most cases, general anesthesia is required for CT
angiographies in dogs, so the reduction in time spent obtaining a
diagnosis via CT compared to MRI is relatively minimal.

Magnetic Resonance Angiography (MRA)
(Figures 7, 10)
Like CTA, MRA is used to visualize both intracranial and
extracranial vasculature (30). The twomost commonly used types
of MRA are time-of-flight (TOF-MRA) and contrast-enhanced
MRA (CE-MRA) (146, 157). Both are based on gradient
echocardiographic sequences with either two-dimensional or
three-dimensional volume acquisition (17).

Three-dimensional (3D) TOF-MRA is the standard technique
for examination of intracranial vessels, although CE-MRA is also
recommended in protocols for ischemic brain disease (93, 115,
158). TOF-MRA does not require a contrast agent and is instead
based on macroscopic motion of water proteins (157, 159, 160).
In this sequence, saturation pulses are repeatedly applied to a
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FIGURE 10 | 3T MR of the brain of a 7-year-old female spayed Maltese with central vestibular disease secondary to hemorrhagic stroke. Centered on a right-sided

perforating pontine vessel, there is a T2-w hyperintense halo, shown here between arrows in paramedian (A) and transverse (B) planes. In SWI (C), linear signal void is

associated with the vessel (black arrow); linear hemorrhagic lesions are present dorsal and ventral to this vessel, as well as in the fourth ventricle. While pontine vessels

are not clearly visualized in TOF (D), large artery disease is ruled out, classifying this lesion as basilar artery branch disease. CE-MRA may resolve such small vessels.

The basilar artery is fenestrated, thought to be an incidental finding (white arrowhead). Necropsy confirmed the stroke and identified an adrenal pheochromocytoma,

presumed to have resulted in systemic hypertension, a major risk factor for stroke.

volume of tissue; inflowing blood is unsaturated and provides
signal against a background of low intensity (93, 115, 158). TOF-
MRA is ideal for evaluating arterial flow because venous blood
is suppressed except on a few entry slices due to its slower flow
and thicker slab (161). Additionally, TOF-MRA can be used to
evaluate venous blood by applying a saturation band and pulse
on the opposite side (162).

Limitations of TOF-MRA are based mainly on vascular
saturation and flow or motion artifacts. In 3D-TOF-MRA,
volume coverage is limited by vascular saturation effects,
making it best suited for evaluation of intracranial rather
than extracranial vasculature (146, 150, 163, 164). 3D-TOF
acquisitions have intrinsically higher spatial and contrast
resolution, a characteristic which is amplified at higher
magnetic fields, so the ability to follow vessels is superior
in 7.0T scanners compared to 3.0T scanners (7, 17) TOF-
MRA also tends to overestimate the degree and length of
arterial stenosis, especially in the presence of turbulence, is
relatively insensitive to slow or reversed blood flow and tends
to be affected by saturation effects that limit the maximum
thickness of slabs acquired (141). This factor means that it
can be difficult to visualize the distal aspect of vessels (146).
Furthermore, slow flow or large blood volume can eliminate
the visible intrinsic contrast between blood and stationary
tissue (165).

CE-MRA is the standard technique for examination of
extracranial arteries such as the vertebral or carotid arteries
(30, 146). It utilizes an intravenous injection of gadolinium to
reduce the T1-w relaxation time of tissue and to generate contrast
between the intravascular lumen and surrounding tissues (17,
30, 135, 146, 164). Since it is independent of flow dynamics,
unlike TOF, artifacts or effects associated with altered flow are
substantially reduced (30, 146, 164).

Unlike CTA, MRA has been studied relatively extensively in
dogs. Prior to its availability, and given lack of CTA studies,
the intracranial vessels of dogs were historically evaluated
using conventional x-ray angiography or digital subtraction

angiography, which require iodinated contrast agents and are
relatively invasive techniques (17, 41, 165). MRA has now been
used in numerous studies of both normal anatomic structures
and pathologic processes in dogs, including strokes (7, 17,
41, 157, 165–170). In assessing canine strokes, it has been
demonstrated to be a relatively easy sequence to include in an
MRI protocol when a stroke is suspected (17).

CE-MRA has been demonstrated to show all major intra-
and extra-cranial arteries and veins and the venous sinuses and
plexuses of the canine brain (151). Its use may be limited by
magnetic field strength; 1.5T units may not be sufficient for
producing images that can be interpreted easily, and while 3T
units provide the same image quality as 7T units, quantitatively,
more vessels may be visible on 7T units (17). A study performed
using a 1.5T unit facilitated visualization of the rostral cerebral
artery, cranial and caudal communicating arteries, middle
cerebral artery, and the rostral cerebellar artery (157). There
is discrepancy regarding whether or not the rostral cerebellar
artery is readily visible on scanners other than 7T units. In
one study, the rostral cerebellar artery was not reliably observed
(17). In another study that used a 1.5T scanner, the rostral
cerebellar artery was the only cerebellar artery that could be
reliably detected (157).

TOF-MRA has demonstrated efficacy in confirming vessel
occlusion in a canine experimental model of permanent
occlusion of the middle cerebral artery (157). When evaluated
2–3 days following occlusion, the angiograms of all dogs
demonstrated either complete or partial flow attenuation,
depending on the degree of vessel occlusion (157). Overall, based
on the relative ease of performing MRA and the diagnostic
utility, either TOF-MRA or CE-MRA, or ideally both, should be
incorporated into canine MRI protocols when an ischemic stroke
is suspected. One logistical benefit of CE-MRA over TOF-MRA
is the time to image acquisition. CE-MRA, typically performed
as T1-w fast-field echo (T1-FFE) or fast low-angle shot (FLASH)
sequences, have scan times in the 10–30 second time range and
allow for breath-hold acquisitions. TOF-MRA scan times range
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from 8–10min for human heads, with similar ranges expected
for dogs (171).

SECTION 3: SELECT EMERGING
SEQUENCES

Measuring Cerebral Blood Flow
PWI has been demonstrated to provide useful information
regarding hemodynamic status in human patients actively
undergoing stroke or at risk for stroke (30, 115). However,
its use in human medicine is limited clinically by the risk of
contrast-associated nephrogenic systemic fibrosis in patients with
moderate to severe renal impairment (115, 172). This has led
to the development of new studies of cerebral blood flow and
hemodynamics that do not require gadolinium-based contrast
(115). These sequences are newly emerging in human medicine
and have yet to be investigated in veterinary patients.

Arterial Spin Labeling MRI
Currently, arterial spin labeling (ASL) is the most popular MRI
hemodynamic analysis method that does not require exogenous
contrast administration (115). To perform ASL, radiofrequency
pulses are applied to the blood water proximal to the tissue of
interest (115). A delay time is permitted and the radiofrequency-
labeled blood water protons travel to the brain and exchange
with tissue water (115). This leads to a small but measurable
reduction in the tissue water magnetization proportional to the
amount of exchange, which approximates CBF (115). The change
is relatively small compared to the total amount of signal, so it is
amplified by subtracting the images from a control image (115).
Models of tracer kinetics are then applied to the ASL difference
signal to quantify cerebral blood flow in units ofmilliliter of blood
per 100 grams of tissue per minute (115, 173).

There are numerous ASL techniques that differ regarding
the labeling application. In general, they can be grouped into
two categories- pulsed ASL and continuous ASL (115, 174–
176). Pulsed ASL uses one or two radiofrequency pulses of a
duration of 3–15 milliseconds, which labels blood water over a
large volume (80–120 millimeters) in the neck (115, 175, 176).

Continuous ASL uses a long labeling pulse (1.5–2 s) at a single
location in the neck (115, 177, 178). The signal to noise ratio
in continuous ASL is 30–50% higher than pulsed ASL, so in
principle continuous ASL is more desirable (115, 179). However,
it requires special local transmit coils, whereas pulsed ASL can
be performed using standard MRI coils (115, 180). A new
labeling strategy is vessel-selective ASL (115, 181–183). In this
technique, different feeding arteries, such as the left and right
internal carotid arteries and basilar artery are separately labeled
(115, 181–183). This gives a measure of perfusion territories and
collateralization (112, 181–183).

There are currently no canine studies evaluating the use of
ASL. ASL is a useful technique in human stroke evaluation
because it does not require administration of a contrast
agent. This eliminates the risk of contrast administration-
associated morbidity. This appealing feature could be exploited
in diagnostic investigation in dogs with suspected strokes and its
use may reduce scan time. Based on clinical suspicion of a stroke,
could be performed as one of the first sequences, eliminating the
need for subsequent time-consuming, low-yield sequences.

TRACTOGRAPHY

Diffusion Tensor Imaging (DTI) (Figure 11)
DTI-based tractography is a technique used to localize specific
neuronal white matter fiber tracts (73). It is used in evaluation
of intracranial space-occupying lesions such as brain tumors and
vascular malformations associated with white matter (73, 184–
189). It has also been used in stroke imaging to assess the
relationship between fiber tracts and infarcts (73, 115, 190, 191).
DTI was developed to visualize the orientation and properties of
whitematter and relies on anisotropy, or the direction-dependent
diffusion of water (73). Diffusion is faster in the direction of fiber
tracts rather than perpendicular to them (73). This is represented
mathematically and graphically by a diffusion ellipsoid or tensor
(73). When there is no directionality, the tensor is spherical,
whereas in white matter tracts, the tensor is normally cigar
shaped (73). The tensors of cerebral white matter can then
be reconstructed to track the three-dimensional orientation of
the fibers. The DTI data are also presented as two-dimensional

FIGURE 11 | 3T MR, same dog as in Figure 9. The large areas of hyperintensity in Trace DW (A) are greatly attenuated in ADC map (B): persistent hyperintensity

corresponds to vasogenic edema, and zones which transitioned to ADC hypointensity (arrows) correspond to cytotoxic edema. Many factors may affect the degree of

ADC hypointensity, most importantly time since onset. In FA (C), the matching dark region indicates reduced anisotropy.
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fractional anisotropy maps. (73) Fractional anisotropy has been
shown to decrease after stroke disintegration of gray-white
matter distinction (73, 190, 191). It has demonstrated a fair
correlation with clinical signs and may also be used to predict
human patient outcomes after stroke (73, 192, 193). The main
drawback toDTI-based tract-graphs is that it is not fully validated
(73, 194–198). Additionally, tractography may underestimate or
overestimate the quantity of fiber tracts (73, 199).

There are currently no canine studies evaluating the use
of DTI in the context of vascular disease. However, currently
in progress are feasibility and mapping studies in dogs (200).
Fractional anisotropy has been demonstrated to reflect features
that constrain water diffusion in white matter, including
myelination and other microstructural factors (201). With
optimization of these parameters, DTImay become amore useful
tool in diagnosing strokes in dogs (200–202).

LONG TERM MONITORING

In general, most dogs recover from strokes with time and
supportive care only (7, 23, 72). No specific treatment is available
that affects the outcome of either ischemic or hemorrhagic
strokes in dogs (7, 23, 71). Rather, treatment focuses on
preventing secondary brain damage or complications associated
with the underlying disease (7, 23).

There are limited studies evaluating the long-term MRI
findings of stroke over time. In general, the lesion volume
tends to increase in the 24 h to 8 days following stroke onset.
Secondary changes, such as vasogenic edema and leukocyte
infiltration, can lead to this increased volume, detectable on
FLAIR sequences. In the chronic phase, infarct lesion volume
decrements due to consolidation and pseudocystic tissue change
and tissue loss (203, 204).

CONCLUSIONS

There are numerous established and novel CT and MRI
modalities for evaluating stroke that hold promise for application
in veterinary medicine. The main limitations for their use
include temporal and resource associated factors. In general,
few canine patients that undergo a stroke are evaluated in the
same acute time frame as in people. This is likely because
the features of strokes in dogs are less familiar than those
in people. The temporal patterns observed between some of
the imaging modalities used in human medicine may not
be applicable to veterinary medicine. Additionally, while an
increasing number of MR-equipped veterinary facilities are
available, the investment in specialized coils or training for
advanced techniques is lacking. Furthermore, no studies exist
regarding interventions for canine stroke patients, which makes
it challenging to defend advanced imaging modalities that add
time under general anesthesia but otherwise have little impact on
patient outcome. In cases where a stroke cannot be definitively
distinguished as the cause of disease using standard T1-w,
T2-w, FLAIR, SWI, and DWI/ADC images, the more novel
modalities discussed in this review may be beneficial. Ultimately,
the translational impact of veterinary use of these modalities
may prove to be their most important application, particularly
regarding establishing guidelines for long-term outcome in
acute strokes.
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