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ABSTRACT We report the 28-Mbp draft genome sequence of the marine fungus
Cladosporium sp. strain TM138. The species was isolated from the marine inverte-
brate Didemnum maculosum. Its genome sequence will inform future investigations
into the species’ enzymatic potential for bioremediation and its evolution in marine
environments.

Marine environments account for more than 95% of the total environmental
biodiversity. Fungi isolated from these environments are increasingly gaining

attention for their potential use in a wide spectrum of industrial applications (1) since
they constitute a rich source of bioactive compounds (2, 3) and comprise an arsenal of
novel enzymes that can be used in, e.g., bioremediation (1, 4). Species of Cladosporium
exhibit broad physiological capacities, such as halotolerance (5), but relatively little is
known about their genomes. We report here the draft genome sequence of a Cla-
dosporium species isolated from a marine environment, obtained through shotgun
sequencing. Cladosporium sp. strain TM138 (isolate code TM138-S3) was isolated from
the yellow encrusting ascidian Didemnum maculosum, collected in March 2017 from a
rock substrate in Almuñecar, Spain, at a 31-m depth (6). For isolation, a 1-cm3 tissue
piece was ground in sterile seawater and heated at 50°C for 1 h. The suspension was
serially diluted, plated onto Difco marine broth agar (MBA; BD Biosciences, NJ, USA),
and incubated at 28°C for 6 weeks. Pure MBA cultures were established from a single
colony. For DNA extraction, the fungal biomass was filtered from 3-day-old liquid
cultures (27°C and 150 rpm shaking) in Difco marine broth, and the GenElute plant
genomic DNA miniprep kit (Sigma-Aldrich, MO, USA) was used. A 450-bp insert size
library was prepared with the Nextera NEBNext Ultra II FS DNA library prep kit and
sequenced in paired-end mode (read length, 150 bp) by Eurofins Genomics Europe
Sequencing GmbH (Constance, Germany) on a NovaSeq6000 S2 instrument.

Sequencing yielded 4,996,400 paired reads, totaling 1,498,920,000 bp. Adapter
sequences were removed (at an alignment score above 7, allowing 2 mismatches), and
bases with a quality score below 18 and below an average of 20 on a 5-bp window were
trimmed using Trimmomatic v.0.39 (7). Reads smaller than 50 bases or with no pair
(singletons) were discarded. Identification of contaminant reads was performed with
Kraken2 v.0.8 (8), with a confidence score of 0.7 and using a custom database com-
prising UniVec and RefSeq genomes from Bacteria, Archaea, viruses, plants, and fungi
(accessed December 2019). Based on this analysis, read pairs that were not classified as
belonging to other taxa were used for de novo assembly, invoking error correction with
BayesHammer as bundled with SPAdes 3.13.0 (9, 10), using k-mers 33, 55, 77, and 99,
automatic computation of the coverage threshold, and an option to minimize the
number of mismatches. The SPAdes assembly was polished with one round of Pilon
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1.23 (11) using alignments of pairs and singletons against the genome assembly,
obtained with BWA 0.7.15 (12). The genome of Cladosporium sp. TM138 consists of 732
scaffolds longer than 500 bp and is 28,009,899 bp long excluding gaps. The average
base coverage is 48�, the N50 value is 438,704 bp, and the average G�C content is
55.69%. The genome is 95.8% complete based on BUSCO v.3.1.0 analysis (13) with the
Pezizomycotina_odb90 data set, containing 3,156 ortholog genes. Gene predictions
with AUGUSTUS (14), invoked by BUSCO, were performed using training data from
Cladosporium sphaerospermum (15).

Data availability. This whole-genome shotgun project has been deposited in

DDBJ/ENA/GenBank under the accession no. JAAQHG000000000. Raw data were de-
posited in SRA under accession no. SRR11273615 (Bioproject PRJNA610946). The ver-
sion described in the manuscript is the first version, JAAQHG010000000.
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