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Abstract: Objectives: Lung cancer screening (LCS) with low-dose computed tomography (LDCT)
has been a reimbursable preventive service covered by Medicare since 2015. Geographic disparities
in the access to LDCT providers may contribute to the low uptake of LCS. We evaluated LDCT
service availability for older adults in the United States (US) based on Medicare claims data and
explored its ecological correlation with smoking prevalence. Materials and Methods: We identified
providers who provided at least 11 LDCT services in 2016 using the Medicare Provider Utilization
and Payment Data: Physician and Other Supplier Public Use File. We constructed a 30-mile Euclidian
distance buffer around each provider’s location to estimate individual LDCT coverage areas. We then
mapped the county-level density of LDCT providers and the county-level prevalence of current
daily cigarette smoking in a bivariate choropleth map. Results: Approximately 1/5 of census
tracts had no LDCT providers within 30 miles and 46% of counties had no LDCT services. At the
county level, the median LDCT density was 0.5 (interquartile range (IQR): 0–5.3) providers per 1000
Medicare fee-for-service beneficiaries, and cigarette smoking prevalence was 17.5% (IQR: 15.2–19.8%).
High LDCT service availability was most concentrated in the northeast US, revealing a misalignment
with areas of high current smoking prevalence, which tended to be in the central and southern US.
Conclusions: Our maps highlight areas in need for enhanced workforce and capacity building aimed
at reducing disparities in the access and utilization of LDCT services among older adults in the US.

Keywords: low-dose computed tomography; cigarette smoke exposure; health disparities; medicare;
cancer screening

1. Introduction

Lung cancer is the leading cause of cancer deaths in the United States (US), and it is also the second
most common cancer (excluding skin cancer) in both men and women [1–4]. Treatment options such as
surgery are the standard of care recommended for stages I-IIIA of non-small cell lung cancer, alone or
in conjunction with radiation and/or chemotherapy (for more advanced stages) [5], while limited
therapies are available for patients with late stage lung cancer. Thus, early detection is an important
secondary prevention measure to reduce lung cancer mortality. Understanding the utilization pattern
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of cancer screening tests across different geographic regions is critical for planning cancer prevention
and control strategies aimed at increasing screening uptake and reducing cancer disparities.

Adoption of annual lung cancer screening (LCS) with low-dose computed tomography (LDCT),
which was recommended by the United States Preventive Services Task Force (USPSTF) in 2013, is a
vital strategy for early lung cancer detection [6,7]. In 2015, the Centers for Medicare and Medicaid
Services (CMS) endorsed similar guidelines by providing medical reimbursement for LCS with LDCT
among eligible persons [8,9]. Similar to the USPSTF recommendation, the annual LCS under the CMS
rule applies to asymptomatic adults aged 55–77 years (USPSTF recommends for age 55–80 years) with
tobacco smoking history of at least 30 pack-years, which include both current smokers and former
smokers who have quit smoking within the last 15 years [7–9].

Despite these recommendations and reimbursement policy changes, the overall uptake of
LCS remains low among the general US population and among fee-for-service (FFS) Medicare
beneficiaries [10–12]. One of the contributing factors for the slow adoption of LCS, as shown by our
team and others, is the geographic disparities of the availability of LDCT screening facilities [13–17].
In the current study, we aim to examine the geographic accessibility of LDCT service and explore
its bivariate relationship with smoking prevalence. We present census-tract- and county-level data,
an improvement of previous studies based on either state- or national-level aggregated data (or both).
Counties with high smoking prevalence and low LDCT services may indicate potential opportunities
for enhanced LCS interventions.

2. Methods

LDCT providers and utilizations: Data on LDCT utilization were obtained from the Medicare
Provider Utilization and Payment Data: Physician and Other Supplier Public Use File for the calendar
year 2016 [18]. The provider PUF includes summaries of services and procedures provided by
physicians and other healthcare professionals to Medicare FFS beneficiaries. Note that only data from
FFS Medicare beneficiaries are available, which represent about 70% of all Medicare beneficiaries and
83% of the 47.8 million people aged 65 years and older in the US. Given that 70% of lung cancer is
diagnosed among people aged 65 years and older [19], FFS Medicare data are appropriate for the study.
Data for providers who serviced less than 11 FFS beneficiaries were suppressed from the publicly
released data for privacy concerns. We identified LDCT performed for LCS based on the Healthcare
Common Procedure Coding System (HCPCS) code G0297, and summed all LDCT services utilized for
individual providers based on their unique national provider identifier (NPI). We geocoded the address
of each provider to obtain the latitude and longitude using the Texas A&M Geocoding Services.

Medicare population by census tracts and counties: We utilized the 2012–2016 American
Community Survey (ACS) 5-year estimates to identify the number of Medicare beneficiaries aged
65 years and over in each census tract, excluding 611 census tracts with zero Medicare beneficiaries [20].
We obtained Medicare FFS population in each county from the Medicare Fee-for-Service Enrollment
Public Use File for 2016 [21]. Note that the denominator population, while representative of Medicare
population, differs from those screening eligible individuals defined by USPSTF and CMS.

Current smoking prevalence by counties: Current smoking prevalence estimates are only publicly
available at the county level, not at the census tract level, for the entire US (excluding US territories).
We obtained the county-level age-standardized current cigarettes smoking prevalence from a previously
published study by Dwyer-Lindgren et al. [22], in which authors applied a validated small-area-estimate
approach to obtain two types of current smoking prevalence based on the 1996–2012 survey data
from the Behavioral Risk Factor Surveillance System (BRFSS), a national population-based survey
for adults (≥18 years) [23]. In BRFSS, current smokers were identified based on combined responses
to the questions “Have you smoked at least 100 cigarettes in your entire life?” and “Do you now
smoke cigarettes every day, some days or not at all?” The total cigarette smoking prevalence was
from both nondaily and daily smoker combined data, while daily cigarette smoking prevalence was
from daily smoker data only. In this study, we used daily cigarette smoking prevalence (referred to as
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“current smoking prevalence” hereafter), since daily smokers may better meet the smoking intensity
eligibility (30 pack-year) for LCS than nondaily smokers. We used data for the calendar year 2012,
which were the latest available year to the LDCT utilization data and the most up-to-date publicly
available county-level data.

LDCT provider density by census tracts and counties: We constructed a 30-mile Euclidian distance
buffer around each provider’s location, as in previous studies [24,25], to identify the coverage areas of
the providers. A census tract was considered to be served by a provider if more than 51% of its area was
within the 30-mile radius of the provider’s geolocation. We summed the number of providers from all
providers within a census tract, which was subsequently aggregated to the county level. We calculated
the LDCT provider density at the tract and county level, respectively, using the summed numbers of
LDCT providers as the numerator and the Medicare population at tract and county levels, respectively,
as the denominator. The LDCT provider service areas at the census tract level were calculated using
the 2016 census tract shapefile from the National Historical Geographic Information System from
IPUMS [20]. The analysis was conducted with Python 3.7.3 using the following libraries Geopandas
0.5.1 and Pysal 2.1.0 in JupyterLab [26–35].

Geospatial analysis: To match the county-level current smoking prevalence, we mainly focused on
county-level data in the current study and presented the tract-level data as supplemental information
(Figure S1). We visualized the provider density and smoking prevalence with individual choropleth
maps using the 2016 ACS county shapefile from the US Census Bureau. In addition, we produced a
bivariate choropleth map and a scatter plot to show the overlaps between smoking prevalence and
provider density. To that end, we calculated the percentiles of individual variables, and generated
the corresponding 3-level variable to represent low (<34th percentile), medium (≥34th and <67th
percentiles), and high (≥67th percentile) ranking categories, respectively. The analysis and mapping
were conducted with R (V 3.5.0) in RStudio (V 1.1.453) using the following libraries: tidycensus, sf,
dplyr, pals, classInt, tmap, latticeExtra, ggpubr, and grid [36–45].

3. Results

We found 50915 LDCT utilizations billed by 1860 providers from 50 US states and the District of
Columbia in 2016. The average LDCT service per individual provider was 27 ± 25, with a median of 19
and a minimum and maximum of 11–302. Approximately 21.8% (16,082/73,665) of census tracts had no
LDCT providers within 30 miles of their locations. Approximately 46.5% (1461/3142) of counties had
no LDCT services, shown as missing in Figure 1. The median and interquartile range (IQR) of Medicare
FFS population at the county level were 3938 (IQR: 1856–9617). The median LDCT provider density was
0.5 (IQR: 0–5.3) providers per 1000 Medicare FFS beneficiaries at the county level. Among counties that
had LDCT services (n = 1681), the median LDCT provider density was 4.6 (IQR: 0.03–12.1) providers
per 1000 Medicare FFS beneficiaries. The median prevalence of current smoking by county was 17.5%
(IQR: 15.2–19.8%).

Table 1 lists the top- and bottom-ranked ten counties for the LDCT provider density and current
smoking prevalence. The ten counties with top-ten LDCT provider density, all of which had more
than 129 providers per 1000 Medicare FFS beneficiaries, were Suffolk, Middlesex, Norfolk, and Essex
counties of Massachusetts; Bronx, Queens, and Kings counties of New York; Wayne county of
Michigan; Philadelphia county in Pennsylvania; and Hudson county in New Jersey. The current daily
cigarette smoking prevalence for these ten counties ranged from 9.9 to 18.2%. Counties with top-ten
prevalence of current smoking were Clay, Knox, Elliott, Leslie, Lee, and Jackson counties in Kentucky;
Northwest Arctic Borough in Alaska; and McDowell, Roane, and Boone counties in West Virginia.
Four out of these ten counties did not have LDCT services, and the LDCT provider density in the
remaining six counties ranged from 0.4 to 7.6 providers per 1000 Medicare FFS beneficiaries. Among the
ten counties with bottom-ten LDCT provider density, the prevalence of current smoking varied between
9.6% and 24.1%. Four out of the ten counties with the lowest current smoking prevalence had no
LDCT services, all of which were in Utah; the LDCT provider density in the remaining six counties
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ranged from 14.2 to 68.6 providers per 1000 Medicare FFS beneficiaries. Large variations in both
LDCT provider density and smoking prevalence exist across counties throughout the US, as well as
across counties within the same state. For example, Lackawanna County and Philadelphia County of
Pennsylvania were within the bottom- and top-ten counties of LDCT provider density, respectively.
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Table 1. Counties with top- and bottom-ranked current daily cigarette smoking prevalence, and density
of providers, who provided low-dose computed tomography (LDCT) services for lung cancer screening,
per 1000 Medicare fee-for-service (FFS) beneficiaries.

Variables

LDCT Provider Density
(Provider per 1000

Medicare FFS
Beneficiaries)

Current Daily
Cigarette Smoking

Prevalence (%)
County

Top-ten LDCT
provider density

129.7 13.0 Essex County, Massachusetts
138.1 10.1 Hudson County, New Jersey
140.3 16.7 Philadelphia County, Pennsylvania
153.4 11.0 Norfolk County, Massachusetts
156.9 18.2 Wayne County, Michigan
188.5 11.2 Middlesex County, Massachusetts
194.3 10.9 Kings County, New York
201.4 9.9 Queens County, New York
249.2 12.1 Bronx County, New York
308.8 12.6 Suffolk County, Massachusetts

Bottom-ten
provider density

0.032 13.5 Yakima County, Washington
0.043 9.6 Imperial County, California
0.044 16.7 Clallam County, Washington
0.059 13.1 Tippecanoe County, Indiana
0.060 17.3 Lackawanna County, Pennsylvania
0.074 13.3 Monroe County, Florida
0.084 19.2 Polk County, Texas
0.098 15.6 Okaloosa County, Florida
0.123 19.5 Knox County, Illinois
0.134 24.1 Sequoyah County, Oklahoma
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Table 1. Cont.

Variables

LDCT Provider Density
(Provider per 1000

Medicare FFS
Beneficiaries)

Current Daily
Cigarette Smoking

Prevalence (%)
County

Top-ten smoking
prevalence

1.6 27.6 Boone County, West Virginia
4.0 27.7 Jackson County, Kentucky

not available 27.8 Lee County, Kentucky
not available 27.8 Leslie County, Kentucky

0.4 27.8 Roane County, West Virginia
not available 28.0 McDowell County, West Virginia

7.6 28.9 Elliott County, Kentucky
2.8 28.9 Knox County, Kentucky

not available 29.8 Northwest Arctic Borough, Alaska
3.1 30.7 Clay County, Kentucky

Bottom-ten
smoking

prevalence

not available 5.7 Utah County, Utah
64.1 6.4 Arlington County, Virginia

not available 7.0 Summit County, Utah
not available 7.0 Wasatch County, Utah

14.2 7.1 Santa Clara County, California
63.9 7.2 Montgomery County, Maryland

not available 7.2 Davis County, Utah
14.4 7.4 San Mateo County, California
33.2 7.4 Loudoun County, Virginia
68.6 7.5 Howard County, Maryland

Both the LDCT provider density and current smoking prevalence varied substantially across US
counties. Higher LDCT provider density generally concentrated in the northeast than south and west
US, as shown in Figure 1, while higher smoking prevalence occurred in the south and central US,
as shown in Figure 2. The mismatch between current smoking prevalence and the LDCT provider
density was further evidenced by mapping both variables in a bivariate choropleth map shown in
Figure 3 and in a scattered plot shown in Figure 4, depicting the nine combinations of the LDCT
provider density and smoking prevalence patterns: low–low, low–medium, low–high, medium–low,
medium–medium, medium–high, high–low, high–medium, and high–high. Again, regions in the
south where high smoking prevalence occurred tended to have low or no LDCT services.
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Figure 3. Bivariate choropleth map between current daily cigarette smoking prevalence and the density
of providers, who provided low-dose computed tomography (LDCT) services for lung cancer screening,
per 1000 Medicare fee-for-service beneficiaries. Approximately 46.5% (1461/3142) of counties had no
LDCT services, shown in white color. The color scheme shows the nine combinations of the LDCT
provider density and smoking prevalence patterns by tertiles: low–low, low–medium, low–high,
medium–low, medium–medium, medium–high, high–low, high–medium, and high–high.
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medium–low, medium–medium, medium–high, high–low, high–medium, and high–high.
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4. Discussion

We present estimates of LDCT utilization for lung cancer screening in the US based on the 2016 FFS
Medicare claims data, one year after Medicare’s reimbursement began in 2015. We found substantial
spatial variations in the coverage areas of the providers who furnished LDCT services to Medicare FFS
beneficiaries. These variations of LDCT accessibility do not align with known geographic distributions
of current smoking prevalence, which tend to be in the central and southern US, where high lung
cancer incidence and mortality are also found [1–4,13–17]. Notably, counties in southern states, such as
Kentucky and West Virginia, tend to simultaneously rank high in current smoking prevalence and
rank low in LDCT provider density. In contrast, counties in northeastern states, such as Massachusetts,
New York, and New Jersey, which have below median smoking prevalence, tend to rank high in LDCT
provider density. Counties in western states, such as Utah and parts of California, tend to rank low in
smoking prevalence and low in LDCT providers. The findings of these regional geographic variations
were consistent with results from previous studies [13–17]. Possible explanations of the observed
mismatch between smoking prevalence and the LDCT provider coverage include discrepancies
in the underlying population characteristics, individual and contextual socioeconomic conditions,
as well as the distributions of healthcare resources and population densities in urban and rural areas.
These variations have been shown to affect the distribution of LDCT facilities, adoption of screening
technologies, and uptake of LCS, and have been observed for other cancer screening services [46–51].

We built upon findings from previous studies on LDCT availability and accessibility that used
aggregated data at the state or national level by examining data at the census tract and county level.
With improved refinement in the geographic resolution, we were able to demonstrate variations across
all counties in the nation and within the same state, which may not be captured with state-level data.
These county-level variations provided a more granulated and likely realistic assessment of the LDCT
service availability and accessibility. Our county-level estimates can be applied to inform future federal,
state, and local initiatives aimed at improving LCS uptake. For example, counties with high smoking
prevalence and low LDCT utilizations may indicate potential opportunities for localities to increase
access to LCS interventions.

There are a few limitations in our study. First, our findings are representative of the Medicare
FFS population, which differs from the population that are screening eligible defined by USPSTF and
CMS. Unfortunately, detailed smoking status and smoking intensity are not available to accurately
estimate LCS-eligible population, which suggests that our provider density estimates are likely to be
underestimated. Second, our data were based on FFS Medicare beneficiaries which, while represent
83% of the US population aged 65 years and older, may not be generalizable to older adults enrolled
in Medicare Advantage, commercial insurances, or the Veterans Health Administration healthcare
system. Third, while, to the best of our knowledge, the 2012 smoking prevalence data we include are
the most up-to-date, age-adjusted estimates available at the county level, the prevalence may have
changed. Finally, the use of a fixed 30-mile radius to define the LDCT service area for all providers,
while a reasonable average, may underestimate the coverage area for providers residing in rural areas.
Other approaches, such as using adaptive radii, cumulative distribution functions, or network buffers,
are warranted in future studies to improve estimates [52,53].

5. Conclusions

Our results identified potential geographic disparities in the access and utilization of LDCT services
among older adults in the US. Increased workforce and capacities for lung cancer screening in areas
with low distribution of LDCT providers, especially in target areas where smoking prevalence is high,
is crucial to ensure the continued adoption of LDCT and the success of lung cancer screening efforts.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/10/3383/s1,
Figure S1: Census-tract-level density of providers, who provided low-dose computed tomography (LDCT) services
for lung cancer screening, per 100 Medicare fee-for-service beneficiaries, 2016.
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