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Severe fibrotic and thrombotic events permeate the healthcare system,
causing suffering for millions of patients with inflammatory disorders.
As late-state consequences of chronic inflammation, fibrosis and thrombosis
are the culmination of pathological interactions of activated endothelium,
neutrophils and platelets after vessel injury. Coupling of these three cell
types ensures a pro-coagulant, cytokine-rich environment that promotes
the capture, activation and proliferation of circulating immune cells and
recruitment of key pro-fibrotic cell types such as myofibroblasts. As the
first responders to sterile inflammatory injury, it is important to understand
how endothelial cells, neutrophils and platelets help create this environment.
There has been a growing interest in this intersection over the past decade
that has helped shape the development of therapeutics to target these pro-
cesses. Here, we review recent insights into how neutrophils, platelets and
endothelial cells guide the development of pathological vessel repair that
can also result in underlying tissue fibrosis. We further discuss recent efforts
that have been made to translate this knowledge into therapeutics and
provide perspective as to how a compound or combination therapeutics
may be most efficacious when tackling fibrosis and thrombosis that is
brought upon by chronic inflammation.
1. Introduction
Theperipheralvasculature isacomplexcontinuummadeup inpartbyacollagenous
tunica externa, an elastic and smoothmuscle-lined tunicamedia and an endothelial
monolayermaking up the tunica intima, or inner vessel lining. This structure differs
slightly in the capillaries, which are composed of a tunica intima and basement
membrane. Vascular integrity relies on coordinated homeostasis of these dynamic
components. As the inner lining of the blood vessel, the endothelium provides an
interface between circulating blood components and the adjacent tissues and
plays aparticularlypivotal role in tissuedamageand fibrosis. In response tovascular
damage, metabolic disorders or inflammation, endothelial cells prompt the recruit-
ment of key inflammatory cells: platelets and neutrophils. Changes to endothelial
morphology, chemokine production and surface proteins foster a pro-inflammatory
environment that mediates the mobilization of circulating immune cells such
as polymorphonuclear neutrophils and platelets. In many circumstances, inter-
actions between recruited neutrophils, platelets and the endothelium lead to the
resolution of vessel damage; indeed, inflammatory events are vital for proper
wound healing [1]. However, if inflammatory stimuli are persistent these
interactions can tip the balance toward fibrotic healing.

The fibrotic response is the culmination of many chronic inflammatory
diseases. Fibrosis is characterized as the accumulation of excess extracellular
matrix (ECM) proteins, such as collagen and fibronectin. Although ECM depo-
sition is a vital and largely self-restorative part of wound healing, repetitive or
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Figure 1. PubMed search results since 1980. A PubMed literature search for the years 1980–2020 was conducted for the following key terms: neutrophil, platelet,
endothelial and thrombosis or fibrosis. Results were further narrowed down to the years 2010–2020, during which the number of publications per year steadily
increased. Publications were screened for titles relevant to topics discussed in this review.
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severe damage can cause pathological dysregulation of this
process leading to fibrosis. Inflammation mediated by the
innate immune response is a critical trigger of pathological
fibrosis [2]. In response to vascular damage or systemic and
local inflammation, endothelium transitions from a quiescent
state to a state called endothelial dysfunction, which in its
severe form causes the exposure of underlying ECM such as
collagen [3]. Soluble pro-inflammatory factors such as reactive
oxygen species (ROS) and matrix metalloproteinases (MMPs)
are released by the endothelium [4,5], recruiting circulat-
ing neutrophils to the scene. Neutrophils and circulating
platelets tether to upregulated cell adhesion molecules that
are expressed on inflamed endothelium, such as E-selectin,
P-selectin and von Willebrand Factor (vWF). This tethering
initiates an inflammatory cascade that, if persistent, culminates
as thrombotic vessel occlusion or fibrotic myofibroblast pro-
liferation and ECM deposition. Left unchecked, excessive
ECM deposition can result in impaired organ function and,
in some cases, end-stage organ failure and death.

Given the influential roles endothelial cells, neutrophils
and platelets play in aberrant inflammation, thrombosis and
fibrosis, many studies have focused on elucidating mechan-
isms behind pro-fibrotic and prothrombotic events in order
to develop targeted therapeutics that interfere with these pro-
cesses. These cell types have been of growing interest over
the past decade, as is evidenced by the steady increase in the
relevant literature (figure 1). In this review, we detail how dis-
ruptions to the endothelium and its protective ECM layer, the
glycocalyx, contribute to endothelial cell dysfunction, neutro-
phil and platelet dysregulation, thrombosis, and fibrosis. We
discuss the promise and limitations of therapeutic strategies
for limiting neutrophil and platelet-mediated fibrosis.
1.1. Endothelial dysfunction within the scope
of inflammation

The blood vessels are a conduit for immune cell trafficking
in response to tissue damage. Amid differences in vessel
composition, elasticity, size and stiffness, all blood vessels
are lined by an inner layer of endothelium. The vascular
endothelium is made up of a heterogeneous continuum of
individual endothelial cells that reside on a bed of collagen-
rich ECM [6]. As its most basic function, the endothelium
acts as a physical barrier between circulating fluids and the
surrounding tissues. For many years, this was believed to
be the sole purpose of the endothelium. It is now well
accepted that the endothelium is a complex, bioactive cell
layer that regulates immune cell function and tissue access,
vasoreactivity, and the extravasation of macromolecules,
solutes, hormones and fluids [7]. Endothelial cell health
plays a precarious role in chronic inflammatory and thrombo-
genic diseases, including diabetes [8], atherosclerosis [4,9],
acute respiratory distress syndrome [10], cystic fibrosis [11]
and liver cirrhosis [12]. Damage to the endothelium initiates
and sustains inflammation and thrombogenesis [7], with
endothelial cells themselves providing a platform to fast-
track thrombosis during dysregulated haemostasis, and
fibrosis during pathological wound repair.

The endothelium is lined bya thin, glycosaminoglycan-rich
barrier called the endothelial glycocalyx. The glycocalyx is a
dynamic participant in endothelial cell barrier function and
immune regulation [13]. Structurally, the glycocalyx ranges
from nanometres to several micrometres thick, depending on
the vessel type, location within a vessel, conditions and the
imaging technique used [14,15]. Even within one vessel,
the glycocalyx is a heterogeneous structure [16]. The glycoca-
lyx is comprised a glycoprotein or proteoglycan core protein
anchored to underlying actin cytoskeletal filaments at the
endothelial surface [13,17]. While the luminal portion of a
glycoprotein is decorated with small sugar residues, the pro-
teoglycan core, primarily from the syndecan and glypican
families [16,18], extends into the vessel lumen and is decorated
with glycosaminoglycans (GAGs) such as heparan sulfate,
chondroitin sulfate, hyaluronan and dermatan sulfate. GAG
components, particularly heparan sulfate and dermatan sul-
fate, possess anticoagulant and anti-thrombotic qualities
[19,20] that have been used as therapeutics [21–24]. Though



Table 1. Endothelial injury methods and outcomes. (HUVEC, human umbilical vein endothelial cells; PSGL-1, P-selectin glycoprotein ligand-1; Par4, protease-
activated receptor 4; TNF-α, tumour necrosis factor alpha; IFN-γ, interferon gamma; CCL2, C-C motif chemokine ligand 2; IL-1β, interleukin-1 beta; ApoE,
apolipoprotein E; TF, tissue factor.)

vessel or cell type injury method key observations references

cremaster arteriole laser activation laser activated endothelial cells trigger thrombus formation; neutrophil slow rolling on

thrombus mediated by P-selectin-PSGL-1

[49]

cremaster arteriole

and HUVEC

laser activation endothelial activation precedes platelet accumulation; normal fibrin formation observed

in Par4-/- mice

[50]

cremaster arteriole laser activation prothrombinase found on activated endothelial cells [51]

cremaster arteriole laser activation neutrophils contain and express tissue factor at the site of laser injury; neutrophils

accumulated before platelets

[52]

venule TNF-α TNF-α activated endothelial cells recruit neutrophils; platelets bind adherent

neutrophils rather than endothelium

[49]

artery and HUVEC TNF-α and IFN-γ fractalkine causes degranulation, activation, and expression of platelet P-selectin on

adherent platelets, mediating neutrophil recruitment

[53]

HUVEC TNF-α endothelial TF drives fibrin deposition and coagulation; upregulated ICAM can be

targeted for delivering recombinant thrombomodulin to inflamed cells

[47]

cremaster arteriole CCL2, TNF-α, IL-

1β, or IFN-γ

platelets guide neutrophils to extravasation points via P-selectin-PSGL-1 and CD40/

CD40 L

[54]

artery and HUVEC ApoE-/- mice increased endothelial stiffness causes enhanced leucocyte transendothelial migration [55]

artery ApoE-/- mice reduced glycocalyx thickness and increased platelet adhesion occur at bifurcation point [56]

artery ApoE-/- mice endothelial dysfunction and glycocalyx impairment coincide with endothelial-dependent

vasodilation, permeability, and increases in atherosclerotic biomarkers

[4]
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heparan sulfate makes the greatest contribution to glycocalyx
thickness, heterogeneity within the glycocalyx suggests that
each GAG contributes to glycocalyx function and vessel
permeability [25].

Under healthy conditions, the glycocalyx exists in dynamic
equilibrium with circulating blood, changing its composition
and thickness in response to haemodynamic forces and cues
from soluble factors [26] in order to maintain equilibrium
between hydrostatic and oncotic forces in the vessel [27].
Changes to the rheological environment are detected by the
glycocalyx [28] and transduced to the underlying endothelium
via actin anchoring. The actin cytoskeleton and the glycocalyx
exist in a dynamic equilibrium with one another, each being
modified in response to changes in the other to control endo-
thelial barrier properties [29,30]. Indeed, mechanical stress
has been shown to alter GAG and proteoglycan synthesis
and remodelling in vascular endothelial cells [31,32], lending
insight into how pathological stretch and disturbed flow can
influence endothelial cell behaviour and function.

After physical, local or systemic inflammatory insult,
damaged endothelium exhibit signs of endothelial dysfunc-
tion. Endothelial dysfunction is a complex phenomenon
involving heightened ROS production, altered nitric oxide
(NO) production and disruptions to vascular tone; pro-
duction of MMPs and pro-inflammatory cytokines; and
upregulation of cell adhesion molecules such as E-selectin,
P-selectin and intracellular adhesion molecule-1 (ICAM-1)
[4,5,33,34]. MMPs and ROS facilitate glycocalyx degradation
and shedding, causing impaired mechanosensing and alter-
ing cell behaviour [22,28,35] to enable immune cell capture
and trafficking [26,36–39]. Compromised mechanosensing
can in turn perpetuate reductions in shear-sensitive NO
secretion and augment vascular permeability. Paired with
the release of sequestered chemokines and the exposure of
immune cell adhesion molecules along the endothelial sur-
face, glycocalyx degeneration facilitates inflammation,
thrombosis and eventual fibrosis by promoting immune cell
migration into the underlying tissue [40,41].

Dysfunctional endothelium plays an interesting role in
perpetual inflammation. While in a dysfunctional state,
endothelial cell senescence is accelerated and migration is
hindered [31,42]. In damaged vessels, the inability to replenish
the endothelial layer with healthy cells results in a prolonged
inflammatory attack. Even when re-endothelialization can
occur, newly formed glycocalyx is fragile and less responsive
to shear [26], and readily concedes to the inflammatory state.
Further exacerbating the dysfunctional state, circulating
platelets bind to collagen, which normally resides below the
surface of the endothelium [6,43], but is exposed between con-
tracting cells [44] or is revealed after vessel denudation [45].
In some cases, adherent platelets induce a pro-fibrotic cascade
involving platelet-mediated leucocyte recruitment, tissue
factor secretion and fibrin(ogen) deposition [46,47].
2. Drivers of platelet–neutrophil
aggregation, endothelial dysfunction
and fibrosis

Inflammatory stimulus and vessel choice influence the rela-
tive contributions of platelets, neutrophils and endothelial
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cells to inflammation, thrombosis and fibrosis [48] (table 1).
Here, we discuss recent insights into how these three cell
types collaborate to exacerbate inflammation, thrombosis
and fibrosis.

2.1. Endothelial cells
As the lining of the conduits of blood components, metabolites
and immune cells, the vascular endothelium is often on the
front line in an inflammatory insult. A major source of endo-
thelial inflammation is the overproduction of ROS, whose
aetiology can range fromdiet, to hormonedysregulation, to cel-
lular by-products such as those produced during macrophage
digestion of apoptotic debris and foreign substances [34].
Excess ROS inactivates NO production—a known mediator of
vascular tone. Reduced NO enhances vessel stiffness and con-
tractility, both of which contribute to endothelial dysfunction
[4]. Paradoxically, NO overproduction can likewise induce
cellular inflammation and apoptosis [57], highlighting the
importance of maintaining tight regulation of homeostasis.

Endothelial cytoskeletal structure and stiffness play a criti-
cal role in leucocyte recruitment and fibrosis. Tumour necrosis
factor alpha (TNF-α) stimulated endothelial cells present a cor-
tical stiffness gradient to slow-rolling neutrophils, guiding
them to transmigration sites [55]. This effect is augmented on
stiff matrices [55,58], consistent with neutrophil recruitment
and extravasation in atherosclerotic vessels [9]. Pro-fibrotic cel-
lular pathways such as the autotaxin/lysophosphatidic acid
axis likewise stimulate endothelial actin rearrangement and
cell contractility, causing a vascular leak and aiding in the
migration of fibroblasts in the underlying tissue [59]. Structural
alterations of the cytoskeleton affect glycocalyx distribution
and function [29], further exacerbating endothelial dysfunction
and vascular damage.

Dysfunctional endothelial cells are known initiators of fibro-
sis. In response to noxious stimuli such as excess ROS,
lipopolysaccharide (LPS), bleomycin or physical damage, dys-
functional endothelial cells secrete a milieu of pro-inflammatory
cytokines including TNF-α, IL-1β and IL-6 [2]. TNF-α initiates a
signalling cascade that can lead to endothelial apoptosis or necro-
sis [60]. Survivingendothelial cells begin to shed their glycocalyx,
unmasking upregulated selectins and integrin-binding ligands
embeddedwithin thecellmembrane [61]. In thevenules, selectins
act as the initial point of neutrophil capture [62], which can then
act as secondary capture sites for circulating platelets [49].
Bleomycin-induced pulmonary fibrosis exemplifies the potential
pathological response once the endothelium becomes inflamed.
In one representative study, bleomycin-induced pulmonary
endothelial inflammation resulted in a peak in endothelial
inflammationat 7dayspost-bleomycin instillation; andenhanced
vWF, plasminogen activator inhibitor-1, MMP-12 and NO that
led to increased collagen deposition, and pulmonary fibrosis
peaking at day 21, clearly delineating the link between
endothelial dysfunction and fibrosis [57].

Similarly, studies using alternative stimuli have evidenced
endothelial cells as sources of tissue factor (TF) [47,50,63], a
protein that is primarily secreted by activated monocytes to
initiate platelet deposition and thrombin formation [64] and
thereby actuate thrombogenesis and tissue fibrosis [65,66].
Endothelial-derived TF has been reported in response to
TNF-α [47,63] and laser activation [50,51], a technique which
can elicit endothelial activation without vessel denudation
that has been used as a model of vascular thrombosis and
atherosclerosis [67]. Endothelial TF has been shown to cause
fibrin deposition, upregulation of ICAM-1 and vascular cell
adhesion molecule-1, and increased platelet binding. Atkinson
et al. demonstrated that endothelial activation, calcium mobil-
ization and granule secretion precede platelet accumulation
in cremaster arterioles [50]. Notably, fibrin production per-
sisted on activated human umbilical vein endothelial cells
(HUVECs) upon treatment with platelet depleted plasma,
further validating endothelial cells as a source of TF. Ivanciu
and colleagues later observed enhanced prothrombinase
activity on similarly activated endothelium, reinforcing the
idea that activated endothelium forms a pro-coagulant surface
that supports thrombus formation after injury [51].

2.1.1. Link to the inflammatory triangle

Despite similar methods of endothelial activation, there is a
lack of consensus regarding the main source of TF produced
in response to vessel damage. Contrary to the results described
above, leucocytes have been demonstrated as the first respon-
ders to endothelial activation. Adherent leucocytes express
TF and create a platform for platelet binding [52]. In a separate
study, neutrophil rolling and adhesion was observed only after
platelet thrombi had formed, with rolling mediated by platelet
P-selectin and neutrophil P-selectin glycoprotein ligand-1
(PSGL-1) [49], suggesting multiple factors are probably at
play, orchestrating the timing and sequence of events.

While it is clear all three cell types work in coordination
to address vessel damage, more studies are needed to elucidate
mechanisms behind thrombo-inflammation in models of
cytokine, bacterial and physical damage. Understanding
these mechanisms may allow for the development of more tar-
geted therapeutics to combat vascular inflammation and
fibrosis, for example targeting endothelial—but not leucocyte
or platelet-derived TF, or selectively upregulated cell adhesion
molecules. Further investigation into these mechanisms from
the perspective of neutrophils and platelets follows.

2.2. Neutrophils
Neutrophils play a paradoxical role in inflammation. The
neutrophil recruitment cascade is a conserved process that
is integral to the resolution of inflammation, infection and
wound healing [68]. However, the pathological activation of
neutrophils perpetuates acute and chronic inflammatory dis-
eases. Pathological neutrophilia in response to cytokine storm
is observed in rheumatic diseases, as well as infectious dis-
eases such as coronavirus pneumonia seen in severe acute
respiratory syndrome (SARS), Middle East respiratory syn-
drome (MERS) and coronavirus disease 2019 (COVID-19)
[69,70], leading to irreversible tissue fibrosis or necrosis.

We have known for decades that neutrophil engagement
exacerbates endothelial activation [71] and collagen synthesis
[72]. Neutrophils are recruited to the endothelial surface in
response to endothelial cues after cellular activation. As pre-
viously described, endothelial cells release a milieu of pro-
inflammatory stimuli upon damage such as ROS, TNF-α,
IL-1β and MMPs that degrade the endothelial glycocalyx
and recruit circulating neutrophils to the damaged area. Teth-
ered neutrophils roll along the endothelial surface, stabilized
by shear-strengthening, transient catch bonds between endo-
thelial E/P-selectin, CD44 and neutrophil PSGL-1 [61,73].
E/P-selectin engagement directs neutrophil signalling by sti-
mulating an intracellular neutrophil calcium burst [74,75] and
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augments chemokine signalling to activate neutrophil β2
integrins, leading to cell arrest, migration into the underlying
tissue, and further neutrophil recruitment.

With the exception of the pulmonary system, in which
cell recruitment occurs at the capillaries [76,77], veins and
post-capillary venules act as the primary capture sites for
neutrophils during inflammatory damage, though arterial
recruitment has been observed after physical vessel damage
by laser activation [49–52,78]. This unequal involvement is per-
haps owing to differences in junctional proteins that result in
increased intrinsic leakiness within the venules, selectin and
ICAM-1 expression, shear stress and flow mechanics, and
gene expression [7,79]. In the venules, TNF-α and LPS acti-
vation quickly result in neutrophil adhesion to the vessel
wall [48,49,80,81]. Adherent and activated neutrophils secrete
endothelial barrier disrupting molecules such as ROS and
release of neutrophil degranulation products including myelo-
peroxidase, elastase and metalloproteases [82], facilitating
migration through the endothelium.

Further damage can be caused by neutrophil extracellular
trap (NET) production. Coordinated PSGL-1 [83] and CXCR2
[73] signalling leads to enhanced neutrophil adhesion, NET for-
mation and flow restriction. While their primary function is to
trap pathogens, NETs have been shown to enhance inflam-
mation and endothelial permeability and have been implicated
in several inflammatory diseases [82]. Further, NETs are
known to trap platelets, red blood cells and fibrin, fostering the
growth of pathological thrombi. NETs are drivers of vascular
damage, venous thrombosis [73,84] and virus-induced organ
damage and mortality, as is seen in severe COVID-19 [69,85].
2.2.1. Link to the inflammatory triangle

Neutrophil-mediated fibrin deposition and thrombosis can
occur even in the absence of exogenous inflammatory stimuli
or direct endothelial cell damage, such as in a murine stenosis
model of deep vein thrombosis (DVT). In this model, the endo-
thelium remains intact and the underlying collagen-rich ECM
unexposed, but altered blood flow by partial vessel occlusion
is enough to cause cooperative signalling by neutrophils
at the endothelial surface that initiates fibrin formation and pro-
pagates venous thrombosis [73,84]. Once bound to the
endothelium, neutrophils physically alter the rheological
environment within the vasculature by creating an altered flow
pattern near the vessel wall [48]. Drag forces grab circulating
platelets and bring them towards the surface of the neutrophil,
allowingmolecular interactionsbetweenplatelet andneutrophil.
Interestingly, NETs have also been implicated in DVT and
probably exacerbate neutrophil-mediated thrombosis [86].

This relationship between rheological haemostasis and
thrombosis aligns with atherosusceptible vascular regions
such as vessel branches, where blood flow patterns are dis-
turbed [87]. However, rather than disturbed flow causing
endothelial activation, activated neutrophils cause rheological
changes that promote platelet adhesion and vessel activation.
It is evident that the interplay between neutrophil, endothelial
and platelet activation cannot be reduced to a single initiator of
thrombosis, vessel stenosis or tissue fibrosis. Therefore, while
blocking neutrophil-vessel interactions has shown therapeutic
promise in reducing neutrophil-mediated vessel damage
[81,88–92], pro-inflammatory neutrophil–platelet interactions
are a compelling target for emerging therapeutics [93].
2.3. Platelets
Platelets are cell fragments of megakaryocytes that govern
the haemostatic resolution of vascular wounds [94,95].
Thrombocytopenia and platelet depletion caused by genetic
deficiencies or anticoagulants can provoke disorders such as
haemophilia and interfere with the proper resolution of infec-
tion [96] and inflammation [97–99]. More recently, platelets
have been recognized as drivers of inflammatory damage,
working alongside circulating neutrophils to perpetuate
inflammation [93,100,101]. During severe vessel damage,
endothelial cell death [102] or vessel denudation [45] causes
the exposure of underlying ECM. Circulating platelets readily
bind to and activate on exposed collagen-rich ECM that lies
beneath the endothelial layer to create a platelet plug.

While platelet plugs are vital for maintaining haemostasis
within an injured vessel [103], in some cases, the haemostatic
response can quickly become imbalanced by infiltrating
immune cells, shifting the plug from haemostatic to thrombo-
tic. In a haemostatic platelet plug, densely packed P-selectin
positive platelets and a fibrin network form an ultra-dense
thrombus core surrounded by more loosely packed P-selectin
negative, minimally activated platelets at the luminal surface
[103,104]. Once the healing cascade is compromised and
thrombus formation becomes pathogenic, smaller vessels
such as arterioles, capillaries and post-capillary venules are at
a greater risk of occlusion and resultant tissue ischemia
owing to thrombi taking up a larger relative proportion of
the vessel [7,46,105]. Platelet thrombi formed after a traumatic
or ischemia reperfusion injury can release the α-granule che-
mokine neutrophil-activating peptide 2 (NAP-2) to recruit
circulating neutrophils to the injury site. These thrombi then
act asmigrationpoints for circulating neutrophils [106], driving
tissue fibrosis.
2.3.1. Link to the inflammatory triangle

Adherent platelets have also been shown to guide neutrophils
to inflammatory sites [54,107] or act as anchor points for sec-
ondary capture of circulating neutrophils [49,108–110]. This is
especially apparent in arteries, where adherent platelets may
be necessary for neutrophil recruitment [53], perhaps owing
to high shear forces in the artery [7]. In addition to facilitating
capture, activated platelets and platelet-derived soluble factors
such as extracellular vesicles [111] can act as drivers of neutro-
phil and endothelial activation [83,102,110,112–114] and
affect their migration behaviour [115]. Platelet–neutrophil–
endothelial cell interactions are influenced by several factors,
including the P-selectin-PSGL-1 axis [49,53,73,114,116–118]
via phosphodiesterase type-4 [109] or Src family kinases
[110,119], and the vWF-glycoprotein Ibα axis [48,84]. Similar
to endothelial cells and neutrophils, shear stress seems to be
a critical factor in achieving physiologically relevant platelet
activation [120].

Upon activation, endothelial cells release Weibel-Palade
bodies to the vascular surface. Weibel-Palade bodies are
secretory granules that store platelet adhesion ligands P-selectin
and vWF. Now available, P-selectin and vWF recruit additional
circulatingneutrophils andplatelets [118], causing greater plate-
let and neutrophil recruitment and further aggravating the
endothelium. In regions of endothelial denudation, this recruit-
ment can be beneficial for wound healing [99]; however, when
uncontrolled it can also lead to irreversible fibrotic damage.
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2.4. Implications in tissue fibrosis
Paradoxically, immune cells recruited for repair can potenti-
ate damage if the inflammatory stimulus is not resolved.
Activated leucocytes, platelets and leucocyte-platelet com-
plexes have been implicated as drivers of pulmonary and
cardiovascular fibrotic diseases [121,122]. While not typically
considered centre stage in fibrosis, dysregulated platelet and
neutrophil accumulation play a critical role in aberrant tissue
repair [123]. Platelet activation and degranulation are associ-
ated with myofibroblast proliferation and the overactive
deposition of ECM components that results in tissue fibrosis
[124]. Furthermore, activated platelets secrete large quantities
of chemokines that are chemotactic for neutrophils and
monocytes, triggering immune cells to migrate, activate and
produce additional cytokines and enzymes that stimulate
the production of transforming growth factor-β (TGF-β), a
key mediator of myofibroblast formation, collagen deposition
and fibrosis [125,126].

Neutrophil migration along activated endothelium is one
of the first steps towards the resolution of acute inflam-
mation; however, without proper clearance, neutrophil
accumulation causes sustained, chronic inflammation. Extra-
vasating neutrophils are activated by ECM proteins, leading
to injury and remodelling of the surrounding tissue [127],
as is seen in chronic obstructive pulmonary disease and
atherosclerosis [128]. Excessive neutrophil activation, degra-
nulation and respiratory burst activity damages
surrounding tissues [129], in part by the release of matrix-
degrading MMPs, toxic mediators such as ROS and reactive
nitrogen species [2], and pro-inflammatory cytokines that
activate and recruit other immune cells such as macrophages
and T-lymphocytes. The reparative action by myofibroblasts
in response to matrix degradation leads to the formation of
a dense, disorganized fibrotic tissue [124].
3. Clinical manifestations
Several pro-fibrotic diseases have been linked to perturbations
in the proposed inflammatory triangle. Select disease states are
briefly discussed below.

3.1. Lung disease
The lungs are a particularly interesting platform for studying
aberrant neutrophil–platelet interactions. Platelets have been
shown to support recruitment and activation of neutrophils
in the pulmonary capillaries in abdominal sepsis [124],
acute lung injury [125], acute respiratory distress syndrome
[125,130,131] and allergic inflammation [126]. Elevated plate-
let activation indices have been reported in idiopathic
pulmonary fibrosis (IPF) patients [132], with anti-platelet
drugs showing promise in alleviating IPF by reducing plate-
let activation and platelet-mediated neutrophil infiltration
[133]. Recent insights into IPF have suggested that imbal-
anced endothelial activation plays a vital role in disease
pathogenesis. Activated endothelium has been shown to
secrete microparticles [134] and chemokines such as IL-8
into circulation, augmenting neutrophil recruitment and
activation [135]. While the mechanisms underlying IPF are
still unknown, vascular contributors such as these are an
encouraging target.
3.2. Neointimal hyperplasia
Endothelial denudation, as occurs after balloon angioplasty
and severe inflammatory damage [102], presents a unique
environment for platelet–neutrophil interactions. Under these
conditions, circulating platelets bind to and activate on exposed
collagen [44,46,109,136,137] and release extracellular vesicles
that have been shown to influence neutrophil activation states,
causing the upregulation ofplatelet receptorCD41 [111]. Intimal
hyperplasia, or fibrosis within the artery itself, has been clearly
linked with increased inflammation [138]. This, in conjunction
with studies relating platelet-mediated neutrophil binding and
activation with thrombosis [49,54,102,108,109], suggests that
more complex or combinatorial therapeutics are needed to
reduce platelet- and neutrophil-mediated tissue damage.

3.3. COVID-19
Vascular inflammation and associated cytokine storm are
known contributors to COVID-19 morbidities. These events
are in part characterized by immune cell infiltration, NET
formation [85] and dysregulated platelet activation [139], lead-
ing to hypercoagulopathy and vascular complications. Despite
their role in hypercoagulopathy and the formation of patho-
genic platelet–neutrophil complexes in this disease, platelets
have paradoxically been shown to preserve endothelial
integrity in severe COVID-19, with thrombocytopenia being
associated with the impairment of platelet-dependent
endothelium-protective mechanisms [140,141]. Therefore, as
we learn more about this disease, it will be important to
distinguish between restorative and noxious immune cell
activation states when developing treatments.

Ventilator-induced damage likewise imbalances the
inflammatory triangle. Severe COVID-19 patients that have
developed acute respiratory distress syndrome require mech-
anical ventilation; while a necessary therapy, mechanical
ventilation has been associated with exacerbated lung
damage, referred to as ventilator-induced lung injury (VILI)
[132,133]. Neutrophil infiltration and NET formation are
elevated in patients with VILI [132], in part owing to plate-
let–endothelial interactions. Platelets have been reported to
contribute to neutrophil recruitment in VILI by presenting
leucocyte-binding proteins at the endothelial surface
[142,143]. It is likely that VILI and inflammation-induced
damage go hand-in-hand in these patients, with platelet–
neutrophil interactions exacerbating cytokine storm-related
morbidities.
4. Therapeutic advances
As initiators of the fibrotic cascade, neutrophils, platelets and
activated endothelium have been investigated as potential
therapeutic targets to combat vascular injury and occlusion
and prevent the progression of fibrosis. For other vascular indi-
cations, established therapeutics such as rosuvastatin (statin;
slows cholesterol production) [144] and ticagrelor (blood thin-
ner; anti-platelet medication) [145] have exhibited a capacity to
limit neutrophil binding, platelet aggregation and neutrophil–
platelet aggregates and are discussed elsewhere [145–148].
Here, we focus on efforts to protect or regenerate the glyco-
calyx, and select mediators of endothelial, neutrophil and
platelet-induced inflammatory damage.
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4.1. Glycocalyx protection
While essential forhealingprocesses, the inflammatory response
can be devastating for damaged endothelium and underlying
tissue if not kept under control. A pathological inflammatory
response can lead to immune cell influx, altered vascular and
tissue remodelling, and irreversible fibrotic damage, as is seen
in ischemia reperfusion injury [149] and acute lung injury
[150]. As a regulator of endothelial health, the inflammatory
response and vascular permeability to macromolecules and
immune cells, the endothelial glycocalyx presents a promising
therapeutic target forawide rangeofdiseaseswithout sacrificing
the healing component of inflammation [151]. Here, we discuss
recent efforts at preserving the glycocalyx that have shown
promise in reducing vascular and underlying tissue damage.
For a comprehensive review on glycocalyx preserving
molecules, we refer the reader elsewhere [152,153].

Established drugs have been repurposed to combat
glycocalyx damage and subsequent leucocyte and platelet
adhesion, as is the case with the general anaesthetic sevoflur-
ane. This drug is thought to function in part through
upregulation of sialyltranferase, which in turn catalyses the
transfer of sialic acid, an important mediator of oxidative
stress [38,154]. Sevoflurane has shown promise in glycocalyx
preservation in animalmodels of pulmonary ischemia reperfu-
sion during lung transplant [155], cardiac ischemia reperfusion
[156] and aortic damage by H2O2 [154], although limited
efficacy has been shown in humans [157,158].

GAGs and proteoglycans such as heparin and heparan sul-
fate have shown promise as glycocalyx protecting therapeutics
for many years [159]. Unfractionated and low molecular
weight heparin are best known for their anticoagulant properties
anduse in treating orpreventing thrombotic events byactivating
anti-thrombin III [160]. However, heparin has further been
shown to possess anti-inflammatory properties, lending to
improvedvascularoutcomesafter inflammatorydamageby lim-
iting vascular permeability [161], neutrophil adherence and
migration [63,162], and platelet adhesion [163], fibrin deposition
[63], and thrombus formation [92,164,165]. As one of the oldest
anticoagulants in clinical medicine, heparin and heparin-like
products have been heavily studied [165–169]. More recently,
lowmolecular weight heparin has been used to treat coagulopa-
thyseen in severeCOVID-19patients [97,170,171], andnebulized
unfractionated heparin is currently being evaluated in clinical
trials for acute lung injury [171] and COVID-19 (ACCORD 2: A
Multicentre, Seamless, Phase 2 Adaptive Randomisation Plat-
form Study to Assess the Efficacy and Safety of Multiple
CandidateAgents for theTreatmentofCOVID19 inHospitalised
Patients, EudraCT number 2020-001736-95) [171]. While risks of
thrombocytopenia and haemorrhagic shock limit the clinical use
of this drug for inflammatory indications in its standard form,
non-anticoagulant mechanisms of heparin are a promising
pivot point for heparin-derived therapeutics [172].

Other promising molecules include sphingosine-1-
phosphate and sulodexide. The signalling triggered by
sphingolipid sphingosine-1-phosphate has been described as
glycocalyx protective [173].When pairedwith heparan sulfate,
sphingosine-1-phosphate has been shown to regenerate the
glycocalyx and restore inter-endothelial communication [21].
Sphingosine-1-phosphate analogues and receptor modulators
have been tested clinically for a range of autoimmune and
inflammatory diseases, including multiple sclerosis, psoriasis,
acute stroke and inflammatory bowel disease [174,175].
However, prolonged exposure to sphingosine-1-phosphate
has also been shown to enhance vascular leak and fibrosis
after lung injury [176], therefore caution should be taken
before employing sphingosine-1-phosphate modulating
drugs to different organ systems and disease indications.

Sulodexide is a decades-old glycosaminoglycan mixture
made up of 80% fast-moving heparin (iduronylglycosamino-
glycan) and 20% dermatan sulfate that mitigates the bleeding
risk of heparin-only therapeutics while maintaining anti-
thrombotic potential [177,178]. Originally used for cardiac indi-
cations such as myocardial infarction [179], sulodexide has
since been extended to other vascular disorders that manifest
as endothelial dysfunction and glycocalyx damage, such as
in type-2 diabetes mellitus patients [180] and in patients with
venous ulcers [181]. Sulodexide has been shown to promote
glycocalyx regeneration and improve animal survival after
severe sepsis [22] and reduce the levels of collagen degrading
MMP9 in patients with chronic vascular disease [24].

Taken together, the benefits seenwith this class ofmolecules
with respect to decreased neutrophil and platelet adhesion
further suggest that restoring the function of the critical endo-
thelial glycocalyx barrier can improve outcomes for fibrotic
and thrombotic diseases that result from overexuberant
interactions between endothelial cells, platelets andneutrophils.

4.2. Cytokine inhibitors
Recombinant human cytokines and cytokine receptors have
been used as therapeutic targets to modulate inflammatory
activity, driven in part by the pain patients experience as a
result of acute and chronic inflammatory diseases [182,183].
Three core pro-inflammatory cytokines have been of particular
interest in this realm: TNF-α, IL-1β, and IL-6. These cytokines
act as key inducers of endothelial activation, neutrophil accumu-
lation and activation, and platelet adhesion and degranulation,
suggesting a potential benefit of inhibitors in regulating
endothelial activation and the downstream consequences of
endothelial dysfunction. There are currently several Food and
Drug Administration (FDA) approved TNF-α, IL-1 and IL-6
inhibitors for clinical indications such as rheumatic diseases,
Crohn’s disease and cryopyrin-associated periodic syndromes
(CAPS) [184].

TNF-α blockers have been successfully employed to
combat fibrotic indications such rheumatoid arthritis and
psoriasis [185,186]; unfortunately, these benefits are not ubi-
quitous for all fibrotic diseases, as was evidenced by their
ineffectiveness against idiopathic pulmonary fibrosis [187].
Anti-TNF-α therapies for chronic heart failure have likewise
been tested in clinical trials with little success [188], and
potential beneficial effects on endothelial function in patients
with inflammatory arthropathies are inconsistent [189].

IL-1β antagonists have shown greater potential in vascu-
lar inflammatory disorders, perhaps in part owing to the
integral role of IL-1 in leucocyte and endothelial signalling.
The FDA approved IL-1 agonists canakinumab (originally
approved for CAPS), anakinra (originally approved for
rheumatoid arthritis) and rilonacept (originally approved
for CAPS) have shown promise in clinical trials of cardiovas-
cular conditions such as pericarditis and recurrent ischemic
events after myocardial infarction [190,191], but thus far
none have been approved for these indications.

IL-6 is known to promote endothelial cell dysfunction and
regulate leucocyte recruitment to the vascular wall [192];
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therefore, it is unsurprising that FDA approved IL-6 blockers
for arthritic conditions are of interest for treating off-label
inflammatory conditions such as systemic sclerosis. Clinical
trials of tocilizumab and sarilumab have recently begun as
a treatment for ‘cytokine storm’-related morbidities in
severe SARS-CoV-2 patients [70,193]. The anti-IL-6 receptor
tocilizumab is particularly promising, as it has been shown
to cause transient neutropenia without impairing host
defence [194].

While cytokine inhibitors and cytokine receptor blockers
may be beneficial in certain inflammatory conditions, the
mixed results of this class of molecules suggest the need for
combination therapies, or therapies more directed at the key
cellular interactions.

4.3. Collagen protection
Severe endothelial damage can cause the exposure of the under-
lying collagen matrix, prompting rapid platelet adhesion. As
described in this review, activated endothelium and collagen-
adherent platelets provide an adhesive surface for neutrophil
recruitment, eventually leading to tissue fibrosis; therefore, tar-
geting exposed collagen could enhance anti-neutrophil–platelet
therapies.

Several groups have designed collagen-targeting thera-
peutics to discourage platelet and/or neutrophil accumulation.
Paderi and colleagues designed a proteoglycanmimetic consist-
ing of collagen-binding peptides conjugated to a dermatan
sulfate backbone that bound collagen, but not endothelium, of
denuded arteries after balloon angioplasty [45]. Their thera-
peutic reduced in vivo platelet-induced vasospasm in the
femoral artery as well as whole blood and platelet binding
in vitro. Further, their studies showed that reduced platelet
binding to the arterial wall correlated with reduced fibrosis or
neointimal hyperplasia in vivo.

Similarly, McMasters et al. designed a thermoresponsive
collagen-binding nanoparticle for effective systemic delivery
of a mitogen-activated protein kinase-activated protein
kinase 2 (MK2) anti-inflammatory peptide [43]. The authors
show that nanoparticle delivery of the MK2 inhibitor
in vitro reduced cellular binding to collagen surfaces, IL-6
levels in endothelial cells and smooth muscle cells, and plate-
let activation on a collagen matrix. Additional nanostructures
have been developed to aid in drug delivery to exposed col-
lagen. Collagen IV targeting nanoburrs [195] and nanofibres
[196,197] have been designed to target angioplasty injured
vasculature [195] and atherosclerotic plaques [197].

4.4. P- and E-selectin
Rather than targeting platelet deposition on denuded endo-
thelium, Totani et al. have focused on preventing neutrophil
deposition on adherent platelets [109], thereby reducing the
likelihoodof thrombosiswithin thevessel. Blockadeofphospho-
diesterase type-4 by rolipram, originally an anti-depressant
drug, caused a reduction in neutrophil binding to fixed, acti-
vated platelets in vitro as well as adherent neutrophils along
the denuded femoral artery in vivo. Adhesion was likewise lost
on untreated P-selectin deficient platelets, further suggesting
P-selectin as a mediator of platelet–neutrophil interactions.

P-selectin has been a focal point in anti-inflammatory
therapeutics owing to the substantial role it plays in endo-
thelial signalling, neutrophil and platelet recruitment to
inflamed endothelium, and the formation of platelet-leuco-
cyte aggregates. Competitive inhibitors of P- and E-selectin
and their binding partners, PSGL-1, CD44 and E-selectin
ligand 1, have been investigated as antagonists to neutrophil
and platelet-mediated vascular damage. Monoclonal anti-
body therapy to P- and E-selectin have shown promise in
combating platelet and neutrophil-mediated injury [198–
200], as is seen with the FDA approved P-selectin antibody
crizanlizumab, designed to address vaso-occlusive crises in
sickle cell anaemia [201]. However, clinical trials of Inclacu-
mab, the monoclonal antibody designed to bind P-selectin,
evidenced that a major limitation of antibody therapy is the
need for high doses for therapeutic effects [90,202], leading
to high production costs [203,204].

Because of the role E- and P-selectin play in vaso-
occlusive processes, small molecule inhibitors of these ligands
are also under various stages of development. The pan-selectin
antagonist Rivepansel (GMI-1070) was designed to combat
vaso-occlusive crises in severe sickle cell anaemia by prevent-
ing the interaction of leucocytes and endothelium [205], but
unfortunately failed to meet its phase 3 clinical trial endpoints.
Clinical trials for GMI-1271, a small molecule inhibitor of E-
selectin, is currently underway for treating venous thrombosis
[206]. Exogenous recombinant human vimentin, a cytoskeletal
structural protein and CD44-binding partner [207], has been
shown to act as a competitive inhibitor of neutrophil binding
to platelets and endothelial cells in a P-selectin-dependent
manner [88]. Treatment with recombinant human vimentin
reduced neutrophilia and acute lung injury scores in mice trea-
ted with sub-lethal doses of LPS. Clinical trials assessing the
role of vimentin in sepsis, rheumatoid arthritis and renal trans-
plant are currently underway. However, given that both
increases and deficiencies of this protein can lead to vascular
abnormalities [207,208], the effects of exogenous systemic
administration will need to be extensively studied before
vimentin is used as a therapeutic.

Selectins have been used as targeting modalities for glycan
and polysaccharide-based molecules. Glycomimetics designed
to bind selectins or selectin tetrasaccharide sialyl-Lewisx are a
new perspective on anti-inflammatory therapeutics [209], in
part because of the anti-inflammatory nature of polysacchar-
ides, glycosaminoglycans and proteoglycans. Recently, a
selectin-targeting dermatan sulfate conjugate has been reported
as reducing neutrophil and platelet interactions with inflamed
endothelial cells in vitro and reduced thrombus formation
in vivo [91,164]. Similarly, glycopeptide analogues of PSGL-1
effectively reduced neutrophil–platelet aggregates [80].

Polymer microcapsules coated with fucoidan, a complex
polysaccharide that has been shown to slow blood clotting,
have been proposed as a drug delivery tool targeted to
inflamed vessels expressing P-selectin under high shear [210].
Polymer, glycosaminoglycan and polysaccharide-based thera-
peutics present indirect benefits in addition to competing for
selectin binding. Bulky therapeutics could provide a steric
boundary limiting neutrophil and platelet interactions with
inflamed endothelium and exposed collagen. Dual targeting
to inflamed endothelium and exposed collagen could likewise
prevent the pathological accumulation of neutrophils, platelets
and neutrophil–platelet aggregates in damaged vessels and
thereby reduce immunothrombosis and tissue fibrosis.

As the initial points of capture for both neutrophils and
platelets, selectin inhibition may provide a way to modulate
thrombosis and fibrosis early on in disease progression.
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Therapeutics that blanket the adhesive endothelium, such as
polymer-basedmolecules and glycoconjugates that are targeted
towards upregulated selectins, may overcome limitations of
monoclonal antibodies and recombinant proteins. Nonetheless,
therapeutics will need to be studied on a case-by-case basis to
maximize their efficacy as anti-inflammatory, anti-thrombotic
or anti-fibrotic therapies.
5. Conclusion and perspective
Neutrophils, platelets and activated endothelial cells each
make substantial contributions to the initiation and perpetu-
ation of vascular dysfunction. As such, many studies have
been conducted to establish the relative contribution each of
these makes to downstream thrombosis and fibrosis. When
physiological redundancies are considered, it is likely that
the relative contributions shift depending on the vascular
environment in a coordinated effort to resolve an inflamma-
tory stimulus (figure 2). Endothelial activation initiates the
secretion of pro-inflammatory cytokines and shedding of gly-
cocalyx components, prompting the recruitment of
circulating immune cells. Upregulated endothelial E- and P-
selectin capture circulating platelets and neutrophils.
Adhesion of these inflammatory regulators propels further
recruitment, eventually overwhelming the vessel’s capacity
for self-restoration and shifting the cellular environment
towards thrombotic or fibrotic. Captured and rolling neutro-
phils capitalize on contracting, leaky endothelium, which
presents extravasation points that facilitate neutrophil
migration into the underlying tissue. Neutrophil activation
augments endothelial activation through the release of degra-
nulation products and, in severe cases, NET formation.

Severe endothelial activation exposes the underlying col-
lagen-rich ECM, causing platelet recruitment beyond that
triggered by selectin upregulation. Activated adherent platelets
express platelet P-selectin, which can act as a congregation
point for additional platelets or a secondary capture point for
circulating neutrophils. Accumulation of platelets alone or
platelet–neutrophil aggregates can result in vessel thrombosis
and, in severe cases, vessel occlusion and tissue ischemia.
In vessels more susceptible to fibrosis, platelet activation
stimulates the production of pro-fibrotic cytokine TGF-β,
pathological ECM secretion and downstream fibrosis.

Several therapeutic strategies have been implemented to
combat the downstream effects of endothelial dysfunction.
Each approach primarily targets one interaction to halt what
appears to be a highly coupled group of interactions that,
when unbalanced, results in pathological thrombosis and/or
fibrosis. Conflicting outcomes suggest that no one therapeutic
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will be a panacea that resets the balance towards healthy regen-
eration and healing. Based on our current understanding of the
coordination of endothelial cells, neutrophils, and platelets
when the endothelium becomes dysfunctional, combination
therapeutics or complex therapies that target multiple
adhesion axes simultaneously may be most efficacious in
treating thrombotic and fibrotic conditions.

Deeper understanding of these complex pathways is
needed to develop therapeutic strategies for what is surely a
large number of distinct pathological states that result from
sterile inflammation, diffuse dysfunction that exists with
metabolic syndrome, and the sudden and severe response to
cytokine storm, like that seen as a result of severe COVID-19
infections, among others. Key discoveries such as the role of
NO and ROS in endothelial vasoreactivity or, more recently,
the role of platelets as drivers of thrombosis, inflammation and
fibrosis, have been integral in strengthening our understanding
of these complex phenomena. Furthermore, elucidating how
interactions between neutrophils and endothelial cells can
result inNET formation and eventual thrombus formation pro-
vides a new foundation from which to innovate and think
about disease and healing. The community needs to remain
open to the fact that the mechanisms involved in endothelial
dysfunction, coupled with platelet and neutrophil interactions,
are multipronged; therefore, combinatorial approaches to
treatment may well be required. This mode of thinking will
expand the potential of targeting not just intercellular signal-
ling cascades, but also cell-cell and cell-ECM interactions to
quickly alter the biological response to injury and disease.
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