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Purpose. The molecular mechanism underlying the tumorigenesis and progression of lung adenocarcinoma (LUAD) in
nonsmoking patients remains unclear. This study was conducted to select crucial therapeutic and prognostic biomarkers for
nonsmoking patients with LUAD. Methods. Microarray datasets from the Gene Expression Omnibus (GSE32863 and
GSE75037) were analyzed for differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis of DEGs was
performed, and protein-protein interaction network was then constructed using the Search Tool for the Retrieval of Interacting
Genes and Cytoscape. Hub genes were then identified by the rank of degree. Overall survival (OS) analyses of hub genes were
performed among nonsmoking patients with LUAD in Kaplan-Meier plotter. The Cancer Genome Atlas (TCGA) and The
Human Protein Atlas (THPA) databases were applied to verify hub genes. In addition, we performed Gene Set Enrichment
Analysis (GSEA) of hub genes. Results. We identified 1283 DEGs, including 743 downregulated and 540 upregulated genes. GO
enrichment analyses showed that DEGs were significantly enriched in collagen-containing extracellular matrix and extracellular
matrix organization. Moreover, 19 hub genes were identified, and 12 hub genes were closely associated with OS. Although no
obvious difference was detected in ITGB1, the downregulation of UBB and upregulation of RAC1 were observed in LUAD
tissues of nonsmoking patients. Immunohistochemistry in THPA database confirmed that UBB and ITGB1 were downregulated,
while RAC1 was upregulated in LUAD. GSEA suggested that ribosome, B cell receptor signaling pathway, and cell cycle were
associated with UBB, RAC1, and ITGB1 expression, respectively. Conclusions. Our study provides insights into the underlying
molecular mechanisms of the carcinogenesis and progression of LUAD in nonsmoking patients and demonstrated UBB, RAC1,
and ITGB1 as therapeutic and prognostic indicators for nonsmoking LUAD. This is the first study to report the crucial role of
UBB in nonsmoking LUAD.

1. Introduction

Lung cancer (LC) is the most prevalent cancer type, with
approximately 228,820 cancer cases and 135,720 death cases
in 2020 worldwide, thus causing considerable socioeconomic
burdens [1]. Patients with non-small-cell lung cancer
(NSCLC) constitute approximately 85% of the total LC cases.

Lung adenocarcinoma (LUAD) is the most common histo-
logical type of NSCLC [2]. It is widely known that tobacco
smoking is a crucial risk factor for LC; however, approxi-
mately 20% of LUAD cases occur among nonsmoking
patients [3]. Patients with smoking-related LUAD have some
altered genes such as KRAS and STK11. Moreover, these
known cancer-related genes may alter simultaneously,
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leading to a larger tumor mutational burden (TMB) [4, 5].
However, the molecular mechanism underlying the carcino-
genesis and progression of nonsmoking-related LUAD
remains unclear. In addition, nonsmoking patients are easily
ignored as they are not exposed to smoking [6], leading to a
high rate of missed diagnosis at early stages. Hence, it is
extremely necessary to identify key indicators in the carcino-
genesis and development of nonsmoking-related LUAD.

In the past two decades, gene chip technologies and bio-
informatics analyses have made great progress in screening
genetic alterations at the genome level [7]. These technolo-
gies are adopted to find differentially expressed genes (DEGs)
that play crucial roles in the occurrence and adverse progres-
sion of nonsmoking-related LUAD. However, false-positive
rates of independent microarray studies probably weaken
the reliability of outcomes [8]. Thus, we selected two micro-
array datasets on the same platform from the Gene Expres-
sion Omnibus (GEO) to acquire DEGs between LUAD
tissues of nonsmoking patients and matched adjacent lung
tissue samples. Gene Ontology (GO) enrichment analyses
of DEGs were then performed, and a protein-protein interac-
tion (PPI) network was constructed for a better understand-
ing of the molecular mechanism underlying tumorigenesis
and invasion of nonsmoking-related LUAD. Hub genes were
then identified from the PPI network, which are candidates
for therapeutic and prognostic biomarkers for nonsmoking-
related LUAD. Subsequently, the overall survival (OS) anal-
ysis of hub genes was performed. Finally, we validated the
findings using The Cancer Genome Atlas (TCGA), The
Human Protein Atlas (THPA) database, and Gene Set
Enrichment Analysis (GSEA).

2. Materials

2.1. Microarray Data. GEO (http://www.ncbi.nlm.nih.gov/
geo) [9] is a public functional genomics data repository of
high-throughput gene expression data, chip, and microar-
ray. All microarray datasets were selected only if they met
the following criteria: (1) the topic was on nonsmoking-
related LUAD and matched adjacent lung tissues; (2) the
platform was GPL6884 Illumina HumanWG-6 v3.0 expres-
sion BeadChip; (3) the organism was Homo sapiens; (4)
the size of matched adjacent lung tissue sample was more
than 3; and (5) the last update time was in 2019. In this
study, two gene expression profiles (GSE32863 [10] and
GSE75037 [11]) from GEO were selected, which met these
criteria. GSE32863 included 29 nonsmoking LUAD samples
and 30 matched adjacent lung samples, whereas GSE75037
contained 30 nonsmoking LUAD samples and 30 matched
adjacent lung tissue samples.

2.2. Identification of Differentially Expressed Genes. The
DEGs between nonsmoking LUAD and adjacent lung tissues
were obtained using GEO2R (http://www.ncbi.nlm.nih.gov/
geo/geo2r) [12]. As an interactive web tool, GEO2R allows
users to compare at least two datasets in one GEO series
for selecting DEGs across experimental conditions. Both
adjusted P values (adj.P) and Benjamini-Hochberg’s false
discovery rates were adopted to balance the finding of a sta-

tistically significant gene and false-positive limitation. Probe
sets with no corresponding gene symbols were deleted,
whereas genes with at least one probe set were averaged.
The cutoff criteria were set as adj.P < 0:05 and ∣logFCðfold
changeÞ ∣ <1.
2.3. Gene Ontology Enrichment Analysis of Differentially
Expressed Genes. GO is an important bioinformatics tool
for annotating genes and analyzing the biological process of
genes [13]. GO enrichment analyses consisted of 3 terms:
biological processes (BP), cellular component (CC), and
molecular function (MF). All these were performed using
the clusterProfiler and GOplot packages in the R software
to analyze the functions and signaling pathways of DEGs
[14]. P value of < 0.05 was regarded statistically significant.

2.4. Protein-Protein Interaction Network and Significant
Module Construction. The PPI network of DEGs was con-
structed in the Search Tool for the Retrieval of Interacting
Genes (http://string-db.org, version 11.0) [15], and the inter-
action with a combined score of >0.90 was considered statis-
tically significant. The analysis of the function of PPI
provided insights into the mechanism of the development
of the disease. Cytoscape (version 3.7.2), a bioinformatics
software, was adopted to construct visual networks of molec-
ular interactions [16]. The plug-in Molecular Complex
Detection (MCODE) (version 1.4.2) of Cytoscape, a crucial
application, was adopted to find closely correlated modules
from the PPI network [17]. Genes in significant modules
were graphically shown through MCODE plug-in. The selec-
tion criteria were set as follows: MCODE score > 5, node
score cutoff = 0:2, degree cutoff = 2, k − score = 2, and max
depth = 100.

2.5. Hub Gene Selection and Analysis. The cytoHubba plug-in
of Cytoscape was used to calculate the degree rank of hub
genes, and hub genes with degrees greater than 20 were
selected. The Kyoto Encyclopedia of Genes and Genomes
pathway (KEGG) is a crucial database to understand high-
level functions and biological systems from large-scale
molecular datasets generated by high-throughput experi-
mental technology [18]. To explore their biological function,
the BP and KEGG pathway of these hub genes were analyzed
and visualized through the ClueGO plug-in [19]. Subse-
quently, a heat map of hub genes was created and visualized
in TCGA database (https://portal.gdc.cancer.gov/). Then, the
Kaplan-Meier plotter was used to perform the survival anal-
ysis of these hub genes for understanding their prognostic
roles (http://kmplot.com/analysis/) [20]. Moreover, TCGA
database is an external and relatively authoritative database,
which was used for the verification of the difference in the
expression levels of hub genes between LUAD and normal
lung tissues.

2.6. Gene Set Enrichment Analysis. AS a computing
approach, GSEA can identify whether previously defined
gene sets were statistically significant and concordantly dif-
ferent between the two biological states [21]. Nonsmoking-
related LUAD samples were categorized into two groups
(high and low expression) by the median expression levels
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of hub genes. The timing of their expression on many gene
sets was then explored to find related KEGG pathways using
the molecular signatures database (MSigDB) (c2.cp.keg-
g.all.v7.1.symbols.gmt) [22]. The number of permutations
was set as 1000 times in every analysis. ∣Normalized
enrichment score ∣ >1, NOM P value < 0.05, and FDR q value
< 0.25 were considered statistically significant.

3. Results

3.1. Identification of Differentially Expressed Genes in
Nonsmoking Lung Adenocarcinoma. The volcano plots illus-
trated the selection process for DEGs in GSE32863
(Figure 1(a)) and GSE75037 (Figure 1(b)). After normaliza-
tion of microarray outcomes, we identified DEGs in non-
smoking LUAD and adjacent lung tissues. In addition, the
Venn diagram in Figure 1(c) shows that the overlap between
both datasets included 1283 DEGs, including 743 downregu-
lated and 540 upregulated genes.

3.2. Gene Ontology Enrichment Analysis of Differentially
Expressed Genes. GO enrichment analyses of downregulated
DEGs revealed that collagen-containing extracellular matrix

(ECM) was considerably enriched in BP, extracellular struc-
ture organization in CC, and ECM structural constituent in
MF (Figure 2(a)). Moreover, GO enrichment analyses of
upregulated DEGs suggested that the ECM organization
was primarily enriched in BP, apical plasma membrane in
CC, and cell adhesion module binding in MF (Figure 2(b)).

3.3. Protein-Protein Interaction Network and Significant
Module Construction. The PPI network of these DEGs is
illustrated in Figure 3(a), which consisted of 607 nodes and
1841 edges. The most significant module was then detected
through MCODE plug-in. Moreover, this module consisted
of 48 nodes and 247 edges, as shown in Figure 3(b), wherein
upregulated genes are marked in red and downregulated
genes in blue.

3.4. Hub Gene Selection and Analysis.A total of 19 DEGs with
degrees ≥ 20 were selected as hub genes. Table 1 shows the
gene symbol, degree, full name, and function of these hub
genes. BP (Figure 4(a)) and KEGG analysis (Figure 4(b)) of
these hub genes are clearly shown in figures. Moreover, a heat
map demonstrated the upregulation or downregulation of 19
hub genes in nonsmoking LUAD samples using TCGA
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Figure 1: Volcano plot, Venn diagram, and function enrichment analysis of DEGs. The selection process for DEGs with adj.P < 0:01 and ∣
logFC ∣ <1 in GSE32863 (a) and GSE75037 (b). Upregulated genes are marked in red, and downregulated genes are marked in green. The
two datasets display an overlap of 576 DEGs (c). adj.P: adjusted P values; DEGs: differentially expressed genes; FC: fold change.
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Figure 2: GO enrichment analysis of the DEGs using the clusterProfiler package in the R software. GO enrichment analyses of (a)
downregulated DEGs and (b) upregulated DEGs are performed. DEGs: differentially expressed genes; GO: Gene Ontology.
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(a)

(b)

Figure 3: PPI network and the most significant module of DEGs. The PPI network of DEGs is constructed using Cytoscape (a). The most
significant module is obtained from the PPI network with 48 nodes and 257 edges (b). Upregulated genes are marked in red and
downregulated genes in blue. DEGs: differentially expressed genes; PPI: protein-protein interaction network.
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dataset (Figure 4(c)). In addition, Figure 5 reveals that UBB,
RAC1, ITGB1, CDC20, EGFR, UBE2C, TIMP1, P4H8, and
MMP9 are negatively correlated with OS in nonsmoking-
related LUAD, whereas CXCL12, GAS6, and FPR1 are posi-
tively correlated with OS. Table S1 displays the hazard ratio
(HR), 95% confidence interval (CI), and log-rank P value of
hub genes.

UBB, RAC1, and ITGB1 had the highest degrees among
these hub genes, indicating their pivotal roles in the occur-
rence and progression of nonsmoking-related LUAD. The
overexpression of UBB, RAC1, and ITGB1 had worse OS
(P = 0:00044, P = 0:0021, and P = 0:00044, respectively),
suggesting their potential prognostic implications. More-
over, according to data from TCGA, we found that UBB
was significantly downregulated (Figure 6(a)), and RAC1
was upregulated (Figure 6(b)) in nonsmoking-related
LUAD. Moreover, ITGB1 was not significantly different in

nonsmoking LUAD and normal lung tissues (Figure 6(c));
however, further studies on this are warranted. Immunohis-
tochemistry (IHC) in THPA database verified that UBB
(Figure 6(d)) and ITGB1 (Figure 6(e)) were downregulated,
and RAC1 (Figure 6(f)) was upregulated in LUAD.

3.5. Gene Set Enrichment Analysis. GSEA showed that ribo-
some was associated with UBB expression (Figure 7(a)). Fur-
thermore, it suggested that ECM receptor interaction, B cell
receptor signaling pathway, T cell receptor signaling path-
way, toll-like receptor signaling pathway, and focal adhesion
were correlated with RAC1 expression (Figures 7(b)–7(f)). In
addition, cell cycle, spliceosome, DNA replication, RNA deg-
radation, mismatch repair, and pyrimidine metabolism were
associated with ITGB1 expression (Figures 7(g)–7(m)). The
detailed outcomes of the analysis were shown in Table 2.

Table 1: Functional roles of 19 hub genes with degrees > 20.

No.
Gene
symbol

Degree Full name Function

1 UBB 51 Ubiquitin B
UBB is lowly expressed in some cancers, such as nonsmoking LUAD

and endometrial carcinoma.

2 RAC1 50 Rac Family Small GTPase 1
RAC1 serves a key role in the EMT, cell proliferation, and worse invasion in

LUAD.

3 ITGB1 42 Integrin subunit beta 1
ITGB1 encodes the beta subunit of integrins and participates in the

carcinogenesis and progression of LUAD.

4 SRC 40
SRC protooncogene, nonreceptor

tyrosine kinase
SRC participates in the cell proliferation, migration, and invasion of LUAD.

5 C3 40 Complement C3
C3 is obviously altered in serum among patients with LUAD and C3 may

be a candidate diagnostic biomarker.

6 IL6 33 Interleukin 6
IL6 promotes Kras driven of the carcinogenesis of LUAD and induces the

resistance of gefitinib in EGFR-mutant LC.

7 CDC20 33 Cell division cycle 20
CDC20 is associated with protein ubiquitination and modification and

promotes the progression of NSCLC.

8 EGFR 32 Epidermal growth factor receptor
EGFR mutation is the driven alteration of nonsmoking LUAD and

participates in the cell proliferation in LUAD.

9 UBE2C 29
Ubiquitin-conjugating enzyme E2

C
UBE2C contributes to the EMT, cell proliferation, and malignant

invasion of LUAD.

10 TIMP1 28 TIMP metallopeptidase inhibitor 1
TIMP1 participates in the progression and inhibits the apoptosis of tumor

cells in LUAD.

11 GNG11 26 G protein subunit gamma 11
Low expression of GNG11 is correlated with poorer prognosis among woman

patients with nonsmoking LC.

12 CXCL12 26 C-X-C motif chemokine ligand 12 CXCL12/CXCR4 plays an important role in the propagation of NSCLC.

13 GAS6 25 Growth arrest specific 6
AXL/GAS6 axis contributes to cell migration in NSCLC, which is a candidate

prognostic biomarker in NSCLC.

14 P4HB 25 Prolyl 4-hydroxylase subunit beta P4HB participates in the invasion and metastasis of gastric cancer.

15 CXCR4 24 C-X-C motif chemokine receptor 4 CXCR4 serves a procarcinogenic role by interacting with CXCL12 in NSCLC.

16 FPR1 22 Formyl peptide receptor 1
FPR1 induces the translocation of NF-κB to promote the progression by

upregulating IL6 and IL8 in cervical cancer.

17 ADRB2 22 Adrenoceptor beta 2
ADRB2 is overexpressed in LUAD, which promotes the adverse

progression in LUAD.

18 LYZ 21 Lysozyme Hypermethylated LYZ is observed in gastric cancer.

19 MMP9 21 Matrix metallopeptidase 9 MMP9 regulates the cell proliferation and metastasis of LUAD.

Abbreviations: LC: lung cancer; NSCLC: non-small-cell lung cancer; LUAD: lung adenocarcinoma; TSA: trichostatin A; EMT: epithelial-mesenchymal
transition; NF-κB: nuclear factor kappa B.
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Figure 4: The BP, KEGG pathway analysis, and heat map of hub genes. The BP analysis of hub genes is visualized using the ClueGO plug-in
(a). KEGG pathway analysis of hub genes is visualized using the ClueGO plug-in (b). The color depth of nodes refers to the corrected P value
of ontologies, and the size of nodes refers to the number of genes that participate in the ontologies. P < 0:01 is considered statistically
significant. Heat map of hub genes is created on the basis of data from TCGA and visualized using pheatmap package (c). Upregulated
genes are marked in red and downregulated genes in green. BP: biological process; KEGG: Kyoto Encyclopedia of Genes and Genomes
pathway; TCGA: The Cancer Genome Atlas.
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Figure 5: Continued.
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4. Discussion

LC commonly has a high mortality rate and results in great
socioeconomic pressure for patients, families, and countries.
Certainly, smoking contributes to the occurrence and devel-
opment of LC. However, one in five LUAD cases occurs
among patients who do not smoke [3]. The alterations of
some genes, including EGFR, ERBB2, ALK, ROS1, and RET,
are evidently associated with the occurrence and progression
of LUAD [23]. However, the underlying molecular mecha-
nism of nonsmoking-related LUAD remains unclear. There-
fore, it is essential to identify crucial biomarkers for
understanding the molecular mechanism of nonsmoking-
related LUAD. Microarray technology is available for finding
new biomarkers, which will be the basis of future studies on
the potential mechanism of nonsmoking-related LUAD.

We analyzed two microarray datasets to obtain DEGs
between nonsmoking LUAD and matched adjacent lung tis-
sues. A total of 1283 DEGs were selected, containing 743
downregulated and 540 upregulated genes. Function enrich-
ment analyses manifested that DEGs were mainly enriched in
collagen-containing ECM, ECM organization, and apical
plasma membrane. Moreover, 19 hub genes with degrees
greater than 20 were selected from the PPI network: UBB,
RAC1, ITGB1, SRC, C3, IL6, CDC20, EGFR, UBE2C, TIMP1,
GNG11, CXCL12, GAS6, P4HB, CXCR4, FPR1, ADRB2, LYZ,
and MMP9. BP enrichment analysis of these hub genes sug-
gested that apoptotic cell clearance, negative regulation of
cysteine-type endopeptidase activity involved in apoptotic
process, and leukocyte adhesion to vascular endothelial cell
were primarily enriched, and the most enriched KEGG path-
way was leukocyte transendothelial migration, bladder can-
cer, and intestinal immune network for IgA production.
Among 19 hub genes, 12 hub genes were closely associated
with poorer OS in nonsmoking patients with LUAD. From
the results of GO enrichment analysis, KEGG pathway anal-

ysis, and survival analysis and degree rank, UBB, RAC1, and
ITGB1 were believed to be the core genes in the occurrence
and development of nonsmoking-related LAUD at the
molecular level. Besides, IHC outcomes in THPA database
confirmed that UBB and ITGB1 were downregulated, and
RAC1 was upregulated in nonsmoking-related LUAD.

This study was the first one to report the key role of UBB
in nonsmoking-related LUAD. Ubiquitin B (UBB) is a crucial
member of gene families encoding ubiquitin. Ubiquitin is
involved in several cellular processes, and aberrant events
in ubiquitin-mediated processes promote the carcinogenesis
and progression of NSCLC [24]. UBB is strongly suppressed
in some cancers, including endometrial carcinoma and ovar-
ian cancer [25]. Tang et al. revealed that ubiquitin was highly
expressed in NSCLC tissues; however, increased ubiquitin
was attributed to the increased transcripts of ubiquitin C
(UBC) rather than UBB. Moreover, they showed that no sig-
nificant difference was observed in the UBB mRNA level
between NSCLC and normal lung tissues (P = 0:167) [26].
This finding contradicted our results, and there can be two
probable reasons for this difference. First, Tang et al. com-
pared NSCLC and normal lung tissues, whereas we com-
pared nonsmoking-related LUAD and normal lung tissues,
thus suggesting higher accuracy of our study. Second, this
study compared nonsmoking-related LUAD and matched
adjacent lung tissues with similar features instead of
unmatched normal lung tissues, revealing higher reliability
of our study. However, future studies on the expression level
of UBB are warranted to confirm findings. Additionally,
according to the survival analysis, UBB may play a crucial
prognostic role in nonsmoking-related LUAD.

As one member of the RAS superfamily of small GTP-
binding proteins, Rac Family Small GTPase 1, RAC1, can
interact with effector proteins, and downstream kinases were
activated to regulate multiple cellular processes [27]. In addi-
tion, RAC1 improved nuclear factor kappa B activity to
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Figure 5: OS analyses of hub genes are performed in a Kaplan-Meier plotter online platform. UBB, RAC1, ITGB1, CDC20, EGFR, UBE2C,
TIMP1, P4H8, and MMP9 are negatively associated with OS in nonsmoking patients with LUAD (a–h), whereas CXCL12, GAS6, and
FPR1 are positively correlated with OS (i–k). P < 0:05 is considered statistically significant. LUAD: lung adenocarcinoma; OS: overall survival.
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regulate cell proliferation and migration in NSCLC [28].
RAC1 is upregulated in various cancers, such as LUAD,
breast cancer, and kidney cancer [29], and the overexpression
of RAC1 is frequently reported to be associated with worse
prognosis [30]. One study suggested that high expression of
RAC1 plays a key role in the epithelial-mesenchymal transi-
tion and malignant progression in LUAD [31]. In addition,
KIF18B promotes cell proliferation and invasion through
activating RAC1 and mediating the AKT/mTOR signaling
pathway in LUAD, indicating the crucial role of RAC1 in
the cell proliferation and adverse progression of LUAD
[32]. Similarly, Li et al. showed that intracellular mature
interleukin 37 can inhibit tumor metastasis through inhibit-
ing RAC1 activation [33], suggesting a crucial role of RAC1
in the tumor metastasis. In addition, RAC1 may predict the

prognosis of nonsmoking patients with LUAD in light of
our survival analysis.

Integrin subunit beta 1 (ITGB1) encodes the beta subunit
of integrins, which is a heterodimeric cell surface receptor
and participates in the carcinogenesis, migration, and invasion
of LUAD [34]. ITGB1 is abnormally expressed in several can-
cers, including LUAD and breast cancer [35]. MicroRNA-
(miR-) 134 inhibits the migration and metastasis by targeting
ITGB1 in NSCLC [36]. Similarly, high expression of miR-493–
5p is correlated with better survival of NSCLC via targeting
ITGB1 [37], indicating the crucial role of ITGB1 in the carci-
nogenesis and worse prognosis of NSCLC. Zheng et al.
observed that ITGB1 is a predictive biomarker of NSCLC after
matching clinical factors (odds ratio ðORÞ = 1:31, 95% CI:
1.10–1.55) [38]. Our survival analysis also confirmed the
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Figure 6: The expression of UBB, RAC1, and ITGB1 in normal lung and LUAD tissues using TCGA and THPA databases. The expression of
(a) UBB, (b) RAC1, and (c) ITGB1 in normal lung and nonsmoking LUAD samples is shown using TCGA database. The results of
immunohistochemistry of (d) UBB, (e) RAC1, and (e) ITGB1 in normal lung and LUAD tissues using THPA database are displayed.
LUAD: lung adenocarcinoma; TCGA: The Cancer Genome Atlas; THPA: The Human Protein Atlas.
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Figure 7: Enrichment plots by GSEA. Relative pathways associated with the expression of (a) UBB, (b–f) RACI, and (g–l) ITGB1 are
displayed. GSEA: Gene Set Enrichment Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes pathway.

Table 2: KEGG pathways associated with the expression of UBB, RAC1, and ITGB1 using GSEA.

Gene Name ES NES NOM P value FDR q value

UBB KEGG_ribosome 0.84 2.00 ≤0.001 0.012

RAC1

KEGG_ECM_receptor_interaction 0.54 1.74 0.032 0.100

KEGG_B_cell_receptor_signaling_pathway 0.57 1.79 0.006 0.111

KEGG_T_cell_receptor_signaling_pathway 0.49 1.64 0.026 0.132

KEGG_toll_like_receptor_signaling_pathway 0.47 1.64 0.019 0.133

KEGG_focal_adhesion 0.54 1.81 0.010 0.188

ITGB1

KEGG_cell_cycle 0.64 2.09 ≤0.001 0.005

KEGG_spliceosome 0.59 1.97 ≤0.001 0.022

KEGG_DNA_replication 0.59 1.82 0.018 0.056

KEGG_RNA_degradation 0.53 1.83 ≤0.001 0.066

KEGG_mismatch_repair 0.62 1.68 0.032 0.204

KEGG_pyrimidine_metabolism 0.43 1.65 0.010 0.232

Abbreviations: GSEA: Gene Set Enrichment Analysis; NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate.
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prognostic value of ITGB1. Furthermore, GSEA revealed that
ribosome was correlated with UBB expression; ECM receptor
interaction, B cell receptor signaling pathway, and T cell
receptor signaling pathway with RAC1 expression; and cell
cycle, spliceosome, and DNA replication with ITGB1 expres-
sion. From these findings, we concluded that UBB, RAC1,
and ITGB1 were therapeutic and prognostic biomarkers of
nonsmoking-related LUAD.

Undeniably, this study was not the first one to select piv-
otal genes and pathways in nonsmoking-related LUAD using
bioinformatics methods. In fact, three similar analyses were
previously published [39–41]. However, previous studies
had several differences and/or disadvantages compared with
this study. First, two analyses [40, 41] compared NSCLC/LC
in nonsmoking females and normal lung tissues rather than
nonsmoking LUAD, suggesting lower accuracy of the study.
Second, LUAD/NSCLC/LC in nonsmoking females and nor-
mal lung tissues were compared in the previous studies [39–
41], whereas male patients with LUAD were excluded. How-
ever, this study has several advantages compared with previ-
ous studies: (1) this study included both male and female
patients with nonsmoking LUAD, which may have potential
benefits for nonsmoking male patients with LUAD; (2) this
study compared nonsmoking-related LUAD and matched
adjacent lung tissues with similar features, thus having higher
reliability; (3) this study revealed some novel findings regard-
ing UBB, UBE2C, GAS6, and P4HB; and (4) some advanced
analyses such as GSEA were also performed in this study.

This study also has some limitations. (1) Only two datasets
were included. Several similar microarray datasets exist, but
they did not meet the selection criteria of our study. Therefore,
to decrease the bias, these similar datasets had to be excluded
from this study. (2) The included datasets did not reveal
detailed information about survival time; therefore, survival
analysis of hub genes had to be performed using the Kaplan-
Meier plotter. (3) These findings were not verified by perform-
ing experiments, which was warranted in future studies.

5. Conclusion

Our study was conducted to select DEGs that may correlate
with the carcinogenesis and malignant invasion of
nonsmoking-related LUAD. A total of 19 hub genes were
selected from the PPI network, and 12 hub genes correlated
with the prognosis of nonsmoking-related LUAD. Further-
more, UBB, RAC1, and ITGB1 were potential therapeutic
and prognostic indicators of nonsmoking-related LUAD.
Moreover, this study is the first to report the key role of
UBB in nonsmoking-related LUAD. This study provided evi-
dence for future genomic-based individualized treatments of
LUAD in nonsmoking patients. However, future studies are
warranted to explore further the biological relationships
among these DEGs in nonsmoking-related LUAD.
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