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Cardiovascular Disease in Chronic Kidney Disease

Arrhythmias are common in all age groups, and becoming more prevalent 
with increasing age. 

In young people, most cases reflect the presence of congenital anomalies 
of the structure or function of the conduction system of the heart. These 
affect approximately 1% of the general population and, although seen in 
patients with renal conditions, they have no important association with 
chronic kidney disease (CKD). 

Acquired conditions of the atrial and ventricular myocardium accumulate 
with age and cause atrial and ventricular tachyarrhythmias and 
bradyarrhythmias. AF is the most common sustained arrhythmia by far; it 
increases sharply with age and affects 1.5% of the general population at age 
55–59 years and 27% at age >85 years.1 Sustained and recurrent ventricular 
arrhythmias are less common, but are important as sudden death is often 
due to ventricular tachyarrhythmia. Complete atrioventricular block and 
other forms of bradyarrhythmia are common and increase sharply with age.

CKD is even more prevalent than sustained arrhythmia and is associated 
with an excess of acquired arrhythmia of multiple types, and AF in 
particular.2 Sudden death is also more common in CKD and accounts for 
around one-quarter of deaths in dialysis patients.3 

Rigorous monitoring can detect a higher incidence of arrhythmia than is 
evident clinically. Physical or electrocardiographic examination performed 
in response to symptoms catches a minority of events. In the ARIC study, 
a 2-week cardiac monitor recorded a high prevalence of non-sustained 
ventricular tachycardia (30.2%) and AF (7.4%) in patients with CKD, while 
ectopy was present in >90% of patients.4 

The most intensive monitoring is that provided by an implanted device. 
Rautavaara et al. studied 71 dialysis patients who were asymptomatic for 
arrhythmia; in a follow-up of 34 months, they detected AF in 51% of 
patients, significant bradycardia in 24% and ventricular tachycardia 
in 23%.5 

Mechanisms of Arrhythmia in Renal Failure
Common Causes
Renal and cardiac tissue share a vulnerability to damage from conditions 
that are common throughout the world (Figure 1). 

Diabetes and hypertension each account for a large proportion of 
arrhythmias in the general population, particularly AF. Both conditions are 
also responsible for a large proportion of cases of end-stage renal failure. 

In both cases, CKD and AF are usually late effects of the underlying 
condition, but that underlying condition commonly goes undiagnosed 
until the consequences bring it to light. 

Uncommon Causes
A number of uncommon and rare syndromes are associated with both 
arrhythmia and CKD. Despite this rarity, they are important because 
prompt recognition may permit life-extending specific treatment. 

Fabry’s disease is an X-linked lysosomal storage disorder characterised 
by an accumulation of glycosphingolipids resulting from a deficiency in 
the enzyme α-galactosidase A.6 There is systemic deposition of 
glycosphingolipids (particularly globotriaosylceramide) including in the 
cells of the blood vessels, kidneys and heart.7 Cardiac infiltration 
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subsequently results in left ventricular hypertrophy (LVH) secondary to 
myocardial fibrosis, while renal involvement leads to CKD. Unsurprisingly, 
cardiac and renal involvement is common in Fabry’s disease; a small 
study of patients (average age 25 years) with Fabry’s disease found that 
42% of patients already had CKD at the point of diagnosis and 33.3% had 
LVH, suggesting early simultaneous organ involvement.8 

Arrhythmias in this population are not rare. An observational study has 
reported a prevalence of 13.3% in a cohort with Fabry’s disease, although 
it could be higher as the risk worsens with age.8,9 Atrial, ventricular and 
bradyarrhythmias have been confirmed.9,10 

Myocardial fibrosis is an important substrate for arrhythmias; it is 
associated with a significantly higher risk of arrhythmias comparatively to 
patients without fibrosis.11 The risk of arrhythmias may also be 
compounded by CKD, which is a pro-arrhythmic clinical state in its own 
right.12 It is therefore unsurprising that the cause of mortality in this group 
of patients is sudden cardiac death (SCD).13 This may be by ventricular 
tachyarrhythmias or by bradyarrhythmias.10,13

Amyloidosis, like Fabry’s disease, involves infiltration of both the 
myocardium and kidneys. There is aggregation and deposition of 
abnormal protein – amyloid – in the healthy extracellular tissues resulting 
in organ damage.14 Although there are numerous types, the most common 
in the western world is primary amyloidosis; here, immunoglobulin light-
chain proteins are deposited in the affected organs.14,15 

Renal impairment is a feature of this illness, with associated poor 
outcomes, even when compared to patients with CKD from other 
aetiologies.14 Nephrotic syndrome ensues progression to end-stage renal 
failure requiring renal replacement therapy and/or renal transplant. 

Despite these interventions, outcomes are unfavourable compared to the 
general renal failure population.14 

There is cardiac involvement not only directly through the disease itself 
but also from renal replacement therapy; progressive haemodialysis can 
become inefficient at filtration, resulting in β2-microglobulin deposition 
from the uraemia.15 

Cardiac involvement in amyloidosis results in a restrictive cardiomyopathy 
leading to diastolic left ventricular (LV) dysfunction. Arrhythmias are 
common in this subgroup of patients, including AF, ventricular 
tachyarrhythmias and conduction abnormalities.16 Evidence suggests 
these patients do not tolerate arrhythmias well due to the poor compliance 
of the cardiac muscle, which compounds the abnormal filling and ejection 
of blood.16 

Arrhythmia management is also difficult because the tissue has abnormal 
properties following amyloid infiltration. Traditional pharmacological 
therapy, including β-blockers, calcium channel blockers and digoxin are 
poorly tolerated because of the altered haemodynamics, while 
amiodarone, although it maintains sinus rhythm, is associated with 
significant side effects.16

Catheter ablation, the treatment of choice in many arrhythmias, also is 
associated with variable outcomes; a small study found a high 1-year 
arrhythmia recurrence rate following catheter ablation in patients with 
amyloidosis compared to a similar set of patients without the condition.17 
Although cardiac failure is the most common cause of mortality in patients 
with amyloidosis, SCD remains a concern.18 SCD can include ventricular 
arrhythmias but also pulseless electrical activity with electromechanical 
asynchrony. 

Figure 1: Chronic Kidney Disease with Arrhythmia
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This shows the interactions between chronic kidney disease and arrhythmia and the causes and effects of each.
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Chronic Kidney Disease, Mineral 
Bone Disorders and Anaemia
A key feature of CKD is the development of CKD mineral bone disorders. 
This syndrome is characterised by altered calcium, phosphate, parathyroid 
hormone, vitamin D and fibroblast growth factor-23 (FGF-23) homeostasis; 
vascular or soft tissue calcification; and an abnormal bone structure and/
or turnover.19 This has a number of effects on the cardiovascular system. 

Calcium is a crucial component of myocyte depolarisation and cardiac 
contractility, while phosphate is central to adenosine triphosphate, the 
energy-carrying molecule that cells rely upon. 

FGF-23 regulates circulating phosphate and vitamin D levels and is 
associated with poor outcomes. In a study of 795 patients, FGF-23 was 
strongly associated with LV hypertrophy and increased LV mass index; 
higher LV mass index is associated with SCD.20,21 It also may play a role in 
the calcification of coronary and peripheral arterial vessels which, in turn, 
lead to cardiovascular events, thereby exacerbating the risk of SCD.22,23 

Vitamin D deficiency in CKD has also been found to be associated with 
cardiac dysfunction. A small prospective control study of 25 patients 
found that treatment with calcitriol, the active form of vitamin D, markedly 
reduced LV hypertrophy, resulting in an improvement in LV function.24 This 
indicates that vitamin D plays a significant role in maintaining 
cardiovascular health in CKD. The authors discovered an association 
between calcitriol and lower levels of circulating parathyroid hormone 
and angiotensin II; they proposed that vitamin D may have lowered the 
level of these neurohormones, which affect LV mass through direct or 
indirect mechanisms. 

Anaemia is common in people with CKD owing to erythropoeitin deficiency 
and is associated with excess mortality. A large retrospective study 
suggested that haemoglobin <6.52 mmol/l was associated with a mortality 
risk (HR 5.27) and anaemia was independently associated with mortality 
and cardiovascular events.25 

Anaemia in CKD has been associated with LVH, which is an established 
variable for poor cardiovascular outcomes, and there is evidence 
suggesting that correction of anaemia results in LVH regression.26 

However, randomised controlled trials have demonstrated no 
cardiovascular benefit and, in some cases, worse outcome from correction 
of anaemia with erythropoeitin.27,28 This is probably because the benefits 
from erythropoeitin were negated by the adverse effects from this 
hormone; promoting red cell production can increase blood viscosity 
(therefore increase the risk of thrombosis) while attenuating hypertension. 

Ischaemia
Patients with CKD develop ischaemic heart disease at a greater rate than 
the general population. 

Although effective lipid-lowering therapy has been available for decades, 
re-entry around scarring from previous MI is the leading cause of sustained 
ventricular tachycardia, while ventricular dysfunction from chronic 
ischaemia is a major cause of heart failure. Between them, these account 
for a large proportion of SCD. 

Atrial arrhythmia is not so strongly linked to ischaemia. Typically, atrial 
flutter is more common in those with ischaemic heart disease than in age-
matched controls, while AF occurs at similar rates in both groups.

Electrolytes
The kidney regulates the excretion or retention of electrolytes and 
products of metabolism in a continuous manner; dialysis is intermittent, 
often occurring at intervals of several days. The discontinuous nature of 
the dialysis process inevitably leads to fluctuations in the levels of any 
variable that would normally be kept constant by the kidney. 

The extent of fluctuation is not itself constant: potassium can accumulate 
unexpectedly due to changes in diet and variation in the severity of renal 
dysfunction. During haemodialysis, changes in serum potassium 
concentration exceeding 1 mmol/l commonly occur in a period of a few 
hours.29

Trans-membrane ionic gradients drive the electrophysiology of excitable 
tissues, including the myocardium. Potassium and sodium are involved, 
but the process is particularly vulnerable to abnormalities in potassium 
concentration because the resting membrane potential of excitable cells 
is identical to that of the equilibrium potential of potassium.30 

Hyperkalaemia is a common feature of renal failure. It produces 
characteristic abnormalities of the ECG, including peaked T-waves, 
P-wave flattening and broadening of the QRS duration. 

At higher levels of hyperkalaemia, conduction block, bradyarrhythmias, 
asystole and ventricular arrhythmias can occur. Physiologically, these are 
related to the raised extracellular potassium concentration; this shortens 
the myocyte action potential duration (APD) and slows conduction velocity 
which, in turn, affects myocardial refractoriness.30 

At high extracellular potassium levels, there is risk of heart block and asystole 
as the conduction velocity slows, with the shortened APD causing widespread 
myocardial refractoriness. Ventricular arrhythmias in hyperkalaemia are 
thought to be re-entrant circuits. It is hypothesised that there is APD 
discordance in localised regions of the heart with progressive hyperkalaemia. 
This generates areas of localised block and potentially re-entry.30 

Hyperkalaemia in CKD can occur catastrophically as part of a constellation 
of mutually reinforcing processes featuring bradycardia, renal failure, 
atrioventricular block, shock and hyperkalaemia (BRASH) itself. This cycle 
can be triggered by the synergy between bradycardia and hyperkalaemia, 
each of them easily provoked pharmaceutically.31 

For example, β-blockers and calcium channel blockers commonly used 
for controlling arrhythmias can cause bradycardia, which in patients with 
renal impairment can trigger BRASH syndrome; the risk is believed to be 
greatest in elderly patients being treated for AF.31 Once established, this 
reinforcing sequence can progress to death unless interrupted by 
supportive care to correct the bradycardia and the hyperkalaemia; 
temporary pacing may be required as part of this basic support.

Neuropathy
The autonomic nervous system regulates the heart rate in sinus rhythm 
and in a less precise manner in AF. Feedback mechanisms mediated by 
this system appear to have a role in stabilising the electrophysiology of 
the myocardium, or at least the capacity to destabilise it when the system 
malfunctions. 

A role for autonomic dysfunction in the genesis of AF has been 
hypothesised, and partial cardiac denervation has been proposed as part 
of the reason for rhythm stabilisation after AF ablation. 
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Autonomic neuropathy is a common consequence of CKD and of the 
diabetes that often underlies it.32 It is reasonable to hypothesise that this 
neuropathy might contribute to the arrhythmias seen in patients with CKD. 

There is evidence suggestive of sympathetic overactivity in CKD. This has 
numerous adverse effects on the renal-cardiovascular systems. 
Sympathetic overactivity can exacerbate hypertension, which can 
sequentially worsen the renal impairment; hypertension contributes to 
interstitial fibrosis and glomerulosclerosis.33 Simultaneously, sympathetic 
overactivity can cause LVH, directly or indirectly, and it has a known 
association with cardiac arrhythmias.34 

There is strong evidence to suggest patients with CKD are more likely to 
develop AF.35 This association was suggested to be causal in a canine 
model via an autonomic cross link. In this study of 28 dogs, renal 
sympathetic nerve (RSN) activation mediated pro-fibrillatory effects in the 
pulmonary veins and atria; RSN activation increased AF inducibility.36 

Although this is yet to be proven in human studies, it has a theoretical 
application. Patients with CKD have documented increased RSN activation 
and RSN denervation has been shown to be an effective therapy for 
treating AF.37 A better understanding of the mechanism of RSN hyperactivity 
may present significant therapeutic strategies for arrhythmias. 

Inflammation
The pathogenesis of AF in CKD could be linked on a molecular level. A 
recent study has suggested a role for the NLRP-3 inflammasome in the 
pathophysiology of AF.38 

The NLRP-3 inflammasome is a component of the innate immune system 
and has been shown to act on cardiomyocytes and atrial fibroblasts.39 
Activated cardiomyocytes and fibroblasts can secrete inflammatory 
cytokines, recruit macrophages and other inflammatory cells, and induce 
atrial fibrosis.38 

Atrial fibrosis is an arrhythmogenic substrate as it disrupts the normal 
cellular architecture and therefore impairs normal conduction. This 
increases conduction heterogeneity, producing re-entrant mechanisms to 
sustain AF.38,39 

The significant role of NLRP3 inflammasome in renal injury is recognised 
and a recent mouse model study (sham-operated versus CKD mice) 
demonstrated a significantly elevated level of NLRP3 in the cardiac tissue 
of the CKD mice.40,41 Therefore, it is suggested that CKD upregulates 
NLRP3 in cardiomyocytes and promotes arrhythmias.

Renin–Aldosterone–Angiotensin System
Patients with CKD have been shown to have inappropriately high renin-
angiotensin-aldosterone system (RAAS) activity.42 Molecules within the 
RAAS system have been implicated in inflammation, atrial enlargement 
and atrial fibrosis.43–45 

First, RAAS has been shown to upregulate inflammatory cytokines such as 
IL-6 and increase cell adhesion.46,47 Second, in an animal study, increased 
angiotensin-converting enzyme (ACE) expression has been shown to 
increase atrial size, leading to increased atrial arrhythmias, and 
angiotensin II, the main active molecule of RAAS, has been implicated in 
atrial fibrosis and remodelling.39,44,48 Finally, atrial tissue from AF patients 
has been found to have increased ACE signalling, further implicating the 
RAAS in the development of atrial fibrosis. 

Of clinical significance, ACE-inhibitor treatment has been found to reduce 
atrial remodelling in AF and has been applied therapeutically to reduce AF 
in hypertensive and heart failure patients.49–52 

Medical Attention
Patients with CKD spend more time in direct contact with healthcare 
professionals than healthy people of a similar age. This is particularly 
marked for those receiving haemodialysis or awaiting renal transplantation. 

Arrhythmias in this group should be diagnosed promptly and referred 
appropriately. Dialysis gives an exceptional opportunity to observe the 
heart rhythm under conditions of haemodynamic stress; effectively, it is a 
twice-weekly provocation test for a large cohort of vulnerable patients. 

Cardiac arrest during haemodialysis occurs at a rate of 1–7.5 per 100,000 
haemodialysis sessions, so there is an opportunity to intervene and save 
lives.53–55 Dialysis services are therefore obliged to maintain vigilance and 
preparedness.

Causality
With so many mechanisms to choose from, the difficulty lies not in 
determining whether an association exists between CKD and arrhythmias 
but in determining the most important mechanisms of connection. 

A recent bidirectional Mendelian randomisation study attempted to 
determine the causality involved in the relationship between CKD and AF. 
The analysis by Park et al. suggested that genetically predicted AF was 
significantly associated with CKD and a lower estimated glomerular 
filtration rate (eGFR) with statistically significant causal estimates. They 
did not detect an effect of genetically determined eGFR on the incidence 
of AF. This indicated that AF was possibly a causal risk factor for CKD, but 
not vice versa.56 It is unlikely that AF is a direct cause of CKD; the 
relationship is likely to be more complex and involve a multitude of 
mechanisms. However, this study does suggest that there is a link 
between arrhythmias and CKD. 

Managing Arrhythmia in Renal Disease
Management of arrhythmia begins with the accumulation of diagnostic 
information. The critical step is to collect electrocardiographic 
documentation at the right moment. 

The symptoms of arrhythmia are protean: palpitations, syncope, pre-
syncope and chest discomfort may occur in any form of tachyarrhythmia 
and in any bradyarrhythmia.57 More often, arrhythmias produce just a 
decline in exercise tolerance, dyspnoea on exertion and general malaise. 

Because most arrhythmias are intermittent at their onset, documentation 
and therefore diagnosis are a challenge. Provided the physician is alert to 
the possibility of an arrhythmia, electronic devices are available to suit the 
clinical situation. 

The choice of device depends on the frequency and duration of the 
symptomatic events. Frequent but brief symptoms can be assessed on a 
24-hour recording; infrequent events of long duration can be documented 
by performing a standard ECG when the symptoms are present. Symptoms 
that are both brief and infrequent may require the implantation of a loop 
recorder.57

Therapy for a patient with arrhythmia should initially address any 
modifiable underlying condition and should mitigate the risks associated 
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with the arrhythmia. In all cases, valve disease and myocardial ischaemia 
should be evaluated and, in general, corrected. Heart failure, if present, 
should be managed optimally. For the renal patient, correction of 
underlying causes should include optimisation of the control of renal 
indices. Mitigation of risks includes rate-limiting therapy for any atrial 
arrhythmia that of >100 BPM and long-term anticoagulation for many 
patients with persistent atrial tachyarrhythmias.

With underlying conditions corrected, management of renal problems 
optimised and the risks of thromboembolic complications mitigated, many 
patients will experience a resolution of arrhythmia episodes or a resolution 
of arrhythmia-related symptoms and will not require additional therapy. 

For those who experience recurrent or continuing symptomatic episodes, 
specific therapy is indicated to restore and maintain sinus rhythm. This 
may involve catheter-based procedures, implanted devices, arrhythmia 
surgery or specific antiarrhythmic drugs alone or in combination.

Exceptions in Renal Failure
Patients with renal impairment are vulnerable to complications that make 
their management diverge in important ways from  the general population. 

Device Therapy in Chronic Kidney Disease
Patients with CKD are difficult subjects for device therapy because of the 
effects of renal replacement therapy on the venous system (Figure 2). 

Chronically indwelling catheters commonly cause venous stenosis or 
occlusion, making those veins difficult or impossible for subsequent lead 
implantation. 

There are important differences between the general population and the 
CKD population in the risk associated with device therapy, predominantly 
due to the risk of device infection. 

Infection by bacteria introduced during the implantation procedure can 
manifest as pocket swelling or erosion of the device through the skin at 
months or years after implantation. More seriously, endovascular infection 
can result from bacteria introduced at the time of implantation or from 
bacteria that colonise the leads, often following introduction during 
dialysis. Once established, either form of infection is near impossible to 
control without extraction of the device, a substantial undertaking 
associated with a mortality risk above 0.2% even in the most experienced 
centres (Figure 3).

The risk of infective complication is significantly higher in patients with 
renal impairment than in the general population; infection is the second 
leading cause of death in this cohort.58 A large observational study of 
25,675 pre-dialysis patients found that this risk was inversely related to 
eGFR; the highest risk is associated with the lowest eGFR, with a 3.5-fold 
higher risk in patients with an eGFR of 30 ml/min/1.73 m2.59 

The picture is bleaker for patients on dialysis. The HEMO study, a 
randomised controlled trial involving 1,846 patients, examined the effects 
of dialysis dose and flux on patient outcomes found that the there was a 
35% annual hospitalisation rate for infection in this group. The risk of 
infection-related mortality was also found to be high in this subgroup; 
23.1% of all deaths in this study were infection related whilst 58% of 
patients with infection-related first hospitalisation were associated with a 
severe outcome (death, intensive care stay or prolonged hospital 
admission).60 

A B

C D

E F

Figure 2: Complexity of Device Implantation

An example of complex device implantation in a patient with chronic kidney disease that illustrates 
the difficulties involved. There is venous stenosis occlusion at the brachiocephalic vein (A) 
requiring transvenous lead extraction (B) followed by venous angioplasty (C and D) to create 
space for the cardiac resynchronisation therapy (E and F).

A B

C D

Figure 3: ICD Extraction after Infection 
in Patient with Renal Failure

These images show the extraction of an ICD in a patient with renal failure who developed 
lead-related infection 18 years after implantation of a single-chamber device. The lead was 
removed using a rotational sheath (A and B). After the patient completed a course of antibiotics, 
an entirely subcutaneous device was implanted (C), with a chest X-ray confirming the position (D).
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Renal impairment has been identified as a potent risk factor for infection 
in patients with cardiac implantable electronic devices.61 For a patient 
with CKD, the risk of death from device infection is approximately three 
times higher, enough to influence the risk-benefit calculation that drives 
decision-making in device therapy.62 Many rules of thumb used in the 
general population are therefore not valid in CKD.

ICD therapy is widely used in patients assessed to have a risk of sudden 
death of >1% per year. Patients with severe impairment of LV systolic 
function without a reversible cause generally fit this criterion and receive 
ICD therapy. This is based on the findings of major clinical trials that have 
demonstrated clear benefit in this cohort of patients.63–65 

In CKD, the evidence is much less clear; the major ICD trials routinely 
excluded patients with CKD and the conclusions may therefore not apply 
to this subgroup. Early evidence suggests that ICD therapy does not 
benefit patients with loss of kidney function. A retrospective analysis of 61 
patients with CKD recruited in MADIT-II did suggest a survival benefit with 
ICD therapy in patients with an eGFR of >35 ml/min/m2; however, there 
was no benefit in patients with an eGFR of <35 ml/min/m2 . 

There is evidence that CKD increases the risk of death in patients receiving 
an ICD. An observational study of 507 consecutive patients with varying 
stages of CKD receiving a novel ICD implant found a risk of mortality with 
renal impairment that increased stepwise by eGFR stage; renal dysfunction 
was independently associated with mortality in patients receiving an ICD.66 

This was validated by subsequent meta-analyses, which concluded that 
CKD in patients with an ICD significantly increased the risk of mortality and 
suggested that this risk is comparable between earlier stages of renal 
insufficiency to end-stage renal disease.67,68

A study involving two separate meta-analyses performed by Makki et al. 
evaluated the effect of CKD on ICD and ICD on CKD patient outcomes. The 
authors concluded that ICD patients have a higher risk of dying if they 

have CKD in comparison to those ICD patients who did not have CKD. 
Conversely, CKD patients have a lower risk of mortality (from SCD) with an 
ICD, comparatively to those CKD patients who did not have an ICD fitted.69 

A subsequent randomised controlled trial of 188 patients on dialysis with 
a left ventricular ejection fraction of >35% found that prophylactic ICD 
therapy did not reduce mortality from sudden cardiac death compared to 
not receiving this therapy.70 Despite this, 13.8% of the ICD group received 
appropriate ICD therapy for ventricular arrhythmias and there was an 
overall lower incidence of SCD (10.1%) than in previous reports (22–26%).70 
There are notable limitations to this trial: the ICD was implanted in patients 
with no class I indication so the risk of SCD was lower. The population was 
also well optimised before enrolment, which may have protected against 
SCD. 

The classification of SCD is difficult, especially in the absence of any 
cardiac monitoring during the terminal event. It is assumed arrhythmic if 
the patient’s death was sudden, unwitnessed and the patient was well 
when last observed. Therefore, it is difficult to accurately assess endpoint 
in the two subgroups.70 

ICD therapy is, therefore, reserved for those at highest risk of arrhythmia-
related death, including survivors of a cardiac arrest due to ventricular 
tachycardia or ventricular fibrillation.

When an implanted device is required, the presence of CKD has an 
important influence on the choice of methodology and equipment. 
Mitigation of the risk of infection is the key objective; because the greatest 
modifiable risk is the seeding of bacteria to device surfaces exposed to 
the vascular space, measures are taken to minimise the exposed surface 
area. 

In the case of ICD therapy, intravascular components can be eliminated 
completely, using solely components that lie in the subcutaneous space. 
These devices lack the capability to treat bradycardia that is universal in 
transvenous devices but, in many cases, the risk of fatal bradyarrhythmia 
is less than the risk of fatal infection. 

Pacing therapy can be delivered through a leadless system (Figure 4); 
although this lies in the vascular space, it benefits from having a surface 
area far less than that of a pacing lead.

Procedural Risks and Benefits of Ablation
Arrhythmias are very managed definitively by catheter-based procedures. 
Circuits are destroyed by radiofrequency (RF) energy, pulsed field energy, 
laser or cryotherapy delivered by catheters placed via the femoral vessels 
or, less often, epicardially. 

For most symptomatic and recurrent arrhythmias, catheter ablation is the 
accepted firstline therapy. Catheter ablation has become one of the most 
common medical procedures, with most of these performed for AF.

Ablation for AF in patients with CKD carries a greater risk than for other 
patients, including a risk of acute exacerbation of renal dysfunction, but 
there is evidence that the procedure can result in improved renal function 
over the long term.71 

A prospective study of 386 patients who underwent AF ablation revealed 
that eGFR improved with restoration of sinus rhythm within 3 months of 
the procedure and was maintained up to 1 year after the ablation. Patients 

A B

C D

Figure 4: Extraction of a Pacemaker in a Patient 
with Dialysis-dependent Chronic Kidney Disease

A: A rotational dissecting sheath was used to dissect the pacing lead. B and C: A leadless 
pacemaker is implanted via the right femoral vein at the right ventricle septum. D: A post-
procedure chest radiograph shows a leadless pacemaker in the right ventricle. 
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with arrhythmia recurrence demonstrated a reduction in the renal 
function.72 

Recurrence following AF ablation is not uncommon in patients with CKD. 
In a study of 221 patients with a mean follow-up of 32 months following AF 
ablation therapy, CKD patients had a significantly higher incidence of AF 
recurrence than non-CKD participants; CKD was identified as independent 
associated variate with AF recurrence.73 

This is consistent with a recent meta-analysis of seven observational 
studies, which concluded that CKD was significantly associated with 
higher AF recurrence than in to non-CKD patients (OR 3.71).74 

The kidneys are vulnerable to injury from use of radiological contrast 
media. Early methods of RF ablation for AF necessitated the use of 
contrast.75 Current RF methods rely on 3D mapping systems, which 
obviate the need for this medium (Figure 5) but create a need for general 
anaesthesia or deep sedation combined with analgesia, which can create 
hypotension severe enough to injure the kidneys. 

Cryotherapy is comparable in efficacy to RF methods, but usually involves 
the use of contrast agents.76 RF ablation without contrast and with 
meticulous control of arterial pressure is the preferred method. 

Pharmacokinetics
Antiarrhythmic drug therapy with agents that modify the function of ion 
channels can be used selectively in the management of certain 

arrhythmias, usually as a bridging measure until an underlying condition is 
corrected or definitive therapy can be offered. This group of drugs has 
been shown to increase all-cause mortality in a number of studies in 
different patient populations, so their long-term use as the sole 
management strategy has diminished.77–79 

There are insufficient data to determine specifically the risks of 
antiarrhythmic drugs in patients with CKD, but the altered and 
unpredictable pharmacokinetics of the renal failure state would be 
expected to augment the risk. 

Because these medications act on sodium and potassium channels, the 
exaggerated fluctuations in ion concentration associated with CKD and 
dialysis could also pose a risk. 

Even β-blocking drugs – a group associated with few dangerous adverse 
effects in the general population – can cause serious adverse effects in 
the context of CKD, where altered kinetics combined with electrolyte 
disturbance can trigger BRASH syndrome.

Bleeding
Bleeding complications are much more common in CKD, and are probably 
an effect of platelet dysfunction combined with the consequences of 
hypertension and direct vascular effects. 

Bleeding complications occurring at the time of device implantation or 
ablation account for some of the excess risks of these therapies in CKD 

Figure 5: Deterioration in Renal Function Seen After AF Ablation

P1 70/36 (49)

100

0

A B C

D E F

Examples of ablation for AF illustrating the mechanisms for the post-procedure deterioration in renal function seen in some cases. A and B: Ablation in the manner originally involved X-ray based 
catheter manipulation and therefore required imaging of the veins by injection of contrast agents. C and D: a more recent innovation, the cryoballoon, is also guided radiologically and contrast agents 
are generally used. E: most radiofrequency ablation now involves the use of a 3D mapping system, which eliminates the need for contrast. F: because the mapping system is vulnerable to disruption by 
patient movement, these procedures are usually performed under general anaesthesia or deep sedation, which makes the patient vulnerable to periods of hypotension during the procedure.
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patients.80 The risk of spontaneous bleeding, most importantly intracranial 
bleeding, is high enough to move the balance of risk associated with the 
use of long-term anticoagulants. 

In the general population, AF combined with one other risk for 
thromboembolism creates a risk that is great enough to justify the 
haemorrhagic risk of long-term anticoagulation for most patients. In 
patients with CKD, the increased risk of bleeding is sufficient to outweigh 
the risk of thromboembolism such that anticoagulation is reserved for 
those at highest risk of thromboembolism.

When anticoagulants are required, choice is restricted in the CKD 
population. Warfarin and other vitamin-K antagonists have been almost 
entirely displaced by direct oral anticoagulant (DOAC) drugs in the general 
population,based partly on evidence of a safety benefit but mostly due to 
the inconvenience of the blood testing required to make vitamin-K 
antagonists safe.81–84 

These agents rely on renal clearance and so their application in patients 
with CKD has limitations. In general, patients with a creatinine clearance 
(CrCl) of <50 ml/min have been recommended to lower the dose of their 
DOAC, while those with a CrCl clearance of <15 ml/min are advised against 
their use.85 Despite this dose reduction in moderate renal impairment (CrCl 
30–50 ml/min), DOAC agents have been shown to be safe and efficacious 
with a comparable bleeding risk and stroke prevention to warfarin.86 

There is evidence suggesting that they may be safe in severe renal 
impairment also, with some reassuring experience in patients receiving 
renal dialysis.87–88 A Cochrane review of 12,545 patients assessed the 
efficacy and safety of DOACs versus warfarin in patients with AF and CKD. 
Of these, 390 had severe renal impairment (CrCl 15–30 ml/min).89 In 

keeping with previous evidence, the study concluded that DOACs were as 
safe and efficacious as warfarin. 

Although the study applies mostly to patients with moderate renal failure, it 
also indicated DOAC use in the severe category was plausible and possibly 
safe; further work is required. On the basis of current evidence, DOAC 
therapy is not available to most patients with CKD so the inconvenience of 
warfarin and similar agents is an added reason to avoid anticoagulation.

Left atrial appendage occlusion, by a catheter-based procedure or 
removal or occlusion of the appendage by minimally invasive surgery, has 
the potential to resolve the dilemma of stroke risk and bleeding risk in 
CKD patients. These interventions have been shown to have a similar 
efficacy to anticoagulation in preventing stroke in the general AF 
population, and the catheter-based approach compares favourably to 
either anticoagulation or no therapy in dialysis patients.90 

Economic Impact of Arrhythmias in CKD
The economic impact of AF in CKD is difficult to quantify as it is a 
cumulative effect. Catheter ablation is expensive, although the costs are 
improving. 

A study based on a registry of 12,027 patients found that catheter ablation 
was relatively expensive, with first procedure success associated with a 
significantly lower cost than repeat ablations.91 As the likelihood of 
arrhythmia recurrence is higher in CKD patients, this is significant. 

In comparison to pharmacotherapy, however, catheter ablation is an 
economically viable option. A cost-effectiveness systematic analysis 
comparing catheter ablation with pharmacotherapy for AF revealed that 
ablation therapy in the medium-to-long term was more cost-effective than 

Figure 6: Cardiac Problems and Treatments in Chronic Kidney Disease
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This flow diagram depicts the arrhythmias, treatment and potential complications associated with chronic kidney disease. BRASH = bradycardia, renal failure, atrioventricular block, shock and 
hyperkalaemia; S-ICD = subcutaneous ICD.
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medical therapy.92 This is probably influenced by the number of repeated 
hospital admissions associated with arrhythmias managed with 
pharmacological agents as well as the overall cost of these agents over 
the lifetime of a patient. 

In patients with CKD, medical therapy with anti-arrhythmic agents is also 
difficult because of the side effects associated with them; the majority 
have proarrhythmic effects and the metabolic imbalances in CKD are 
likely to compound this further. 

Cardiac rhythm management with device therapy also has upfront costs. 
In the heart failure patient, device therapy requires careful consideration 
of benefit and cost. In the CKD population, this is amplified as this cohort 
has an overall lower life expectancy than the general population.93 

The evidence of benefit is also not as clear. There are additional risks to 
consider, including device infection and consequent treatments including 
transvenous lead extractions (Figure 6), which are costly. Leadless 
systems are increasingly prevalent and, although they carry a smaller risk 
of transvenous infections, they are far more expensive.94 

Conclusion
Patients with CKD are vulnerable to arrhythmia for many reasons that are 
well understood and probably through other less familiar mechanisms. 
Management of arrhythmia is made more difficult by the presence of 
severe renal dysfunction, but therapeutic options are available and 
continue to evolve. Optimal management of arrhythmia not only improves 
the quality of life of many patients but can, in some cases, extend life and 
slow the progression of CKD. 
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