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ABSTRACT The use of whole-genome sequencing (WGS) for routine typing of bacterial
isolates has increased substantially in recent years. For Mycobacterium tuberculosis (MTB), in
particular, WGS has the benefit of drastically reducing the time required to generate results
compared to most conventional phenotypic methods. Consequently, a multitude of solu-
tions for analyzing WGS MTB data have been developed, but their successful integration in
clinical and national reference laboratories is hindered by the requirement for their valida-
tion, for which a consensus framework is still largely absent. We developed a bioinformatics
workflow for (Illumina) WGS-based routine typing of MTB complex (MTBC) member isolates
allowing complete characterization, including (sub)species confirmation and identification
(16S, csb/RD, hsp65), single nucleotide polymorphism (SNP)-based antimicrobial resistance
(AMR) prediction, and pathogen typing (spoligotyping, SNP barcoding, and core genome
multilocus sequence typing). Workflow performance was validated on a per-assay basis
using a collection of 238 in-house-sequenced MTBC isolates, extensively characterized with
conventional molecular biology-based approaches supplemented with public data. For SNP-
based AMR prediction, results from molecular genotyping methods were supplemented
with in silico modified data sets, allowing us to greatly increase the set of evaluated muta-
tions. The workflow demonstrated very high performance with performance metrics of
.99% for all assays, except for spoligotyping, where sensitivity dropped to ;90%. The vali-
dation framework for our WGS-based bioinformatics workflow can aid in the standardization
of bioinformatics tools by the MTB community and other SNP-based applications regardless
of the targeted pathogen(s). The bioinformatics workflow is available for academic and non-
profit use through the Galaxy instance of our institute at https://galaxy.sciensano.be.

KEYWORDS Mycobacterium tuberculosis, whole genome sequencing, validation, public
health, national reference center, single nucleotide polymorphism, antimicrobial resistance

Technological advances in next-generation sequencing (NGS), improved bioinformatics
methods, and dropping costs, have contributed to rendering whole-genome sequenc-

ing (WGS) an increasingly popular alternative to classically employed molecular approaches
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for routine typing of bacterial isolates. The added value of WGS in routine pathogen surveil-
lance and outbreak situations has been illustrated extensively for multiple pathogens (1–3).
In contrast to most molecular methods, WGS provides an “all-in-one” solution including,
among other things, the detection of genes of interest (e.g., antimicrobial resistance [AMR]
genes and virulence factors) and single nucleotide polymorphisms (SNPs) that can resolve
the relatedness between isolates, eliminating the need for multiple sequential laborious mo-
lecular assays (4). The parallel nature of most modern sequencing technologies has facili-
tated multiplexing approaches, resulting in very high throughputs.

In recent years, many solutions for analyzing Mycobacterium tuberculosis (MTB) WGS
data have been developed to replace traditionally employed molecular approaches
(5–8). This is facilitated by the well-characterized MTB genome, rendering it well suited
for WGS analyses (9). Because this pathogen evolves at a slow pace (10), many
approaches focus on identifying SNPs against the H37Rv reference genome (11) and
can be broadly grouped into three different, but still intertwined, functionalities. First,
species confirmation and identification of the correct (sub)lineage are crucial, as line-
ages vary in virulence, transmissibility, geographical occurrence, host response, and
emergence of drug resistance (12). Several approaches are used, with some of them
specific to Mycobacterium species, such as heat shock protein 65 (hsp65) species differ-
entiation (13), and genomic markers including the csb gene and the regions of differ-
ence (RDs) (14, 15). Species-agnostic methods such as 16S rRNA sequencing are gener-
ally applicable to bacterial pathogens, including MTB (16). Information for all these
assays of interest can be obtained through a single WGS run, and WGS has proved
itself a viable alternative for species confirmation and identification (12, 17). These
WGS-based approaches often rely on the detection of specific SNPs to discriminate
known MTB complex (MTBC) (sub)lineages (12, 17–20). Second, since multidrug-resist-
ant (MDR) and extensively drug-resistant (XDR) strains are increasing in prevalence,
rapid and accurate AMR characterization is required for successful treatment and moni-
toring (21). Traditionally, phenotypic antibiotic susceptibility testing in mycobacteria is
performed with a culture step in mycobacterial growth indicator tubes (MGIT), fol-
lowed by solid drug susceptibility testing (DST) or broth microdilution, which can take
an especially long time due to the slow growth rate (22). In contrast to the majority of
bacterial pathogens, AMR in MTB is mainly conferred by point mutations and, to a
lesser degree, indels in genes coding for proteins targeted by drugs (23). Genotypic
AMR prediction is therefore traditionally performed using Sanger sequencing or line
probe assays (LPAs) on a limited target set. In contrast, WGS can screen the entire ge-
nome, thereby eliminating the need for different experiments for separate genomic
loci. Many bioinformatics AMR detection workflows are available (19, 23–25) but have
been shown to produce variable results, caused by differences in the employed under-
lying databases of AMR-associated mutations and variant-calling methodologies (26).
Third, pathogen typing allows evaluating relatedness of isolates to make epidemiologi-
cal links. Mycobacterial interspersed repetitive unit–variable number tandem repeat
(MIRU-VNTR) typing and spacer oligonucleotide typing (spoligotyping) are two of the
most widely used molecular methods to determine relatedness between MTBC iso-
lates. However, systematic comparisons show that WGS-based approaches such as SNP
typing or core genome multilocus sequence typing (cgMLST) can provide more dis-
criminatory power (27). Similar to the detection of AMR mutations, differences in bioin-
formatics workflows can affect the classification of strains into transmission clusters,
which are usually defined by a threshold for the maximum number of pairwise SNP or
allele differences (26, 28). Backward compatibility of WGS with molecular spoligotyping
is facilitated through in silico spoligotyping methods that enable comparison with his-
torical data (29, 30).

Despite the many advantages of using WGS over classical methods, integration into
routine pathogen typing poses additional challenges. For smaller laboratories that lack the
necessary infrastructure and/or bioinformatics expertise, WGS data analysis remains a bot-
tleneck, highlighting the need for user-friendly pipelines (31). Moreover, integration into a
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quality system for routine use is complicated by the lack of standardization between labo-
ratories and the lack of proper validation of bioinformatics workflows to demonstrate
adequate performance, which is a prerequisite for most clinical and national reference cen-
ters (NRCs) (32–34). We previously proposed a validation framework and used it to exhaus-
tively characterize the performance of bioinformatics workflows to analyze WGS data for
the pathogens Neisseria meningitidis (35) and Shiga-toxin-producing Escherichia coli (STEC)
(36), demonstrating that bioinformatics WGS workflows can achieve high performance to
replace traditional approaches for routine pathogen typing. This framework uses assay-
specific definitions to determine performance metrics, adopted from classical molecular
assays. However, except for PointFinder (37), all assays of the aforementioned workflows
were based on detecting specific genes or alleles, and the frameworks are therefore not
directly applicable for evaluating the performance of bioinformatics assays for MTBC mem-
bers, since most assays of critical clinical relevance are based on the identification of SNPs.
Although the PointFinder assay is SNP-based, it was evaluated using a phenotypic refer-
ence standard in the validation of the aforementioned STEC workflow, and not through
validating the correct identification of the underlying SNPs (36). A validation framework for
evaluating bioinformatics assays for MTBC members that properly considers the detection
and identification of particular SNPs is, however, not yet established. Validation of SNPs is
particularly challenging due to both technological and analytical limitations and to the
lack of widely accepted guidelines for evaluating methods for calling SNPs and indels (38).
This is aggravated even further by the fact that differences in tools, parameters, and data-
bases can all affect SNP calling and filtering and therefore impact downstream analysis
results (39).

Here, we present a bioinformatics workflow for routine typing of MTBC members,
allowing complete pathogen characterization based on different bioinformatics assays
such as (sub)species confirmation and identification (including 16S rRNA, hsp65, csb,
and RDs), SNP-based AMR prediction, and (sub)lineage detection (including spoligo-
typing, cgMLST, and SNP barcoding). In particular, we present an updated and
extended validation framework for a WGS-based bioinformatics workflow incorporat-
ing several bioinformatics assays that rely on correct SNP detection, which can help
with standardization of bioinformatics tools across the global MTBC community and
other SNP-based applications regardless of the targeted pathogen(s).

MATERIALS ANDMETHODS
Bioinformatics workflow. Data (pre)processing and quality control. Figure 1 provides an over-

view of the bioinformatics workflow, which is compatible with all WGS data generated using the
Illumina technology. Data preprocessing and quality control are executed as described in Bogaerts et al.
(36) and detailed in the supplemental material. Several quality metrics are then computed, for which
warning and failure thresholds were defined by selecting more and less stringent values for metrics
exhibiting less and more variation between samples, respectively, and for which an overview is pre-
sented in Table 1. When the input data fails one of the quality control (QC) checks, a warning is added
to the report, but the full output is generated and the decision on whether or not to resequence is left
to the end user.

For variant calling and filtering, processed reads are mapped against the H37Rv reference genome
for MTB (Ensembl accession number ASM19595v2) using Bowtie 2 2.3.0 (40), after which a pileup is gen-
erated using the SAMtools “mpileup” function setting the following options: “--count-orphans” and
“--VCF.” The coverage is estimated by calculating the median depth across all genomic positions using
SAMtools depth 1.9. Variants are called using the BCFtools 1.9 function “call” (41) with the “--ploidy”
option set to 1 and the “--consensus-caller” option enabled, after which low-quality variants are
removed using the BCFtools “filter” function to enforce quality criteria adopted from the CSI phylogeny
pipeline (42): a minimum SNP quality of 25, a minimum mapping quality of 30, covered by at least 10
reads, of which at least one is forward and reverse. A sliding window approach is then applied to remove
variants located within 10 nucleotides of each other, and variants with a Z-score lower than 1.96 and/or
a Y-multiplier of lower than 10 are also removed (see reference 42). Variants located in regions problem-
atic for variant calling (e.g., repeat regions) are also removed, for which the list of excluded loci from the
unified analysis variant pipeline of ReSeqTB is used (19) (https://github.com/CPTR-ReSeqTB/UVP).

(Sub)species confirmation and identification. (Sub)species confirmation and identification consist
of three assays that complement each other and provide clinical and NRC experts with the necessary in-
formation to assess the taxonomic origin of the isolate. First, the genome assembly is aligned to the
NCBI 16S rRNA database (downloaded on 27 November 2017) using blastn 2.6.0 with default parameters
and filtering out hits with less than 95% identity or 60% coverage. The top five hits ordered by e-value
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after filtering are included in the output. Second, the best matching sequence from a database with 157
(partial) hsp65 sequences (43) is selected using the same algorithmic approach as for 16S rRNA, and the
best hit is selected with the allele scoring method described by Larsen et al. (44). Third, the presence
and/or absence of the csb gene, RD1, and RD9 are determined. The csb gene is absent in bovine species
but present in nonbovine species, while RD1 is absent in M. bovis BCG but present in other bovine species,
and RD9 is absent inM. africanum but present in other MTBC members (see Fig. S1 in the supplemental mate-
rial). Since BLAST1-based detection often experiences issues with detecting the long RD1 (10,956bp) and RD9
(2,032bp) sequences due to contig fragmentation, SRST2 0.2.0 (45) is used. The trimmed forward and reverse
reads are provided as input, and the best hit is selected by SRST2. Output is presented as a decision tree with
taxonomic predictions highlighted in green, an example of which is provided in Fig. S1.

SNP-based antimicrobial resistance detection. A BED file containing regions associated with AMR
(Table S1) is used to extract variants from the unfiltered VCF file using BCFtools filter 1.9. Afterward,
BCFtools csq 1.9 (46) is used to annotate the resulting VCF file with mutational effects. The reference
FASTA file is provided with the “--fasta-ref” option, and the corresponding GFF Ensembl annotation is
provided with the “--gff-annot” option. Annotated mutations are then parsed to report nucleotide,
amino acid, frameshift, promoter, and stop codon changes (other types of mutations are classified as
unknown). Databases were constructed from in-house resources and three literature sources (21, 47, 48)
and have been made available as tabular files in Zenodo (http://doi.org/10.5281/zenodo.4434636). Each
database contains mutations and their associated phenotypes (sensitive or resistant) to a particular or
multiple antibiotic(s). Output is provided as separate tables for filtered and unfiltered variants that list
the nucleotide change(s), mutational effects, counts for each of the four nucleotides (when applicable),
and the corresponding association(s) with AMR to any antibiotic(s). In case of multiple database entries
for a single mutation, all are listed. For mutations classified as unknown, antibiotics associated with the
region are listed if available. Interpretation of mixed mutations is left to the end user, who can decide on
heteroresistance based on the nucleotide counts at the corresponding position. Output is provided as a
table of all antibiotics and the predicted AMR phenotype. Samples are predicted as resistant to an antibi-
otic if at least one mutation associated with a “known resistant” phenotype is detected. Based on pre-
dicted resistance(s), samples are classified as not resistant, mono-resistant, MDR, pre-XDR, XDR, or other
(49). A visualization is created dynamically with Circos 0.69-6 (50) to visualize coverage across the chro-
mosome and highlight regions that contain mutations associated with a known resistant phenotype, for
which examples are provided in Fig. S2. The workflow also detects compensatory mutations that alleviate loss
of fitness produced by drug resistance-associated mutations by using the same approach as described for
AMR-associated mutations (49, 51).

Pathogen typing. Three assays are included. First, SpoTyping 2.1 (29) is used to determine the spoli-
gotype in silico, setting the threshold values for the “--min” and “--rmin” parameters dynamically to 10%
of the estimated coverage against the H37Rv reference genome rounded to the nearest integer with a

FIG 1 Overview of the bioinformatics workflow. Each box represents a component corresponding to a series of tasks that provide a
certain well-defined functionality (indicated in bold). The major bioinformatics utilities employed in each module are also mentioned
(indicated in italics). Data processing steps are indicated in yellow, bioinformatics assays are indicated in red, and the dotted red
boxes group the assays into the three main categories. PE, paired-end; QC, quality control; RD, regions of difference; AMR,
antimicrobial resistance.
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minimum value of 3. Samples with an estimated coverage of .50� are first downsampled with the
seqtk 1.2 sample function to approximately 50�. SpoTyping is then executed on trimmed paired-end
reads setting the “--swift” option to “off.” Output is provided as the spoligotyping binary and octal repre-
sentations and the number of occurrences of the spacer sequence in the reads for all 43 spacers. The
detected spoligotype is also queried against the SpolDB4 database (52), which contains the common
name, shared international type (SIT) number, and number of isolates with matching spoligotype, which
are all also provided in the output. Second, the SNP barcode assay developed by Coll et al. (12) is imple-
mented to cross-reference SNPs with the database provided by them. At each of the barcoding levels,
the most likely lineage is selected based on the number of supporting SNPs. If no SNPs are detected at
the targeted positions, the sample is classified as lineage 4.9, corresponding to the clade containing the
H37Rv reference genome. Output is provided as lineage name, main spoligotype, RD classification, num-
ber of supporting SNPs, and an overview of all detected SNPs from the database. Third, cgMLST is eval-
uated using the respective databases hosted by PubMLST (http://pubMLST.org) (53), for which all
sequences and profiles are obtained using the REST API (86) and are automatically pulled in-house and
updated weekly (the date of the last database update is included in the output). cgMLST allele calling is
executed as described in Bogaerts et al. (35).

Implementation and availability. The workflow was implemented in Python 3.7.5 and tested on an
Ubuntu 18.04 (64-bit) server. Workflow output is provided as an interactive HTML report with the rele-
vant information and links to the full output of the different bioinformatics assays, enabling further proc-
essing or in-depth investigation. The tabular summary file contains an accumulation of the most impor-
tant statistics and results in tab-separated format for programmatic processing. The workflow was
integrated as a stand-alone tool in an in-house Galaxy workflow management system instance (54). This
“push-button” workflow is also available at the public Galaxy instance of our institute at https://galaxy
.sciensano.be as a free resource for academic and nonprofit use (registration required). Use of the work-
flow through Galaxy is explained in a training video that is available on YouTube (https://www.youtube
.com/watch?v=cOtyNfsWJi8). A screenshot of the interface is provided in Fig. S3. Besides the validated
assays discussed in this article, it also includes other bioinformatics assays not validated for routine pur-
poses but useful for informative purposes, such as detection of AMR-associated mutations with
PointFinder (37), in silico screening of 51 informative SNPs to delineate principle genetic groups and SNP
cluster groups (55), subspecies and lineage identification with SNP-IT (17), and regular MLST sequence
typing with the PubMLST scheme. Direct read mapping with SRST2 and kmer-based detection of genes
and alleles with KMA (56) are also supported.

TABLE 1 Employed QC metrics

Metric Definition
Warning
threshold

Failure
threshold

Contamination (%) Percentage of reads classified as highest-occurring species
other thanM. tuberculosis

1.00 5.00

Median coverage against
reference genome (�)

Median coverage based on mapping of the trimmed reads
against the H37Rv reference genome

20 10

Reads mapping back to
reference genome (%)

Percentage of the trimmed reads mapping back to the
H37Rv reference genome

95 90

cgMLST genes identified (%) Percentage of cgMLST genes identified. Only perfect hits
(i.e., full length and 100% identity) are considered

95 90

Average read quality (Q-score) Q-score of the trimmed reads averaged over all reads and
positions

30 25

GC content deviation (%) Deviation of the average GC content of the trimmed reads
from the expected value forM. tuberculosis (65.5% [11])

2.00 4.00

N-fraction Average N-fraction per read position of the trimmed reads 0.05 0.10
Per base sequence content (%) Difference between AT and GC frequencies averaged at

every read position. Since primer artefacts can cause
fluctuations at the start of reads due to the nonrandom
nature of enzymatic tagmentation when the Nextera XT
protocol is used for library preparation, the first 20 bases
are not included in this test. As fluctuations can also exist
at the end of reads caused by the low abundance of very
long reads because of read trimming, the 0.5% longest
reads are similarly excluded.

3.00 6.00

Minimum read length (%) Minimum read length after trimming (denoted as
percentage of untrimmed read length) that minimum
half of all trimmed reads must obtain (e.g., half of all
trimmed reads should either be minimally 120 or 200
bases long when raw input reads lengths are
300 bases long)

66.67 40.00
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Validation data set and characterization with conventional methods. Selection of samples and
WGS. The validation data set was constructed by selecting samples from the routine activities sent to
the Belgian NRC until a total of 238 samples were collected for which WGS data did not fail any of the
quality control (QC) metrics listed in Table 1. The strains were sampled from humans and were analyzed
with NGS in the context of various research projects and integration of WGS in the NRC routine activities.
Data from molecular testing was available from routine diagnostics, including species identification, spo-
ligotyping, DST in MGIT, and genotyping of AMR mutations. The diversity of the in-house samples
included in the validation data set was assessed by constructing a SNP-based maximum likelihood phy-
logeny using the filtered VCF files generated by the workflow (see supplemental material). Information
on the lineage, SIT, and number of detected and inserted AMR mutations was added as annotations and
visualized using iTOL (57).

Samples were extracted by first inactivating a volume of 1ml of the identified mycobacterial culture
for 15 min at 95°C and then treating the culture by bead-beating 3� 30 sec with 0.5mm zirconia/silica
beads (BioSpec) using the Mini-BeadBeater-16 (BioSpec). The pellet collected after centrifugation (2min
at 13,000 � g) was used for the DNA extraction outside the biosafety level 3 (BSL3) lab using the
MagCore genomic DNA bacterial kit. After extraction, the amount of DNA was quantified using the
Quantus fluorometer for sensitive detection of nucleic acids (detection limit of 10 pg/ml) using
QuantiFluor dye system (QuantiFluor double-stranded [dsDNA] system). WGS was performed as an ISO
17025 accredited assay. Here, Nextera XT libraries (Illumina, San Diego, CA) were constructed with a 15-
cycle PCR indexing step as described by Shea et al. (7). First, 1 ng of MTB genomic DNA was used as
input for tagmentation, unless this amount was not available, in which case, 5ml of the genomic DNA
extract was used. The concentration of the samples was measured before the WGS run using the high-
sensitivity dsDNA Qubit kit (Thermo Fisher Scientific, Waltham, MA, USA), and the majority of samples
had a DNA concentration of #0.010 ng/ml. Libraries were pooled aiming for a theoretical coverage of at
least 30� and subsequently sequenced on a MiSeq instrument (Illumina, San Diego, CA) using the
MiSeq V3 chemistry following the manufacturer’s instructions, for the production of 2� 250-bp paired-
end reads. A negative control (Tris-HCl [10mM, pH 8.5] with 0.1% Tween 20 instead of MTB DNA as the
template for tagmentation) was included in each library preparation and on each sequencing run.

All in-house-generated sequencing data have been submitted to the SRA (58) under BioProject num-
ber PRJNA681718. For the validation of some assays, the data set was extended with Illumina data col-
lected from the SRA as described in the following sections. The accession numbers for the 380 samples
used in the validation are listed in Table S2. A schematic overview of characterization with conventional
methods is provided in Fig. 2.

(Sub)species identification and confirmation. At the NRC, species determination was performed
by PCR of the IS6110 insertion element for strains analyzed before 2018 (59). From 2018 onward, PCR of the
csb gene was performed to distinguish between bovine and nonbovine strains, and an additional PCR of the
RD1 was performed for the bovine strains to distinguish betweenM. bovis andM. bovis BCG (14, 60). As our in-
house collection contained mainly M. tuberculosis isolates and Mycobacterium samples with inconclusive spe-
cies information, the data set was extended with data sets from different subspecies retrieved from the SRA.
This data set was further extended with 16 negative control samples from species outside the Mycobacterium
genus for the 16S rRNA and hsp65 assays (Table S3). The truth set for all three assays (16S rRNA, hsp65, and
csb/RD) consisted of the taxonomic information for these samples either obtained as described above for the
in-house-sequenced samples or retrieved from SRA metadata for the public data sets.

SNP-based antimicrobial resistance detection. Molecular AMR detection was performed in case of
suspected resistance by MGIT DST. Detection of AMR mutations was performed using the GenoType
MTBBR1 and MTBDRsl LPA kits (Hain Lifescience), multiplex PCR for isoniazid resistance (61), or Sanger
sequencing on a Genetic Analyzer 3500 (Applied Biosystems) of one or more genes associated with AMR
(62). Results per sample are provided in Table S4 (phenotypic testing), Table S5 (PCR and LPAs), and Table
S6 (Sanger sequencing). Because only a relatively small subset of mutations present in the database was
covered by molecular methods, the range of evaluated mutations was extended by inserting variants in sil-
ico into the actual WGS data sets. Data sets were modified by first mapping the reads to the M. tuberculosis
H37Rv reference genome (NCBI accession number GCA_000195955.2) using the Burrows-Wheeler Aligner
MEM algorithm (BWA-MEM) 0.7.15 with the “-M” option enabled (63). Secondary alignments were removed
from the resulting BAM files using SAMtools view 1.3.1 with the “-h” option enabled and “-F” set to
“0� 900” and then sorted and indexed using SAMtools sort 1.3.1 and SAMtools 1.3.1 index. Nucleotide
mutations were inserted into indexed BAM files using Bamsurgeon 1.2 (64) with the “--ignorepileup” and
“--force” options enabled, “-p” set to 5, “--coverdiff” set to 0.01, “--mindepth” set to 1, and “--minmutreads”
set to 1. The resulting BAM files were sorted using SAMtools sort with the “-n” option and converted to
fastq.gz format using BEDTools bamtofastq 2.25.0 (65) and gzip 1.6. Finally, modified positions were con-
firmed with bam-readcount 0.8.0 (https://github.com/genome/bam-readcount).

Pathogen typing. Routine typing of MTB strains in the NRC was performed by a combination of
spoligotyping and MIRU-VNTR. Clusters were subsequently detected using Bionumerics as described
previously (66). This data set was complemented with the same 16 negative-control samples from spe-
cies outside the Mycobacterium genus used for species identification (Table S7), which were also used as
negative controls for SNP-barcoding (Table S8) and sequence typing (Table S9).

SNP-barcoding assay performance was evaluated on 44 MTBC samples with lineage information
available selected from the study describing the lineage classification (12). Accession numbers are pro-
vided in Table S8. This selection covered all six major lineages and 44 out of 55 sublineages.

For the sequence typing assay, a representative subset of in-house-sequenced samples was selected
by collapsing the branches from the phylogeny described in “Selection of Samples and WGS” on 40 or
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fewer allele differences. Afterward, the validation data set was created by randomly selecting a sample
from each distinct group for a total of 42 samples. An overview of the selected samples is provided in
Table S9.

Validation of the bioinformatics workflow. Validation strategy. We used a previously described
validation framework with performance metrics adapted for exhaustively validating the bioinformatics
workflow as follows: repeatability, reproducibility, accuracy, precision, sensitivity, and specificity (35, 36).
The validation strategy is schematically represented in Fig. 2, and a full overview of all performance met-
rics and their corresponding definitions and formulas is presented in Table 2. Workflow repeatability and
reproducibility were evaluated by running the bioinformatics workflow twice on the same data set on
the same and a separate computational environment, respectively. The two computational environ-
ments were Python 3.7.5 and Python 3.7.4 on two different Ubuntu 18.04.3 LTS (64-bit) servers.
Accuracy, precision, sensitivity, and specificity all require classification of workflow results as either true
positives (TPs), false positives (FPs), true negatives (TNs), or false negatives (FN), determined from com-
parison against a reference that represents the “ground truth.” Information for the reference ground
truth is provided in the following sections per assay. The validation was limited to data sets that passed
the various quality control checks included in the bioinformatics workflow (i.e., no fail for any of the QC
checks; Table 1). For negative control samples from species outside the MTBC, results of QC checks aim-
ing to detect contamination or specific to M. tuberculosis were disregarded (cgMLST genes detected,
percentage GC content, contamination check with Kraken, percentage of reads mapping back to the M.
tuberculosis reference genome, and median genome coverage).

(Sub)species identification and confirmation. For the validation of the 16S rRNA and hsp65 assays,
the validation data set was divided into a positive set of 151 samples from species within the MTBC and a neg-
ative set of 64 samples from species outside the MTBC (within and outside theMycobacterium genus). An over-
view is provided in Table S3. Validation was performed at the level of the MTBC using the following definitions:
TP, samples from the positive set with at least one reported hit for a species belonging to the MTBC; FN, sam-
ples from the positive set with no reported hit for a species belonging to the MTBC; TN, samples from the neg-
ative set with no hit for a species belonging to the MTBC; FP, samples from the negative set with at least one

FIG 2 Schematic representation of the validation strategy. The colored boxes represent the different components of the validation strategy as follows:
whole-genome sequencing (WGS, yellow), characterization with molecular methods (molecular, green), in silico modification or characterization of WGS
data (in silico, orange), and validation of the assays (validation, blue). Arrows indicate the flow of the data between the different steps. The “Method”
columns represent the molecular or bioinformatics method that was used to generate data. The “# observations” columns correspond to the number of
observations that were obtained or evaluated at the listed level. Abbreviations: MTBC, Mycobacterium tuberculosis complex; SIT, shared international type;
RD, regions of difference; WGS, whole-genome sequencing; SRA Sequence Read Archive; AMR, antimicrobial resistance; LPAs line probe assays. (a) csb/RD
allows distinguishing the following 4 species within the MTBC: Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis BCG, and
Mycobacterium bovis. (b) Validation was performed on a per-species basis reusing the positive observations of the other species as negative controls.
(c) Some observations of the in silico modified dataset were removed because of incompatibilities with preexisting mutations in the WGS data.
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reported hit for a species belonging to the MTBC. For the 16S assay, hits to incomplete 16S reference sequen-
ces were discarded.

For the csb/RD assay, the validation data set consisted of 53 samples from the 4 species that can be
distinguished with this assay as follows: M. tuberculosis (n = 12), M. africanum (n = 12), M. bovis BCG (n =
13), and M. bovis (n = 16), for which an overview is provided in Table S10. Validation was performed on a
per-species basis, with the samples from the corresponding species as the positive set and samples from
the three other species as the negative set. The following definitions were used: TP, samples from the
positive set correctly identified as the target species; FN, samples from the positive set not correctly
identified as the target species; TN, samples from the negative set not identified as the target species;
FP, samples from the negative set identified as the target species.

SNP-based antimicrobial resistance detection. The SNP-based AMR detection assay was validated
at the genotypic level in three steps. The number of observations and included mutations for each
mutation type and validation step are shown in Fig. 3. First, correspondence between workflow output
and AMR mutations confirmed with molecular methods (PCR, Sanger sequencing, and LPAs) was eval-
uated. Full results for AMR screening with PCR and LPAs (Table S5) and Sanger sequencing (Table S6) are
provided in the supplemental material. Note that only a subset of phenotypically tested samples (Table
S4) was also screened genotypically for AMR mutations with conventional methods (Tables S5 and S6).
Validation was performed at the level of individual mutations, considering confirmed mutations as the
positive set and positions in the database confirmed as being the wild-type (WT) by molecular methods
as the negative set. The following definitions for classification were used for all three steps: TP,

FIG 3 Overview of the mutations included in the (validation of) SNP-based AMR detection. The y axis represents the number of mutations for the
validation steps listed on the x axis. Each subplot represents a different category of mutations. The colors indicate if mutations were included (turquoise) or
not included (red) in the corresponding validation step. The total height of each bar (i.e., red 1 turquoise) corresponds to the maximum number of
mutations of the corresponding category that could be included in the validation. For the comparison with conventional methods, this corresponds to all
mutations located in genomic regions targeted by the conventional methods. For the WGS-based workflow (validated through in silico conventional and in
silico database), this corresponds to the total number of AMR mutations in the database. The white labels show the number of times mutations of the
corresponding category were present in the validation samples according to the reference information (note that this number can be higher than the
number of mutations on the y axis because the same mutation can have been validated multiple times in different samples). This figure demonstrates that
(i) the number of mutations that are screened with WGS far exceeds the mutations detected with conventional molecular methods, and (ii) the in silico
approach enables us to validate a much larger fraction of mutations in the database. obs., observations; db, database; conv. conventional; AMR,
antimicrobial resistance.
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mutations from the positive set correctly identified by the workflow; FN, mutations from the positive set
incorrectly identified as the WT by the workflow; TN, positions from the negative set correctly identified
as the WT by the workflow; FP, positions from the negative set incorrectly identified as mutations by the
workflow.

Second, to assess equivalence between the first approach and an in silico approach simulating ran-
domly selected mutations from the database (including both mutations associated with phenotypic sus-
ceptibility and resistance) in the actual sequencing data sets, an additional data set was generated, con-
sisting of mutations that were inserted in silico at positions covered by the molecular methods in
samples with no prior reference data from molecular methods. In-house-sequenced samples (n = 23)
from species within the MTBC were used (see Table S11). The six randomly selected mutations from the
positions covered by molecular methods are listed in Table S12 and comprise amino-acid changes (n =
4), promoter (n = 1), and nucleotide mutations (n = 1). The positive set was constructed by inserting the
selected mutations in raw reads of sequencing data sets. The negative set was constructed by modifying
raw reads of sequencing data sets to ensure the presence of the WT at the targeted positions. This
resulted in a positive and negative set of each 138 observations (i.e., 6 mutations times 23 samples).

Third, to expand the range of evaluated positions since only a subset of positions could be evaluated
by using molecular methods, randomly selected mutations from the database of AMR mutations used
by the workflow were inserted in silico in raw reads of sequencing data sets. In-house-sequenced sam-
ples (n = 51) from species within the MTBC were used (see Table S13). The positive set was created by
randomly selecting mutations from the entire database covering a broad range of antibiotics (Table S14)
and inserting them in silico into sequencing data sets at a read depth of 100% as described above. This
also enabled evaluating performance on mutations that are not commonly observed by the NRC, such
as those associated with resistance to newer antibiotics, including bedaquiline and linezolid. Frameshift
mutations were not compatible with the modification workflow and therefore were not included in the
validation. The 225 inserted mutations are listed in Table S14 and comprise amino-acid changes (n =
172), promoter mutations (n = 39), nucleotide mutations (n = 9), and premature stop codons (n = 5). The
negative set was created by modifying sequencing data sets to ensure WT nucleotides at the targeted
positions. This resulted in a positive and negative test set of each 11,475 observations (i.e., 225 muta-
tions times 51 samples).

Pathogen typing. The spoligotyping assay was evaluated on a positive set of 166 observations and
completed with a negative set of 16 observations. The assay was validated at the SIT level with the fol-
lowing definitions: TP and FN, MTBC samples where the SIT detected by the workflow corresponded or
did not correspond to the reference SIT, respectively; TN and FP, negative samples where the workflow
did not detect or did detect a SIT, respectively.

For SNP-barcoding assay evaluation, the positive and negative sets consisted of 44 and 16 samples,
respectively. The following definitions were used: TP and FN, samples from the positive set where the
lineage reported by the workflow corresponded or did not correspond to the reference information,
respectively; TN, samples from the negative set where sublineage 4.9 was reported (i.e., no SNPs
detected at targeted positions, corresponding to the base composition); FP, samples from the negative
set where a (sub)lineage other than 4.9 was reported.

For evaluating sequence typing, the cgMLST scheme containing 744 loci was considered. No
cgMLST information from conventional methods was available for this assay, and performance was
therefore determined by comparing the output from our workflow with the output from the PubMLST
sequence query tool (53) (available at https://pubmlst.org/bigsdb?db=pubmlst_mycobacteria_seqdef&
page=sequenceQuery). Performance evaluation was done at the locus level only considering perfect hits
(i.e., full length and perfect identity), with the following classification definitions: TP and FN, alleles for
which workflow output corresponded or did not correspond to reference information, respectively. TN
and FP were evaluated by analyzing negative control samples with the workflow, with TN and FP
defined as unidentified and identified alleles by our workflow, respectively.

Data availability. The data sets supporting the conclusions of this study have been deposited in the
NCBI SRA under accession number PRJNA681718 (in-house sequenced data) and Zenodo (http://doi.org/
10.5281/zenodo.4434636) (results of all bioinformatics analyses) and are included within this manuscript
and its supplemental files (results of the validation).

RESULTS
Employed sequencing data. In total, 238 out of 315 (75.56%) in-house-sequenced

samples met the QC thresholds defined in Table 1 and were employed for further vali-
dation. Raw and trimmed read counts for the in-house validation samples are provided
in Table S15 with a median number of 825,342 read pairs per sample before read trim-
ming. Assembly statistics for the in-house validation samples are also provided in that
table and indicated high quality with a median total assembly length of 4,335,544 bp
and an N50 value of 76,947 bp. The H37Rv reference genome mapping rate ranged
between 90.28% and 99.31% with a median of 98.39%. An overview of the perform-
ance of the different assays is provided in Table 3. Repeatability and reproducibility
were always 100% for all assays, since generated processed FASTQ files, assembled
contigs, and VCF files were always identical for repeated runs (except for header
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information). Figure 2 schematically represents the validation workflow for which the
results are discussed detail in below; assay-specific definitions are provided in Table 2.

(Sub)species identification and confirmation. For 16S rRNA-based species identi-
fication, 150 of 151 observations from the positive set matched the reference informa-
tion. A single FN was observed in sample SRR6045214 (M. bovis), for which the assem-
bly contained a fracture in the 16S rRNA locus. For the negative test set, no FPs were
observed in any of the 64 negative-control samples. This resulted in accuracy, preci-
sion, sensitivity, and specificity of 99.53%, 100%, 99.34%, and 100%, respectively. For
hsp65 species identification, all 151 samples from the positive set were correctly identi-
fied as MTBC, and no MTBC species were falsely identified in any of the 64 negative-
control samples, resulting in accuracy, precision, sensitivity, and specificity of 100%.
For the csb/RD assay, validation was performed on a per-species basis. All 12, 16, 13,
and 12 samples from the positive set were correctly identified for M. africanum, M.
bovis, M. bovis BCG, and M. tuberculosis, respectively. No FPs were observed in any of
the 41, 37, 40, and 41 negative-control samples for M. africanum, M. bovis, M. bovis
BCG, and M. tuberculosis, respectively. This resulted in accuracy, precision, sensitivity,
and specificity of 100%.

SNP-based antimicrobial resistance detection. Figure 3 presents an overview of
the number of observations and included mutations for each mutation type per valida-
tion step. In the first validation step, the correspondence of AMR mutations detected
with the workflow and molecular methods was evaluated. No FNs were observed in
the 118 positions from the positive set (i.e., all mutations were correctly identified).
Across 17,777 positions from the negative set, only a single FP was observed in sample
S16BD06161, where a C. T mutation at position –15 in the promoter region Rv1482c-
fabG1 not reported by molecular methods was detected. Manual inspection showed
that this mutation was present in 100% of reads aligned to this position (see Fig. S4) and
was most likely present due to a sample switch, a hypothesis consistent with five discrepan-
cies observed in the spoligotyping data for this sample. This resulted in accuracy, precision,
sensitivity, and specificity of 99.99%, 99.16%, 100%, and 99.99%, respectively.

In the second validation step, detection of mutations and wild types inserted in sil-
ico at positions covered by molecular methods into raw reads of in-house-sequenced
data was evaluated. The positive and negative sets were constructed through in silico
insertion of six mutations into 23 samples, amounting to 138 observations. Sample
S08MY01602 contained a preexisting SNP in the targeted codon at a different position
than the one reverted to the WT nucleotide that resulted in the insertion of a different
amino acid mutation. This position was therefore removed from the negative set of
this sample, leading to a final set of 137 observations. For both the positive and nega-
tive sets, all mutations and wild types were correctly identified, resulting in accuracy,
precision, sensitivity, and specificity of 100%.

In the third validation step, detection of randomly selected mutations from the
AMR database inserted in silico in in-house-sequenced data sets was evaluated. Out of
11,475 inserted variants for the positive set, 75 were excluded from the validation
because they were incorrectly inserted by Bamsurgeon (n = 58) or inserted into a
codon containing a preexisting mutation affecting the targeted codon (n = 17), result-
ing in a positive test set of 11,400 mutations. Incorrectly inserted variants were traced
back to wrong read pairing during an intermediate insertion process step of
Bamsurgeon, for which no exact cause could be derived (see the supplemental mate-
rial). For the negative set, 19 positions were removed because of preexisting mutations
in the targeted codon, resulting in a total of 11,456 positions. The workflow missed 29
mutations from the positive set, which were subsequently classified as FN. All missed
mutations were amino acid mutations located downstream of stop codons (n = 10)
and frameshift mutations (n = 19), affecting correct detection (see Fig. S5 for example
and discussion). All of these mismatches could be explained by the default behavior of
BCFtools csq, which is to determine the effect of mutations based on gene coding
sequences as a whole, causing it to discard amino acid mutations downstream of a
stop codon or indel, as these are not translated. No mutations were falsely identified in
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the positions covered by the negative test set. This resulted in accuracy, precision, sen-
sitivity, and specificity of 99.87%, 100%, 99.75%, and 100%, respectively.

Pathogen typing. For spoligotyping, the positive and negative sets consisted of
166 and 16 samples, respectively. Detailed results are provided in Table S7. The correct
spoligotype was detected for 148 samples from the positive set. The 18 mismatches
were all caused by detection of spacers that were not detected with the molecular
method but were firmly supported by WGS. Seventeen samples had one spacer misi-
dentified, and sample S16BD06161 had five spacers misidentified and was potentially
explained by a sample swap (Fig. S4). Spacer 31 accounted for a disproportional num-
ber of mismatches in other samples (n = 12), but the exact reason could not be deter-
mined. No spoligotype was detected by the workflow in any of the 16 negative-control
samples, resulting in accuracy, precision, sensitivity, and specificity of 90.11%, 100%,
89.16%, and 100%, respectively. For SNP barcoding, the positive and negative sets con-
sisted of 44 and 16 samples, respectively. The correct lineage was identified for all sam-
ples from the positive set, and the reference lineage (lineage 4.9) was identified for all
16 negative data sets, resulting in accuracy, precision, sensitivity, and specificity of
100%. For sequence typing, the positive set consisted of 31,248 observations (i.e., 744
loci times 42 samples selected from the different phylogenetic groups). Only three FNs
occurred, which were all mismatches in sample SRR6045301, where the workflow
detected multi-hits in the MYCO000483, MYCO000484, and MYCO000486 loci, whereas
the reference standard had unique allele calls for these loci. Manual inspection indi-
cated that this was caused by a misassembly resulting in a duplicated sequence of
6,554 bp at the start of a contig, resulting in duplicate occurrences of identical allele
sequences (results not shown). The workflow classified these allele calls as multi-hits,
while the PubMLST sequence query tool reported them as separate calls for the same
allele at different positions in the assembly. The negative set consisted of 16 samples
from species outside the Mycobacterium genus, resulting in 11,904 observations. No al-
leles were identified as a perfect hit in any of the negative-control samples by either
the workflow or the online pubMLST.org tool. This resulted in accuracy, precision, sen-
sitivity, and specificity of 99.99%, 100%, 99.99%, and 100%, respectively.

DISCUSSION

We present an extensive validation of a bioinformatics workflow (Fig. 1) for charac-
terization of MTBC isolates using WGS data generated with Illumina technology. Many
clinical and reference laboratories have already switched, or are actively switching, to
WGS for their routine activities (4). Correspondingly, the requirement for validation of
bioinformatics assays for WGS is increasingly being recognized for its importance for
routine implementation in applied settings (35, 67, 68). For M. tuberculosis in particular,
Meehan et al. recently highlighted that the lack of standardization and consensus
between laboratories complicates the comparability and validation of WGS-based
workflows (34). This is especially relevant for MTBC, which typically occurs in a clinical
setting. Several validation strategies have been proposed recently (35, 67–69) but are
all commonly focused on the correct identification of genes or specific alleles and are
thus not directly applicable for MTBC members, for which accurate detection of SNPs is
of major importance (10). The performance of SNP-based bioinformatics assays in mi-
crobial genomics is typically only performed indirectly, for instance, in phylogenetic
studies by the correct placement of delineating strains (70), detection of mutations
associated with a particular phenotype (e.g., AMR) (67, 68), or detection of the correct
sequence type for MLST (44). Walter et al. recently used a set of 85 SNPs confirmed
with Sanger sequencing to evaluate the performance of various variant calling tools
for MTBC outbreak investigation (71). Even though individual variants were called with
relatively high accuracy, inconsistencies between tools impacted transmission infer-
ences. The differences between the bioinformatics methods illustrate the need for a
framework to evaluate the correct detection and identification of individual mutations,
which is of particular relevance for antimicrobial resistance prediction in MTBC. Therefore, a
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validation approach, incorporating and exhaustively characterizing the performance of SNP
detection, was proposed (Fig. 2, Table 2). The approach was applied to a diverse data set of
238 in-house-sequenced MTBC isolates characterized extensively with conventional meth-
ods. The data set was selected to be representative for the intended application by covering
the diversity and lineages that occur in Belgium, but also contained smaller clusters of
closely related samples differing sometimes by only a few SNPs (Fig. 4), and consisted of
samples observed within the routine activities of the Belgian NRC, complemented with data
from public reference collections. However, due to the lack of available data and QC filtering,
some lineages were underrepresented in the final validation data set, such as lineages 5 and
7. Nonetheless, our data set can be considered representative for the activities of a reference
or clinical laboratory in Belgium (and, by extension, Europe), as these lineages are currently
rarely observed by the NRC. If the workflow were employed in a setting where the expected
sample composition is substantially different from the validation data set employed here, a

FIG 4 Maximum likelihood tree containing an overview of the diversity of the in-house samples included in the validation data set. The scale bar is
expressed as average changes per site. The annotations are (from inner to outer rings) sample name, main lineage determined with the workflow (top-
right legend), full lineage detected with the workflow, SIT number determined with conventional spoligotyping, total and unique (i.e., only occurring in the
corresponding sample) number of detected mutations with known association(s) with resistance to antibiotics, and number of in silico inserted variants
selected from the database (“database”) and from the positions covered by the conventional methods (“conventional”). Note that the color scale for the
number of in silico inserted mutations was capped at 20 to increase clarity; the total number of mutations for all data points in the “database” ring ranged
from 217 to 225. Nb, number; SIT, shared international type.
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revalidation would be required to characterize the performance in the modified setting. For
all assays, very high performance was demonstrated, with all performance metrics at.95%,
which we postulated as an acceptance criterion before considering an assay as validated.
Spoligotyping was, however, a notable exception (see below). In line with previous observa-
tions for gene detection and allele calling (35, 36), repeatability and reproducibility were
always 100% for all assays, including SNP-based AMR detection, illustrating the stability of
bioinformatics analysis across repeated runs within and between computational environ-
ments. The validation strategy can be applied to bioinformatics assays for other bacteria, in
particular, for SNP-based assays for which currently available validation frameworks are
limited.

The (sub)species confirmation and identification component consists of several
assays providing partially overlapping information. The 16S rRNA and hsp65 assays
were validated at the MTBC instead of species-level because only 23 of 125 samples
contained species-level information, and others were classified as MTBC (n = 53) or ei-
ther M. tuberculosis or M. africanum (n = 76). Additionally, the molecular methods
themselves on which these WGS assays are based cannot always distinguish species
within the Mycobacterium genus due to their limited resolution (13). While more
powerful WGS-based bioinformatics methods offer much more discriminatory power
to assign strains to taxonomic clades, the 16S rRNA, csb/RD, and hsp65 assays were
included, as these methods facilitate comparison with historical data. All evaluated
(sub)assays showed very high performance, with all performance metrics at .99%,
illustrating that WGS is an excellent alternative for these three molecular methods.

The performance of various variant detection workflows has been extensively docu-
mented, but typically in the context of human applications such as detection of mutations
with clinical significance in oncology and rare diseases (72, 73), and are consequently not
directly applicable to bacterial pathogens. A main bottleneck in evaluating variant detection
workflows is the lack of sufficient reference information at a SNP-level resolution, which is of-
ten impossible or infeasible to obtain. Therefore, in silico-generated or -modified data sets are
often used to complement validation efforts for human applications on top of actual refer-
ence data generated in the lab (74). To obtain representative results, simulated data must rep-
resent real data as closely as possible. Read simulation software can only approximate
sequencing error profiles, which can vary between and within sequencing centers (75).
Methods that insert variants by modifying reads of real sequencing data sets do not suffer
from this limitation (64). Whenever possible, real sequencing data from well-characterized ref-
erence materials should be used in conjunction with in silico methods. Therefore, we eval-
uated variant detection with both reference information from molecular methods and simu-
lated data using a three-step approach. First, a reference set of AMR-associated positions was
characterized in our validation data set of in-house-sequenced samples by using molecular
methods, creating a high-quality “real” reference data set to compare WGS results against,
demonstrating very high performance, with all metrics at.99%. This approach is similar to a
previous study where mutations confirmed with Sanger sequencing were used to character-
ize the performance of AMR detection inM. tuberculosis. Schleusener et al. (26) reported simi-
lar performance on a limited set of mutations with concordance varying between ;98 and
100% depending on the targeted gene. Second, a subset of positions included in the first
step was subjected to in silico modification by inserting either the WT or mutation in raw
sequencing reads of in-house-sequenced data. We found again very high performance with
perfect detection in all modified data sets. This approach served as justification for extending
our validation data set with in silico-modified data covering many more positions of the total
AMR database than would have been possible using molecular approaches. Third, an in silico
approach was taken to modify WGS data sets at positions randomly selected from the entire
database with AMR-associated mutations, also demonstrating very high performance, with all
performance metrics at .99%, demonstrating the feasibility of using SNP-based AMR detec-
tion for WGS data in a clinical and/or national reference lab settings. However, our approach
has some limitations. First, indels were not considered here due to their complexity. Second,
only the detection of consensus mutations was evaluated. Information on hetero-resistance is
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provided informatively and should not be considered validated, as accurate detection
requires a median sequencing coverage much higher than the minimum required by the
pipeline, especially for mutations present at low allelic frequencies, rendering this still prohibi-
tively expensive for routine activities (Table 1). The validation of SNP-based AMR detection
was performed exclusively at the genotypic level, since bioinformatics workflows should be
evaluated at this level (i.e., correct or incorrect detection of a variant), whereas evaluation of
genotype-phenotype correspondence is at a higher level (76). An explorative comparison out-
side the scope of the validation was nevertheless performed on the subset of the validation
data set with phenotypic testing data available, resulting in a correspondence of 96.08%
between the predicted phenotype based on detected SNPs and observed AMR phenotypes,
indicating similarly high performance (Table S16).

For pathogen typing, three assays were validated, spoligotyping, SNP barcoding, and
cgMLST. Phylogenetic classification at the SNP level allows the highest possible resolution and
is expected to outperform conventional methods for (sub)species identification and lineage
detection. However, the spoligotyping, SNP barcoding, and cgMLST assays still provide perti-
nent information for routine pathogen typing. Due to their use throughout the years, a wealth
of historical data is available, allowing the placement of isolates in the context of historical
background collections. Additionally, since MTB outbreaks typically span multiple years, over-
lap with conventional methods is essential to monitor ongoing outbreaks (77). In contrast to
all other assays, performance for spoligotyping was substantially lower, with accuracy and sen-
sitivity dropping to 90.11% and 89.16%, respectively, far below our postulated acceptance cri-
terion of 95%. Conventional spoligotyping can provide ambiguous results with spacers that
can be classified as either present or absent, and in silico spoligotyping is notoriously difficult
with short-read data, as these spacers are located in highly repetitive genomic regions (78).
The observed performance is in line with benchmarks of commonly used tools such as
SpolPred (30) and SpoTyping (29). Nevertheless, since spoligotyping constitutes a relevant
assay for clinicians due to the large volume of historical data, the assay was retained in the
workflow at specific request, albeit as an indicative assay not meeting our a priori 95% accep-
tance criterion. The SNP barcoding and cgMLST assays did both demonstrate very high per-
formance, with all performance metrics at .99%. Compared to spoligotyping, both methods
were designed for WGS data and offer higher resolution by specifically considering a set of
413 SNPs and 744 loci located over the entire chromosome, respectively. Their usability is,
however, hindered by lacking historical data, which will require substantial sequencing efforts.
Nonetheless, the relatively low performance of spoligotyping compared to SNP barcoding
and cgMLST highlights the urgent need for a paradigm shift by migrating toward WGS-based
approaches for pathogen typing and the need to start building “new” historical data sets com-
prising full genomic information (19, 79). Although WGS-based in silicoMIRU-VNTR typing was
not included in our workflow, similar to spoligotyping, it has been reported to suffer from
lower accuracy when only short-read data are available (80) and would therefore equally ben-
efit from being phased out in favor of the more performant WGS-based typing methods.
Neither cgMLST nor SNP barcoding offer enough resolution to detect closely related outbreaks
characterized by only a few SNPs difference (81). Detecting such outbreaks requires employing
variant detection workflows in conjunction with advanced phylogenomics tree reconstruction
methods. Although a SNP-based phylogenetic tree was presented for describing variation in
the validation data set (Fig.4), SNP-based phylogenetic inference itself was therefore not vali-
dated, because it would require validating methods dependent on the exact relationship
between individual samples. Nonetheless, the high performance for variant detection of SNP-
based AMR demonstrates that SNP calling can occur with high performance, suggesting that
phylogenomics methods using SNPs, as presented in Fig. 4, can also achieve very high per-
formance. Nevertheless, an important advantage of cgMLST and SNP barcoding is that both
methods offer a harmonized and standardized framework for which all samples can be com-
pared, whereas resolving closely related outbreaks using phylogenomics methods based on
variant detection is heavily context-dependent.

Our bioinformatics workflow is provided through a Galaxy interface as a “push-button”
implementation for nonexpert bioinformaticians and is available for nonprofit use at https://
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galaxy.sciensano.be. Such solutions are particularly relevant for laboratories that lack suffi-
cient bioinformatics expertise or specialized hardware, such as low-income countries where
tuberculosis is often a major problem. The workflow is compatible with data generated on
all Illumina platforms. The minimum read length check is determined dynamically based on
the input read length, making it compatible with data sets with reads shorter than the 2 �
250-bp reads generated by the Illumina MiSeq device on the in-house-generated samples.
This was illustrated by the validation data set, which also contained data from public sources
generated using the Illumina HiSeq and Illumina Genome Analyzer II. We stress that several
viable alternative Web-based and command-line solutions exist forMycobacterium pathogen
typing (see introductory section), which can be equally or even better suited for specific tar-
get audiences. Our main consideration is that a more rigid framework for demonstrating
minimal performance of WGS-based methods is urgently required, especially for clinical lab-
oratories working under a quality system, for which labs can employ whatever bioinfor-
matics method they prefer, whether in-house-developed, commercial, or Web-based. Such a
strategy focusing on performance-based evaluation rather than enforcing strict methods is
recommended, allowing flexibility in employed solutions and accounting for the large diver-
sity and quick evolution in the many WGS technologies that exist (82). This is also in line
with recommendations of ongoing initiatives such as ISO (83) and also reflects the approach
taken, for instance, by laboratories processing human patient genomic data for clinical pur-
poses such as oncology (84). Such a framework is also relevant for other microbial patho-
gens and will aid in the standardization and integration of WGS in routine clinical and/or
public health contexts.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.9 MB.
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