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Abstract: In this study, we measure the in-plane transport properties of high-quality Ba(Fe0.914Co0.086)2As2

single crystals. Signatures of vortex unbinding Berezinskii–Kosterlitz–Thouless (BKT) transition are
shown from both the conventional approach and the Fisher–Fisher–Huse dynamic scaling analysis,
in which a characteristic Nelson–Kosterlitz jump is demonstrated. We also observe a non-Hall
transverse signal exactly at the superconducting transition, which is explained in terms of guided
motion of unbound vortices.

Keywords: Berezinskii–Kosterlitz–Thouless transition; superconducting transition; vortices

1. Introduction

Uncovering the underlying essential universality for high-temperature supercon-
ductivity is extremely important for understanding the superconducting mechanism as
well as exploring the next high-Tc materials [1]. The two classes of high-temperature
superconductors discovered, Cu-based superconductors (CuSCs) and Fe-based supercon-
ductors (FeSCs), bear many similarities, regardless of some differences [1–3]. Apparently,
FeSCs contain two-dimensional (2D) FeAs layers, analogous to the 2D CuO2 planes in
CuSCs. More similarities were manifested by the antiferromagnetism in parent compounds,
superconducting phase diagrams with respect to chemical doping, and extreme type-II
superconductivity with very high upper critical field, etc. However, FeSCs show unusually
small anisotropy in the upper critical field [4,5], which is in sharp contrast with CuSCs [6].
So far, there is no consensus on the nature of dimensionality in FeSCs [1], unlike the sit-
uation in CuSCs where the 2D characteristic is widely observed, [6] and the 2D nature is
considered to be crucial for high-Tc superconductivity [7].

Quasi-2D superconducting behaviors in CuSCs are demonstrated by a 2D Berezinskii–
Kosterlitz–Thouless (BKT) topological phase transition [8] close to the mean-field super-
conducting transition temperature (TMF

c ), even for the bulk crystals [9–13]. Such a novel
BKT-type transition was earlier discussed in terms of vortex–antivortex dissociation in
an ideal 2D superconductor [14], and then it was experimentally observed in ultra-thin
superconducting films [15]. For CuSCs, because of the negligibly weak interlayer su-
perconducting coupling near TMF

c , vortex fluctuations [16], or thermal distortions [17] in
Josephson coupled layered materials, 2D BKT behavior was able to be observed in bulk
crystals of Bi2Sr2CaCu2O8 [9,10], YBa2Cu3O7 [11,12], and La1.875Ba0.125CuO4 [13]. The
expected unbound free vortices near the superconducting transition are independently
supported by the observation of non-zero transverse voltage at zero field (hereafter de-
noted as Vxy

0 ) [18,19]. The 2D superconducting phase fluctuations are also evidenced
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even well above the superconducting transition temperature [20], shedding light on the
superconducting mechanism of CuSCs.

As for FeSCs, either 2D or 3D of the nature of superconducting fluctuations is re-
ported [21–26], and an apparent contradiction appeared in a few cases. For example, 2D na-
ture of superconductivity was implied by the study of fluctuation conductivity in F-doped
SmFeAsO polycrystals [21] and single crystals [22], while fluctuations in SmFeAsO0.8F0.2
was reported to have a 3D character and extend far above Tc [24]. Recently, the evidence of
BKT transition was reported in FeTe0.55Se0.45 thin films, suggesting a quasi-2D characteristic
in such systems [27]. This finding motivates us to explore possible BKT transition in other
FeSCs. In this study, we report possible evidence for BKT phase transition in a typical FeSC,
Ba(Fe1−xCox)2As2 [28] with x = 0.086, via both the conventional approach and the Fisher–
Fisher–Huse (FFH) [29] dynamic scaling analysis. The characteristic Nelson–Kosterlitz
jump for a BKT transition is demonstrated. In addition, we observe non-Hall-type trans-
verse signal including Vxy

0 , exactly above the possible BKT transition temperature TBKT,
pointing to the existence of thermally excited unbound vortices.

2. Experimental Methods

The Ba(Fe0.914Co0.086)2As2 crystals were grown by a self-flux method with procedures
similar to Ref. [30]. The chemical composition of the crystal was determined by an energy-
dispersive x-ray spectroscope affiliated to a field-emission scanning electron microscope
(FEI Model SIRION), giving the title chemical formula (the Co-content uncertainty was
±0.005). The Tonset

c temperature-dependent in-plane resistance shows a sharp supercon-
ducting transition at Tonset

c = 25.0 K, as seen in the inset of Figure 1. The transition width
[∆Tc = T(90%ρn) − T(10%ρn), where ρn is the normal-state resistivity at Tonset

c ] is as narrow
as 0.42 K, indicating high quality with good homogeneity for the crystal. The relatively
high Tc value indicates that the crystal was in the optimally-doped regime, consistent with
the cobalt content measured.
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Figure 1. Temperature dependence of normalized resistance R/Rn in the superconducting transition
of Ba(Fe0.914Co0.086)2As2 crystal (photographed on the left inset). Rn is the normal-state resistance,
obtained by a linear extrapolation from 50 K to 35 K. The inserted plot shows the superconducting
transition in normal linear scale. The related characteristic temperatures are indicated with arrows.

The electro-transport measurements were performed on a Quantum Design Physical
Property Measurement System (PPMS-9). We adopted a van der Pauw four-terminal
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configuration [31] for all the measurements, including longitudinal I − V curves and
transverse voltages. The crystal was carefully cleaved and cut into a squared specimen
with a side length of L = 1.14 mm and thickness of t = 0.024 mm. Gold wires were attached
with silver paste onto the four corners (A, B, C, and D), as shown in the left inset of Figure 1.
The longitudinal resistance was obtained by Rxx = (RDC/AB + RBC/AD)/2, where RDC/AB
(RBC/AD) equals to the potential VDC (VBC) divided by the current IAB (IAD) using ac
transport option with a frequency of 13 Hz. The normal-state resistivity above Tc was
ρn = πtRxx/ln2 ~ 0.09 mΩ cm, consistent with the previous report [28]. The data of I − Vxx
characteristic were collected at a fixed temperature whose fluctuation was less than 1 mK,
without any detectable heating effect during the measurement.

For the measurement of transverse voltage Vxy, VBD/AC and VAC/BD were mea-
sured respectively by permutating the voltage and current electrodes [32], so that the
longitudinal component due to misalignment of the diagonal electrodes can be canceled
out. At zero field, one obtains V0

xy by Ref. [32], V0
xy = (VBD/AC − VAC/BD)/2. Obvi-

ously, V0
xy has nothing to do with Hall effect because no magnetic field is applied. It is

a non-Hall-type transverse voltage. Under external magnetic fields, similarly, we have
two “branches” of the transverse voltage with the field up (H+) and down (H−), re-
spectively, VH+

xy = (VH+
BD;AC−VH+

AC;BD)/2;VH−
xy = (VH−

BD;AC−VH−
AC;BD)/2. In most cases, VH+

xy and
VH−

xy are mutually antisymmetric, and the conventional Hall voltage can be obtained
by VHall

xy = (VH+
xy −VH−

xy )/2. When the antisymmetry is broken for some reason, a non-
Hall transverse signal VnH

xy can be extracted by canceling out the external field effect,
VnH

xy = (VH+
xy +VH−

xy )/2.

3. Data Analysis

To study BKT dynamics in superconductors, there are two main approaches, the “con-
ventional” approach and the dynamic scaling analysis [33]. In the conventional approach,
the following signatures in transport properties in the I → 0 A limit are often used to
recognize a BKT transition. (1) Within a temperature region slightly above TBKT, the Ohmic
longitudinal resistance has a unique temperature dependence [34],

Rxx(T)/Rn ∝ exp
{
−2[b(TMF

c − TBKT)/(T − TBKT)]
1/2}

(1)

where Rn is the normal-state resistance and b is a dimensionless parameter. The mean-field
superconducting transition temperature TMF

c is generally set to the midpoint temperature
Tmid

c (close to the inflection temperature) [9,12,14], which is about 24.70 K. The above
exponential behavior is in contrast to that of the paraconductivity effect (due to amplitude
fluctuations), which shows a power-law divergence [35]. (2) The isothermal current-voltage
relation around TBKT obeys a power law V ∝ Iα at low currents, which differs from the
exponential dependence for vortex motion, owing to flux depinning [36]. (3) The exponent
α(T) has a “universal jump” from 1 to 3 upon approaching TBKT from above. Such a
universal jump is regarded as the hallmark of BKT transition. In the BKT theory, α(T) is
proportional to the superfluid density, therefore, the jump in α(T) means discontinuity in
superfluid density [37], which is called the Nelson–Kosterlitz jump in literature.

According to Equation (1), R/Rn in logarithmic scale is plotted as a function of
(T − TBKT)

−1/2 in Figure 1. A linear dependence is shown in between Tzero
c and 24.81 K

with the fitted parameters TBKT = 24.42 ± 0.01K and b = 2.10 ± 0.01. Note that the TBKT is
very close to the zero-resistance temperature Tzero

c , similar to previous reports in cuprate
systems [9–12]. For Tmid

c <T<Tonset
c , however, paraconductivity effect usually becomes

dominant. However, we were not able to fit the R(T) data in this region to either 2D or 3D
forms of Aslamazov–Larkin theory [35]. This suggests a dimensional crossover and/or
robustness of phase fluctuations in the range of Tmid

c <T< Tonset
c .

The isothermal I − V characteristics at T = 24.40–24.72 K with I = 0.03–4 mA are
displayed in a log–log plot shown in Figure 2a. The linearity confirms the expected power–
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law relation. The exponent α, represented by the slope, changes with temperature. For
T > 24.56 K, the α value is close to 1.0, namely, the I − V curves are basically Ohmic. When
approaching TBKT, α increases abruptly, and it goes to 3.6 ± 0.3 at 24.40 K. The inset of
Figure 2a clearly shows a jump with α = 3.0 ± 0.2 at TBKT, which suggests the characteristic
Nelson–Kosterlitz jump anticipated for a BKT transition.
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Strictly speaking, the above approach is valid only in the limit I → 0 A. Thus it is
necessary to perform a dynamic scaling analysis, which also holds for finite currents [33].
According to the FFH theory [29], the scaling form for a 2D superconductor can be written
as [33,38],

(I/T)(I/V)1/z = P±(Iξ±/T) (2)

where z is the dynamic exponent, P+(−) is the scaling function for temperature above (below)

TBKT, and ξ+∼ exp[b(TMF
c −T)/(T−TBKT)]

1/2(ξ−∼ exp[b(TMF
c −TBKT)/2π

(
TBKT − T)]1/2 )

is the correlation length above (below) TBKT.
Figure 2b plots Iξ/T vs. (I/T)(I/V)1/z, according to Equation (2). By setting the afore-

determined TBKT = 24.42 K, and with the fitted parameters b = 2.1 ± 0.1 and z = 1.8 ± 0.2,
all the I − V data points in Figure 2a basically fall onto two branches of the scaling curves
(although the branch for T < TBKT are limited to one set of I − V data with T = 24.40 K).
Since the critical I − V curve follows V ∝Iz+1 at TBKT, the exponent is 2.8 ± 0.2 at the
BKT transition, consistent with the result of above conventional approach. Besides, the
value of parameter b is the same with that extracted by fitting R/Rn with Equation (1).
Therefore, the FFH dynamic scaling analysis also suggests a BKT phase transition in
Ba(Fe0.914Co0.086)2As2 crystals.

As we know, BKT transition is driven by the unbinding of vortex–antivortex pairs.
Below TBKT, the thermally exited vortices are in pairs because of the attractive interaction.
At TBKT, the vortex pairs start to unbind, and free vortices are generated due to the
contribution of entropy to the free energy. It is the unbound free vortices that contribute
to the nonzero longitudinal resistance expressed by Equation (1). Interestingly, such free
vortices are able to induce an abnormal nonzero V0

xy, like the case in CuSCs [18,19]. So
probing V0

xy may supply further evidence for the BKT transition.
Figure 3 shows V0

xy as a function of temperature in Ba(Fe0.914Co0.086)2As2 crystals. The
V0

xy value is virtually zero in the normal state (T > Tonset
c ) and the superconducting state
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(T < Tzero
c ). A nonzero peak-like V0

xy appears exactly within the region of superconducting
transition. The maximum of V0

xy is located around the midpoint of the resistive transition.
It is noted that the sign and the value of the maximal V0

xy depends on the electrode
configuration with respect to the sample orientations. For instance, when the sample is
turned over, V0

xy just changes the sign. Another feature of the nonzero V0
xy is that the

left side of the V0
xy peak coincides well with the longitudinal signal, i.e., V0

xy is basically
proportional to Vxx for Tzero

c < T < Tmid
c .
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Figure 3. Temperature dependence of the zero-field transverse (left axis) and longitudinal (right axis)
voltages for Ba(Fe0.914Co0.086)2As2 crystals. The transverse voltage was obtained by V0

xy = (VBD/AC

− VAC/BD)/2, and the inset depicts the guided motion of an unbound vortex pair as well as the
configuration for the measurement of VBD/AC.

The non-Hall-type transverse voltage in the absence of external magnetic field at
superconducting transition was explained by the guided motion of thermally excited
vortices [18,19,39]. In Ba(Fe1−xCox)2As2, the guided motion of vortices (or in other words,
with anisotropic flux pinning) are supported by the in-plane anisotropy [40] and stripe-
like STM image [41]. Assuming a simple situation that fluxons can only move along the
guiding direction in an angle θ with respect to the current A→ C as shown in the inset
of Figure 3, according to Reference [42], the fully guided motion of vortices generates not
only longitudinal electric field,

EAC
// = n f Φ0(FL sin2 θ − Fp sin θ)/ηc (3)

but transverse electric field also,

EBD
⊥ = n f Φ0(FL sin θ cos θ − Fp cos θ)/ηc (4)

where nf refers to sheet density of free vortices, Φ0 is flux quantum, Fp is the weak pinning
force along the guiding direction, η is the damping coefficient of vortex motion, and c is the
speed of light. When permutating the voltage and current, the angle between the guided
motion and current turns out to be (π/2 + θ), and the transverse field due to current B→ D
becomes,

EAC
⊥ = n f Φ0(FL sin θ cos θ − Fp sin θ)/ηc (5)



Materials 2021, 14, 6294 6 of 9

Since V = Ed (d is the length of the diagonal of the sample), and V0
xy = (VBD/AC −

VAC/BD)/2, V0
xy measured should be,

V0
xy =

√
2dn f Φ0Fp sin(θ − π/4)/ηc (6)

Obviously, V0
xy is nonzero as long as θ 6= (k +1/4)π (k is an integer) in the presence

of free vortices. The sinusoidal variation on θ qualitatively agrees with our experimental
observation that V0

xy depends on the electrode configuration with respect to the sample
orientations. When the sample is turned over, and the same electrode configuration is kept,
θ changes into (π/2 − θ). Equation (6) gives V0

xy

∣∣∣θ→(π/2−θ) = −V0
xy, which exactly meets

the experimental observation. In addition, Equations (3) and (6) explain the coincidence
of longitudinal and transverse signals in Figure 3, because both are proportional to nf. At
T ≥ Tmid

c , nf decreases rapidly since the superconducting Cooper pairs dissociate. This
explains the drop in V0

xy above Tmid
c . The nonzero V0

xy is extended to 26.0 K, suggesting
superconducting phase fluctuations above Tc, such as the case in cuprate superconduc-
tors [20].

We also measured the transverse voltage under external magnetic fields. Figure 4a
shows temperature dependence of VH+

xy and VH−
xy defined in the experimental paragraph.

In the normal state above Tonset
c ,VH+

xy and VH−
xy are mutually antisymmetric with respect

to the applied field, consistent with usual Hall effect. The Hall voltage VHall
xy , obtained

by VHall
xy = (VH+

xy −VH−
xy )/2, is shown in Figure 4b. Indeed, VHall

xy increases linearly with
increasing field in the normal state (shown in the inset). The value and sign of VHall

xy is
consistent with previous reports [28]. At the superconducting transition, an anomalous
sign reversal was observed, similar to previous study on Ba(Fe0.9Co0.1)2As2 crystal [43].
Here we emphasize that this anomalous sign reversal is related to applied fields, as it
changes sign upon field reversal. Further discussion on its origin is beyond the scope of
this paper.
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Figure 4. (a) Transverse voltages VH+
xy and VH−

xy at different directions of external magnetic fields as functions of temperature
for the Ba(Fe0.914Co0.086)2As2 crystals. (b) and (c) plot the temperature dependence of Hall and non-Hall transverse voltages,
respectively. See the experimental method in the text for details.

At the superconducting transition, however, the transverse voltage does not change
sign upon reversal of magnetic field, especially under low magnetic fields. So, there exists
a non-Hall-type signal VnH

xy , which is shown in Figure 4c. Similar to the V0
xy signal shown

in Figure 3, VnH
xy also exhibits a peak at the superconducting transition, and the peak height

decreases systematically with increasing magnetic field, which implies that VnH
xy , together

with V0
xy, comes from the same origin. If VnH

xy is due to the guided motion of vortices, as
was earlier discussed in Na-Ta foils [42], the decrease in VnH

xy can be qualitatively explained
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by the decrease of anisotropic pinning under magnetic fields (the pinning force perpen-
dicular to the vortex-guided direction is reduced by the increasing number of vortices
(due to the increasing magnetic field), and the vortices may easily slip along this direction,
which smears out the anisotropic pinning effect). Here we should mention an alterna-
tive explanation for the non-Hall voltages in terms of asymmetric inhomogeneity [44].
However, even if some unavoidable minor asymmetric inhomogeneity plays a role for the
non-Hall signal, it cannot bring about the BKT dynamics with α(T) = 3 at TBKT by itself.
Besides, numerical simulations [45] indicate that inhomogeneity in Tc merely broadens
the BKT transition without changing the universality class (z = 2), which agrees with our
experimental observations.

4. Summary and Discussion

The possible appearance of BKT-type phase transition in Ba(Fe1−xCox)2As2 bulk
crystals suggests a quasi-2D nature for iron-based superconductivity. Indeed, 2D antifer-
romagnetic spin fluctuations, which are mostly believed to be the glue of Cooper pairing,
were revealed in BaFe1.84Co0.16As2 by neutron scattering experiment [46]. The 2D nature
of superfluid density was found in Li(C5H5N)0.2Fe2Se2 superconductor [47]. Recently, a
2D-like (or BKT-like) nature in organic ion intercalated FeSe superconductors (TBA)xFeSe
is also supported by both anisotropic transport and I − V curves [48]. Furthermore, the
observation of high-temperature superconductivity in FeSe monolayer grown on SrTiO3
substrate [49] directly suggests 2D superconductivity in FeSCs. The thickness of the FeSe
monolayer is only about 2.8 Å, which means that the coherence length perpendicular to the
layers, ξc, is shorter than 2.8 Å. Therefore, it is not so surprising that 2D superconducting
behavior was manifested in Ba(Fe1−xCox)2As2, because the FeAs interlayer spacing is about
6.5 Å [28]. Here we point out that the conventional estimation of ξc from the anisotropy
ratio in Hc2 [50] using ξab/ξc = H//

c2 /H⊥c2, which gives ξc ~ 25 Å, may be misleading. This
is because the measured Hc2 values are basically Pauli-limited (rather than orbital-limited)
and FeSC are multi-band superconductors. For a specific superconducting pairing channel,
ξc could be significantly smaller than the simple estimated from Hc2.

To summarize, we have presented the possible evidence for BKT phase transition
in a typical FeSC Ba(Fe0.914Co0.086)2As2. The observation of non-Hall transverse voltage,
probably caused by the guided motion of thermally activated vortices, in turn, further
indicates the BKT scenario with vortex–antivortex unbinding. Our results suggest that,
similarly to CuSCs, two-dimensionality also plays an important role for high-temperature
superconductivity in iron pnictides.
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