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Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsy-
chiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional
control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However,
such an account is critical to guide the development of next-generation pharmacotherapies aimed at fore-
stalling or remediating the global burden associated with disorders of attention. Here, we summarize current
neuroscientific understanding of how attention affects single neurons and networks of neurons. We then
review key results that have informed our understanding of how neuromodulation shapes these neuron
and network properties and thereby enables the appropriate allocation of attention to relevant external or
internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled
experimentally in the near future, thereby critically increasing our mechanistic understanding of how atten-
tion is implemented at the cellular and network levels.
The limited processing capacity of the perceptual system poses

a complex computational problem for humans and other organ-

isms: which inputs are relevant to current behavioral goals?

Decades of research has now been devoted to understanding

how neurons instantiate the required ‘‘selectivity’’ that allows

an organism to prioritize, or bias, the processing of relevant

over irrelevant inputs. Neuronal processing may be biased by

both bottom-up and top-down influences. The former reflects

the biasing of sensory processing due to stimulus saliency

(brightness, movement, size, for example), which causes fea-

tures to ‘‘pop-out’’ from their surroundings to capture attention.

Top-down processing on the other hand reflects the voluntary

guidance of attention to locations, features, or objects in the

environment. In this way, top-down attention allows for the

voluntary processing of relevant over irrelevant inputs in line

with the current behavioral goals of the organism (Desimone

and Duncan, 1995).

A network of prefrontal and parietal cortical areas is critically

involved in the selection required for top-down attention, and

other high-level cognitive functions such as working memory

or inhibitory control (Bichot et al., 2015; Corbetta and Shulman,

2002; Fedorenko et al., 2013; Moore and Armstrong, 2003).

The state and functionality of this network depend on tightly

controlled activity in brainstem neurons that release neuromodu-

lators at their target sites. Neuromodulators configure neuronal

circuits and thereby specify output properties (Marder, 2012).

They thus shape information processing in local and large-scale

neuronal networks, such that relevant, over irrelevant, informa-

tion is prioritized. This in turn drives behavior the subject hopes

to be rewarding or behavior that minimizes adverse outcomes.

Understanding precisely how this is achieved at the level of

single neurons, local networks, or large-scale networks is vital

for basic and clinical neuroscience. Neuromodulators most

strongly implicated in high-level cognitive functions are acetyl-

choline (ACh), dopamine (DA), noradrenaline (NA), and serotonin
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(5-HT). In this review, we focus on their relevance for top-down

attentional control. While we will focus on their role in relation

to attention, the above neuromodulators have major roles in

other aspects of cognition, such as reward signaling (e.g., ACh

and DA, Richardson and DeLong, 1986; Rutledge et al., 2015;

Schultz, 2015), working memory (DA, NA, Arnsten and Gold-

man-Rakic, 1990; Gamo et al., 2010; Mao et al., 1999; Sawagu-

chi and Goldman-Rakic, 1994; Wang et al., 2004; Williams

and Goldman-Rakic, 1995), or inhibitory control (NA, DA, 5-HT,

Chamberlain et al., 2006; Nandam et al., 2011, 2013, 2014; Win-

stanley et al., 2006).

An important point to address from the outset is how atten-

tion, i.e., the top-down prioritization of behaviorally relevant

inputs, differs from working memory. Working memory can be

conceived as an active processwhereby stimulus or internal rep-

resentations are stored ‘‘on-line’’ to prevent temporal decay or

intrusion from competing or distracting stimuli that are outside

the current focus of attention. Dissociating effects of attention

from those of working memory is difficult and in practice the

two processes are highly interactive (Awh and Jonides, 2001).

Attention, as conceptualized in this paper, is a selection mecha-

nism that allows for the preferential processing of task-relevant

information over irrelevant (distracting) information, i.e., it is

a filter mechanism. This selection is driven by currently active

behavioral goals held in workingmemory. In that sense, attention

acts in the service of working memory. However, behavioral

paradigms employed in neurophysiological studies highlight

the potentially close coupling of attention and working memory

(e.g., cue-guided spatial working memory tasks or cue-guided

spatial attention task). In the cue-guided spatial workingmemory

task, a brief spatial cue will capture attention, which then triggers

the working memory signal that enacts the behavioral goal of a

memory-guided saccade to cued spatial location. We contend

that covert spatial attention would also be allocated to the

cued location during the memory period, rendering the two
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processes largely inseparable. Here, the neural correlates of

either process would be ‘‘delay activity’’; that is, activity that

occurs (or persists) even after a behaviorally relevant stimulus

(or cue) is removed from the sensory environment (Fuster,

1973). Similarly, in a cue-guided spatial attention task, a transient

cue (either spatial or symbolic) will activate a spatial working

memory signal specifying a location that should be monitored

for the occurrence of a target, and this monitoring (the preferen-

tial processing of information) will be performed by spatial selec-

tive attention. Again, in this scenario the effects of attention and

working memory during the monitoring period are difficult to

dissociate, even if the initial generation of the top-down goal

(the working memory) may be briefly separable from the atten-

tional signal (the monitoring itself). Given the pervasive use of

these behavioral paradigms in monkey neurophysiology (e.g.,

Chang et al., 2012; Funahashi et al., 1989), we draw on evidence

from both in this review.

The focus of this review will not be on how the different recep-

tors affect specific aspects of cellular signaling, or how behav-

ioral studies have informed our knowledge of cognitive aspects

of attention. Rather, we aim to delineate how these neuromodu-

lators enable attentional signaling, either through direct action,

or by enabling network states, which favor top-down attentional

selection. Such a low-level mechanistic account is necessary to

validate work that conceptualizes high-level neuromodulator

functions from a computational and theoretical perspective

(for example, Yu and Dayan, 2005), and it may help to under-

stand why neuropharmacological manipulations can be task

and context specific. Finally, such a mechanistic account is

required to guide the development of next-generation pharma-

cotherapies. We note from the outset that, although a full under-

standing of the neuromodulation of attention is not possible

given current data, we review the state-of-the-art and highlight

important questions that can be addressed in the near future.

Neuromodulators act mostly through metabotropic receptors,

which activate different G-proteins and thereby trigger second

messenger cascades. They affect different receptor types and

can thereby enhance or reduce transmitter release, synaptic ef-

ficacy, or postsynaptic excitability in neuronal circuits. Excep-

tions to the metabotropic neuromodulator pathways exist for

ACh, which can act through ionotropic nicotinic receptors, and

for 5-HT, which can act through the ionotropic 5-HT3 receptor.

Detailed reviews regarding the different receptors involved and

their action can be found elsewhere (e.g., Beaulieu and Gainetdi-

nov, 2011; Hein, 2006; Nichols and Nichols, 2008; Thiele, 2013).

The effects of these neuromodulators follow the classic Yerkes-

Dodson (inverted U-curve) dose-response relationship (Yerkes

and Dodson, 1908). This describes the phenomenon that either

too little or too much neuromodulatory drive is equally detri-

mental to cognitive ability. This relationship has been described

for ACh (Smucny et al., 2015), DA (Vijayraghavan et al., 2007),

NA (Aston-Jones and Cohen, 2005; Aston-Jones et al., 1999),

and 5-HT (Cano-Colino et al., 2014).

To link neuromodulatory action to attentional effects on

neuronal activity, we first provide a brief account of how top-

down attention affects neuronal activity, i.e., attention that is

directed to spatial locations, objects, or features of the world.

Detailed review articles of these effects can be found elsewhere
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(e.g., Desimone and Duncan, 1995; Maunsell and Treue, 2006;

Maunsell, 2015; Miller and Buschman, 2013). Our aim here is

to link the effects of attention on single neurons and circuits

to those same effects reported for neuromodulators. This link

is in many cases indirect, as our knowledge of the actions of

neuromodulators on cell and population activity arises largely

from studies where attention was not manipulated. Neverthe-

less, the extant data allow us to delineate likely scenarios that

describe how neuromodulator actions could aid attentional

selection.

Effects of Attention on Neuronal Processing
Over the course of the past 30 years, a large number of studies

have delineated the neuronal signatures of top-down attention.

Top-down attention is defined as the cognitive process by which

an individual selects and prioritizes the processing of specific

aspects of information. This cognitive process has neural corre-

lates, and we use the term ‘‘top-down attention’’ as a descriptor

of neuronal activity changes that occur following the selection

process. The behavioral benefits associated with top-down

attentional selection are then an emergent property of activity

changes in single neurons and in neuronal populations that occur

within an area and between multiple areas.

One of themain neuronal correlates of attention is an alteration

to neuronal firing rates (Reynolds et al., 2000; Spitzer et al., 1988;

Treue and Maunsell, 1996). Neurons that represent the focus

of attention respond differently to the inputs they receive.

In general, neurons representing attended locations, features,

or objects show increased firing rates. This phenomenon has

been observed across all cortical and subcortical areas investi-

gated (e.g., Krauzlis et al., 2013; Noudoost et al., 2010). How-

ever, attention can also result in suppression of neuronal activity

for unattended locations or features (Martinez-Trujillo and

Treue, 2004). The ways in which attention changes neuronal

input-output relationships were originally captured by different

models of ‘‘gain change.’’ Gain change describes how neuronal

input-output relationships are affected by attention. These gain

changes can take different forms, such that responses are either

proportionally increased for all stimuli (response gain change),

or mostly for less-salient stimuli (contrast gain change), or by a

reduction in responses to less-salient (non-preferred) stimuli

and an increase in responses to salient (preferred) stimuli (see

Figure 1A, Martinez-Trujillo and Treue, 2004; McAdams and

Maunsell, 1999; Reynolds et al., 2000; Thiele et al., 2009; Willi-

ford and Maunsell, 2006). These different models can, to some

extent, be unified within the normalization model of attention

(Lee and Maunsell, 2009; Mitchell et al., 2009; Ni et al., 2012;

Sanayei et al., 2015). This model assumes that attention affects

the gain of excitatory, but also of inhibitory neurons, thereby

normalizing the increased excitation induced by attention. In

extrastriate and frontal cortex, attention does indeed increase

the activity in putative excitatory and putative inhibitory cells

(Mitchell et al., 2007; Thiele et al., 2016). At first glance,

it may seem counterintuitive that attention increases firing

rates, when increased inhibition should counter such an effect.

However, this effect can be understood in terms of competing

neuronal populations that represent different locations of

features (Reynolds et al., 1999). Attention alters the balance
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Figure 1. Schematic that Exemplifies Some of the Effects Attention Has on Cellular Activity and on Population Activity
Feedback and neuromodulator influences alter the drive in excitatory (blue) and in inhibitory (red) cells, which thereby exert increased influence on one another
and the rest of the network, leading to overall increased, but balanced excitation, and inhibition. Exemplified are three scenarios, which have been described in
the literature when attention is deployed to a spatial location and/or to specific stimulus features. These can also occur when neuromodulators are applied to the
local network.
(A) A result thereof is a gain change, i.e., a change of the output a neuron produces given a specific input.
(B) Another effect of increased balanced excitation and inhibition is an increase in gamma oscillations of the local field potential, indicative of higher neuronal
coherence, proposed to improve information exchange between selected neuronal populations.
(C) Attention and neuromodulators also change the relationship between tuning similarity and noise correlations of neuron pairs, such that population coding
properties are improved.
(D) These changes are reminiscent of altered network attractor dynamics, which stabilize network states, reduce fluctuations, and increase the ability to stay task
focused. a.u., arbitrary units; Hz, frequency in Hertz.
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between excitation and inhibition of this competition (Reynolds

and Heeger, 2009). The attention-induced normalization sup-

ports neuronal computations that enable winner-take-all states

(Carandini and Heeger, 2011). Winner-take-all network states

occur, for example, when attention biases one neuronal popula-

tion over another to win the competition for sensory representa-

tion (Reynolds et al., 1999; Wang, 2008). The winning population

shows increased neuronal activity and suppresses its com-

petitors. Competition can also occur in the decision space.

When multiple decisions are possible but competing, the inter-

action between the representations converges toward a single
(winning) choice (Reynolds et al., 1999; Wang, 2008). These

winner-take-all states occur naturally in neuronal attractor net-

works. Attractor networks move from labile states, where they

can undergo regular and easy state transitions, to stable (attrac-

tor) states, where one representation dominates. The stability of

these states is determined by the strength of inhibitory and excit-

atory drive (Deco and Hugues, 2012; Deco et al., 2014). By

increasing inhibitory and excitatory drive, attention can allow

competing unstable patterns of neuronal activity (representa-

tions) to converge to a more stable pattern of activity, such

that a single representation dominates (see Figure 1D for a
Neuron 97, February 21, 2018 771
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schematic). These stable activity patterns can be associated

with a specific attentional state (such as a location), an item

held in working memory, a decision that has been formed, or a

motor plan. Importantly, the stability of the activity pattern in

the attractor network (illustrated by the depth of the valley in

Figure 1D) can be influenced by different neuromodulators (see

later parts of the review). Cognitive operations or neuromodula-

tors supporting labile states would enhance cognitive flexibility

(but potentially at the cost of increased distractibility), whereas

cognitive operations or neuromodulators supporting stable

states would benefit task focus.

Stabilized attractor networks are characterized by increased

firing rates for the winning population and decreased firing rates

for the losing populations (the described gain changes). In addi-

tion, stabilized attractor networks exhibit reduced neuronal rate

variability and rate co-variability (Deco and Hugues, 2012; Deco

et al., 2014). These effects equally occur in neuronal populations

representing the focus of top-down attention (Cohen and Maun-

sell, 2009;Herrero et al., 2013;Mitchell et al., 2007, 2009;Rabino-

witz et al., 2015; Ruff and Cohen, 2014; Thiele et al., 2016).

Increased neuronal gain and reduced rate variability both in-

crease the signal-to-noise ratio (SNR), that is, the ability of neu-

rons (or neuronal populations) to distinguish between a relevant

and an irrelevant stimulus, to detect the presence or the absence

of a stimulus, or discriminate between two different stimuli. Alter-

ation of rate co-variability (also termed noise correlation) deter-

mines to what extent the neuronal activity in any two cells is

redundant and thus limits how much additional information can

be obtained by decoding the input from both neurons compared

to just one. High levels of co-variation can alternately be detri-

mental, beneficial, or irrelevant (Abbott andDayan, 1999; Panzeri

et al., 1999). These outcomes are determined by the tuning sim-

ilarity between the neurons. Specifically, a certain change to the

correlational structure of neuronal tuning and of the rate co-vari-

ability (noise correlations) increases the amount of information

neuronal populations can encode, largely by reducing redun-

dancy (see Figure 1C for a schematic of this scenario). Thus,

attention induces gain change, reduces rate variability, and alters

noise correlations, which jointly can increase population coding

abilities, i.e., the amount of information a population of neurons

can encode about different stimulus or task conditions. Impor-

tantly, altered neuromodulator drive can affect neuronal gain,

rate variability, and noise correlations inways similar to attention.

The increase in inhibitory drive may also contribute to atten-

tion-induced changes in oscillatory activity in the gamma fre-

quency range (Figure 1B), which requires cyclic bouts of excita-

tion-inhibition (Buschman and Miller, 2009; Chalk et al., 2010;

Fries et al., 2001; Gregoriou et al., 2009; Kohl and Paulsen,

2010). Increased oscillatory activity may improve communica-

tion between selected neurons within and between brain areas

(Bosman et al., 2012; Gregoriou et al., 2009). However, attention

does not solely affect the strength of gamma frequency oscilla-

tions. Changes in lower-frequency bands, such as theta (Chang

et al., 2016; Womelsdorf et al., 2010), alpha (Bauer et al., 2012;

Bonnefond and Jensen, 2015; Buffalo et al., 2011; Buschman

et al., 2012; Deco and Thiele, 2009; Jensen et al., 2014), and

beta frequency (Bauer et al., 2012) equally are prominent and

are assumed to attain specific functional roles. For example, de-
772 Neuron 97, February 21, 2018
synchronized alpha oscillations are generally associated with

enhanced top-down attentional control (O’Connell et al., 2009),

and beta band oscillations have been discussed as amechanism

that promotes feedback influences (Fries, 2015).

It is well established that frontal and parietal areas control

top-down attention (Corbetta and Shulman, 2002). These areas

induce attentional effects in sensory and associative areas

through feedback connections (Buschman and Miller, 2009;

Gregoriou et al., 2009; Moore and Armstrong, 2003). In addition,

frontal areas are connected to brainstem neuromodulator nuclei,

whereby they affect their own neuromodulator tone, as well as

the neuromodulator tone in other brain areas (Dembrow and

Johnston, 2014). This pattern of connectivity may account for

the similarity of neuronal changes associated with top-down

attention and those seen when the brain undergoes large-scale

‘‘state’’ changes that are under neuromodulator control (Harris

and Thiele, 2011). Because of this, it has been argued that the

changes associated with attention are linked to large-scale

changes but occur at a more local level and show more modest

effects (Harris and Thiele, 2011). Attention indeed controls

cortical state in circumscribed neuronal populations within task

relevant brain regions (Engel et al., 2016; Rabinowitz et al.,

2015). Whether these state changes are induced by direct feed-

back, by alteration of neuromodulator tone, or by a mix of the

two is unknown. An equally important question is whether neuro-

modulators, through tonic release, simply enable network states

upon which feedback input can act to induce the described

attentional effects. Alternatively, or in addition, neuromodulators

play a more active role, whereby their phasic and more local

release directly supports states of attention at the neuronal level.

In the sections that follow, we review the evidence for a direct

role of distinct neuromodulators (ACh, DA, NA, 5HT) in attention.

This will be followed by more indirect arguments, where the

action of a neuromodulator at the cellular or network level reca-

pitulates the action of attention, but for which direct evidence

linking the two is not available.

ACh and Attention
The cortically projecting cholinergic system, arising in the basal

forebrain (BF), has long been associated with different cognitive

functions, such as arousal, attention, learning, memory, and

even consciousness (Everitt and Robbins, 1997; Hasselmo and

Sarter, 2011; Sarter and Bruno, 1997). However, its contribution

to attention has been challenged, on the basis that BF cholinergic

projections to the cortex lack spatial specificity (Mesulam et al.,

1986; Sarter et al., 2009) and temporal precision (Sarter et al.,

2009) and are strongly involved in global brain state changes

(Lee and Dan, 2012; Moran et al., 2013; Varela, 2014), such as

transitions from sleep to wakefulness, or from quiet wakefulness

to active exploration (Harris and Thiele, 2011; Vanderwolf, 1988).

These enduring states are assumed to be driven by changes in

tonic and burst (phasic) activity levels of BF cholinergic neurons

(Lee et al., 2005). In contrast, top-down attention is amechanism

that has high selectivity in the spatial, feature, or object domains,

and it can act with high temporal precision (Coull and Nobre,

1998). Yet, ample evidence points to a specific involvement

of the cholinergic system in top-down attention. For example, le-

sions to the cholinergic system in monkeys and rodents produce
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selective attentional deficits, while sparing other cognitive func-

tions such as learning and memory (Dalley et al., 2004; Gill

et al., 2000; McGaughy et al., 1996; Voytko et al., 1994).

Increased cholinergic drive benefits attentional performance

particularly under high task demand and in the presence of dis-

tracting stimuli (St Peters et al., 2011). Finally, polymorphisms

of the gene (CHRNA4) encoding the a(4) subunit of a(4)b(2) nico-

tinic receptors have been associated with individual differences

in top-down attentional control (Greenwood et al., 2009).

In addition, the spatial specificity of BF cholinergic projections

is much more precise than previously thought (Gielow and

Zaborszky, 2017; Zaborszky et al., 2015), whereby cholinergic

neurons can project to fairly localized parts of the cortex (or

subcortical areas, Figure 2C for a cartoon) and in turn have highly

selective input relationships (Gielow and Zaborszky, 2017).

Activity in cholinergic neurons is not only related to global

behavioral states (Lee et al., 2005). Although cholinergic neurons
show tonic activity that is state dependent (Manns et al., 2000),

they also generate temporally precise phasic ACh release in

rat prefrontal cortex upon attention demanding cue detection

(Figure 2A; Parikh et al., 2007; Sarter et al., 2009). Local gluta-

mate co-release is necessary, but not sufficient for these tran-

sients to occur (Sarter et al., 2014). Importantly, precisely timed

activation of cholinergic neurons by means of channelrhodopsin

increases cue detection probability and causes increased levels

of false alarms on no-cue trials. Finally, precisely timed inhibition

of these neurons results in reduced likelihood of cue detection

(Gritton et al., 2016). Moreover, optogenetic activation of cholin-

ergic BF neurons, or their terminals in V1, increases trial-by-trial

performance in mice in a visual detection task (Pinto et al., 2013).

How ACh enables neurons to generate attention-related

signals is poorly understood. Attention-induced rate changes

in macaque primary visual cortex (V1) depend on muscarinic,

not nicotinic ACh receptors (Herrero et al., 2008). At the same
Neuron 97, February 21, 2018 773
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time, behavioral studies imply a role of muscarinic and nicotinic

receptors in attention (Levin and Simon, 1998; Mansvelder et al.,

2006). Nicotinic receptors might thus contribute to attention-

induced activity changes in higher cortical areas, given that

cell-type-specific expression of muscarinic and nicotinic recep-

tors changes with cortical hierarchy (Disney et al., 2006, 2014;

Disney and Aoki, 2008). Indeed, in macaque frontal eye field

(FEF) muscarinic and nicotinic receptors contribute to neuronal

signatures of attention in a cell-type-dependent manner (Thiele

et al., 2015). For example, muscarinic receptors contribute to

attentional modulation in broad spiking (putative pyramidal)

cells, whereas muscarinic and nicotinic receptors contribute to

attentional modulation in narrow spiking (putative inhibitory) cells

(Thiele et al., 2015).

Together, these data demonstrate that cholinergic signals are

involved in attentional signaling, through both phasic and tonic

activity. In addition cholinergic input is essential for spatial work-

ing memory functions signals in macaque dorsolateral prefrontal

cortex (dlPFC). Spatial working memory is severely impaired

following cholinergic depletion of the dlPFC (Croxson et al.,

2011). Moreover, nicotinic alpha-7 receptor activation is required

to enable NMDA-receptor-mediated spatial working memory

signals in layer II dlPFC neurons (Yang et al., 2013), whereas

nicotinic alpha4beta2 receptors help to maintain spatial working

memory signals in dlPFC under distracting conditions (Sun et al.,

2017). Based on this, we speculate that nicotinic receptors are

also involved in the ability to keep top-down goals in mind

(a form of working memory), which may thus affect the strength

of attentional control. It is worth noting that the role played by

ACh in dlPFC may differ in important ways from its role in V1.

In V1, presynaptic NMDA receptors could mediate ACh release

to enhance attention, whereas in dlPFC postsynaptic a7

activation supports NMDA-receptor-mediated working memory

signals.

Cholinergic Contribution to Neuronal Coding
At the cellular and network level the effects of AChmirror those of

top-down attention. Attention generally increases neuronal firing

rates and most studies report the same when ACh is applied

(Disney et al., 2007; Herrero et al., 2008; Pinto et al., 2013; Rob-

erts et al., 2005; Sillito and Murphy, 1987; Thiele et al., 2012;

Zinke et al., 2006). Whether the increased activity with attention

is a consequence of increased cholinergic drive on a trial-by-trial

basis is unknown. Cholinergic transients do not occur on all trials

(Sarter et al., 2014). In addition, cholinergic transients have been

linked to reward signaling rather than attention (Hangya et al.,

2015). This makes a scenario whereby alterations of firing rate

on different trials are mediated by alterations in cholinergic drive

somewhat unlikely. At the same time, spatial and temporal con-

trol of ACh release could in theory be locally induced, even if

cholinergic neurons do not change their firing rates (Figure 2B).

How could this occur? Transmitter release can be triggered

locally within cortical networks through presynaptic NMDA re-

ceptor activation, even if the transmitter releasing terminal

does not receive (generate) an action potential (Kunz et al.,

2013). Additionally, local glutamate release is a requirement for

ACh transients in rat frontal cortex (Parikh et al., 2008). It could

be this glutamate release that acts on presynaptic NMDA recep-
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tors located on cholinergic terminals, whereby ACh is locally

released in a temporally and spatially precise manner. Although

speculative, such a scenario could explain why attentional mod-

ulation of firing rates and firing rate reliability in V1 depends on

NMDA receptor availability (Herrero et al., 2013; Self et al.,

2012). The general explanation of these results is that the atten-

tional phenomenon seen in V1 are a direct effect of feedback

glutamate signaling, which terminates on NMDA rich synapses.

However, it is also possible that feedback-induced glutamate

release results in NMDA receptor activation on ACh terminals,

causing locally increased ACh levels, which increase firing rates

and reduce rate variability (Figure 2B for an illustration of the pos-

sibility). At least in primate FEF, ACh reduces rate variability in a

manner analogous to attention (Thiele et al., 2015, 2016). So how

does increased ACh affect rate variability? We contend this is

most likely achieved by overall increased, but balanced, excita-

tion and inhibition. This results in gain changes and stabilized at-

tractor dynamics, which in turn reduce rate variability. Stabilized

attractor dynamics in this way have additional benefits. Stable

attractor configurations (e.g., directions of attention) are less

prone to external perturbation (distractions) and may help task

focus over short timescales (Figure 1D). Over longer timescales

stabilized attractors could improve overall task focus across tri-

als, conceptualized as ‘‘reduced utility cost’’ (Sarter et al., 2014).

Stabilized attractor networks have additional consequences,

which we turn to next. These include altered neuronal correla-

tions and oscillations, which in turn affect the abilities of neuronal

populations to encode information and communicate efficiently.

Cholinergic Effects on Population Activity
Attention and ACh both affect neural population coding abilities.

Attention induces desynchronized brain states, which are bene-

ficial for coding (Engel et al., 2016; Harris and Thiele, 2011), it

alters oscillatory activity in different frequency bands assumed

to aid coding and communication (Chalk et al., 2010; Fries

et al., 2001; Gregoriou et al., 2009), and it reduces neuronal

co-variability (noise correlations, Cohen and Maunsell, 2009;

Herrero et al., 2013; Mitchell et al., 2009; Rabinowitz et al.,

2015; Ruff and Cohen, 2014) in ways that should benefit informa-

tion encoding (Abbott and Dayan, 1999; Panzeri et al., 1999).

Whether ACh modulation is causally linked to these attentional

effects is largely to be determined (but see Bauer et al., 2012).

What has been shown, however, is that increasing ACh in the

cortex induces effects that are very similar, if not identical, to

those described for attention.

First, ACh is critically involved in altering brain states (Harris

and Thiele, 2011; Metherate et al., 1992) (but see Constantinople

and Bruno, 2011). Second, ACh can increase stimulus-induced

gamma oscillations in visual and prefrontal cortex (Howe et al.,

2017; Munk et al., 1996), whereas blockade of muscarinic recep-

tors results in increased low-frequency (<12 Hz) oscillations

(Harris and Thiele, 2011). Moreover, increasing cholinergic avail-

ability results in an enhanced effect of attention on the hemi-

spheric lateralization of low-frequency oscillations (alpha/beta

frequency, Bauer et al., 2012). Third, increasing cortical ACh

levels reduces noise correlations (Minces et al., 2017; Thiele

et al., 2012). To improve population coding abilities, noise corre-

lations need to be altered in specific ways (Abbott and Dayan,
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1999; Panzeri et al., 1999). Whether or not a reduction in noise

correlation is beneficial to decoding depends on signal correla-

tions. Neuronal pairs with positive signal correlation should

reduce their noise correlations, whereas pairs with negative

signal correlations should increase their noise correlations.

Such changes can be captured by analyzing the slope of the

regression between signal and noise correlation (Minces et al.,

2017). A reduced slope is associated with better coding abilities

in the population. Attention and increased cortical ACh result in

such a reduced slope (Minces et al., 2017; Ruff and Cohen,

2014). These results show that ACh alters the covariance struc-

ture of cortical networks, thereby improving population coding,

rather than simply altering neuronal gain across the cortical

mantle. How could an increase in ACh alter the covariance struc-

ture of the cortical network in such a way? First, ACh increases

overall neuronal gain (Herrero et al., 2008; Thiele et al., 2012),

and it increases the efficacy of feedforward connections (Gil

et al., 1999). Both of these changes will result in a cortical

network that is less affected by slow global activity fluctuation

arising from ‘diffuse’ inputs, and thus will drive noise correlations

to values closer to zero (irrespective of whether noise correla-

tions are initially negative or positive). Second, ACh reduces in-

tracortical (lateral) synaptic efficacy through presynaptic M2 re-

ceptor activation (Hasselmo and Bower, 1992). These lateral

connections are dominated by local neurons and by neurons

with similar tuning characteristics (Martin, 2002), i.e., neurons

with relatively high signal correlations. Reduction of the efficacy

of these connections means that neurons have less mutual

impact on one another, which likely reduces their noise correla-

tions. Overall, these alterations would induce the specific

change that is required to improve coding (Figure 1C).

In future work, it will be important to determine whether any

of the described changes to neuronal activity are specific for

different modes of BF cholinergic activity. The slow tonic mode

has been argued to be related to global and enduring behavioral

state changes, whereas the rapidly fluctuating phasic mode with

high temporal precision has been linked to reinforcement

learning (Hangya et al., 2015), reward (Richardson and DeLong,

1986), and cue detection in an attention task (Parikh et al., 2007).

Notably, brain areas such as the orbital PFC and the insular cor-

tex that encode high-level reward and utility have strong projec-

tions to the BF (Mesulam andMufson, 1984), which could supply

a reward/utility signal to cholinergic neurons. The resulting

cholinergic signal might then set a cortical processing mode

whereby task focus (reward exploitation) is favored. One may

thus ask whether fluctuating levels of ACh release are involved

in the fluctuating allocation of top-down attention. To answer

this, additional cyclic voltammetry in different areas and species

or 2-photon imaging of cholinergic terminals in various areas

would yield invaluable insight. Alternatively, ACh release, in its

tonic mode, might simply shape cortical network interactions

such that attention can allocate neuronal resources adequately.

In the latter scenario, other sources would provide the temporal

and spatial specificity (e.g., feedback from higher cortical areas)

to induce the fine-grained coding changes seen with different

forms of top-down attention. Proposals have been made where

alteration in ACh signals directly link to the allocation of attention

(Herrero et al., 2008; Sarter et al., 2009; Thiele, 2013). Even if ACh
simply acts to enable these behavioral effects, it is crucial that

we delineate the exact mechanism, as this might provide a

more nuanced perspective on the use of cholinergic agents to

enhance attention.

Attention and the Dopaminergic System
DA is strongly linked to reward signaling and the economic deci-

sion variable of utility (Schultz et al., 1997, 2017; Stauffer et al.,

2016) and learning (Waelti et al., 2001). In addition it is a key neu-

romodulator supporting prefrontal spatial working memory sig-

nals (Arnsten et al., 1995, 2012; Sawaguchi and Goldman-Rakic,

1991; Wang et al., 2004; Williams and Goldman-Rakic, 1995).

The DA system is also a primary pharmacological target for dis-

orders such as attention deficit hyperactivity disorder (ADHD),

schizophrenia, and Parkinson’s disease, which are associated

with attention deficits (Arnsten and Rubia, 2012).

Although long hypothesized, it has recently been shown that

DA contributes to spatial attention and to target selection in ma-

caque FEF (Noudoost and Moore, 2011a, 2011b; Soltani et al.,

2013). Noudoost and Moore (2011a) engaged animals in a free

saccade target selection task, where target onsets were system-

atically altered. This led animals to more often choose those tar-

gets that appeared earlier. Infusion of D1 antagonists and D2 ag-

onists into selected locations of primate FEF systematically

shifted the choice function, biasing choices toward locations

represented by neurons that were affected by the DA manipula-

tions. In addition, in a passive fixation task, the infusion of D1 an-

tagonists into FEF altered neuronal responses in remote area V4,

as if attention had been allocated to the receptive field of those

neurons (Figure 3B; Noudoost and Moore, 2011a). The V4

response parameters affected were firing rate, sharpness of tun-

ing, and rate variability. However, no effects were found on V4

activity, when D2 agonists were infused into FEF. The discrepant

results for behavior and neuronal recordings can be explained by

layer-dependent expression of D1 and D2 receptors in macaque

cortex. D1 receptors are expressed in supragranular layers

(which project to area V4) and infragranular layers of the prefron-

tal cortex, whereas D2 receptors are expressed only in infragra-

nular layers, which provide output to the midbrain and brainstem

(Lidow et al., 1991). It may be surprising that a reduction in D1 re-

ceptor action in FEF results in increased behavioral choices of

targets presented at the location the FEF neurons represent,

and in increased activity of V4 that overlaps with the spatial rep-

resentation of the affected FEF neurons. However, this could

result from the mostly inhibitory nature of D1 action. Blocking

this would give the affected FEF neurons a competitive advan-

tage for selection compared with other FEF neurons and may

thereby trigger winner-take-all states in the absence of a cogni-

tive trigger signal. This would then enhance the feedback signal

to V4 in a spatially selective manner. In a follow-up analysis,

these authors used neural network analysis to show that D1 re-

ceptors affected choices by increasing the efficacy of inputs

and recurrent connections, whereas D2 receptors affected

choices by increasing output efficacy (Soltani et al., 2013). The

ongoing development of selective D1 agents for use in humans

(Arnsten et al., 2017) will provide an opportunity in the near future

to arbitrate between the relative roles of D1 and D2 receptors

in spatial attention. Already in line with the macaque studies,
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Figure 3. Neuromodulation of WM Fields,
Remote Feature Tuning, and Specificity of
Dopaminergic Output Signals
(A) Spatial tuning of WM fields is enhanced when
small amounts of D1 agonists are applied in the
vicinity of the neurons, by selectively reducing
activity for non-preferred locations (memory
fields). This is equivalent to a noise reduction.
Spatial tuning of WM fields is equally enhanced
when small amounts of NA a2A agonists are
applied in the vicinity of the neurons, by selectively
increasing activity for preferred locations (memory
fields). This is equivalent to signal enhancement.
Both changes increase the SNR.
(B) Application of D1 antagonists to area FEF en-
hances the tuning of area V4 neurons that have
overlapping receptive fields with the affected FEF
locations.
(C) Hypothetical interactions of dopaminergic
subpopulations carrying specific; based on pro-
jections found in rat. dlPFC, dorsolateral pre-
frontal cortex; FEF, frontal eye field; VTA, ventral
tegmental area; SN, substantia nigra; a.u., arbi-
trary units.
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human work failed to identify a modulatory effect of D2 receptor

activation on visual perception (Gratton et al., 2017).

In spatial working memory tasks, which are conceptually

related to top-down spatial attention, application of a small

dose of D1 agonist increases spatial tuning of macaque dlPFC

memory fields by reducing the activity for non-preferred loca-

tions (Figure 3A; Vijayraghavan et al., 2007), whereas application

of a D1 antagonist in dlPFC improves the spatial tuning of mem-

ory fields by enhancing preferred location activity (Williams and

Goldman-Rakic, 1995). Conversely, D2 agonists do not affect

spatial coding during the working memory delay period but in-

crease saccade-related activity for preferred target locations.

Placed within the context of attention, this would largely match

the results reported by Noudoost and Moore (2011a), where

D1 receptors are involved in the generation of top-down atten-

tional signals (assumed to be reflected by activity in selected

FEF neurons, which affect sensory areas), whereas D2 recep-

tors, located in output layer 5, are involved in motor-related

choice activity (Noudoost and Moore, 2011a; Soltani et al.,

2013). The functional dissociation between D1 and D2 receptors

and their layer-dependent expression raises the question of

whether DA inputs are dissociable. From an anatomical perspec-

tive, work in rodents provides evidence in favor of this view. The

two main sources of cortical DA, namely, the ventral tegmental

area (VTA) and the substantia nigra (SN) have somewhat different

termination patterns in PFC. Input arising from the rodent SN

preferentially terminates in layer I, whereas input from the VTA

preferentially terminates in layer V (schematic in Figure 3C;

Berger et al., 1991). Interestingly, layer 5 inputs, which aremodu-

lated by D2 activation, are assumed to carry value-based infor-

mation (in amodel ofmacaque FEF; Soltani et al., 2013), whereas

inputs to superficial layers, modulated by D1 activation are

assumed to carry stimulus-related information (Soltani et al.,

2013). Speculatively, then SN-DA signals might be more task

and attention related, whereas VTA-DA signals might be more

reward related. Indeed, such differences have been observed
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in working memory tasks (Matsumoto and Takada, 2013).

Whether these results hold in a top-down attention task needs

to be determined. However, in rodents performing a 5 choice se-

rial reaction time task (5-CSRTT) it was found that increasing the

activity of midbrain dopaminergic neurons using chemogenetics

was detrimental to attentional performance, but not response

inhibition (Boekhoudt et al., 2017). Importantly, different aspects

of attention deteriorated when VTA- or SN-DA neurons were

affected. Increasing VTA- or SN-DA activity caused increased

numbers of trial omissions, whereas accuracy (a measure of

attentional performance; Bari et al., 2008) was only affected

when SN-DA neuronal activity was increased (Boekhoudt

et al., 2017). Finally, behavioral features common to attentional

dysfunctions, such as hyperactivity, can be induced by

increasing the activity of VTA- not SN-DA neurons. This hyperac-

tivity was induced when increasing the activity of VTA-DA neu-

rons projecting to the nucleus accumbens, but not of those pro-

jecting to prefrontal cortex (Boekhoudt et al., 2016). Taken

together, these findings are in line with the hypothesis that DA

signals arising in the SN and terminating in superficial PFC aid

the generation of feedback attention signals, whereas those

arising in VTA and terminating in infragranular layers are related

to reward/reward prediction error signaling and thus regulate

choice signals (Figure 3C for a schematic thereof). Additionally,

specific subsets of VTA-DA neurons in rodents are involved in

either working-memory-related or reward-related activity and

have different output and input connectivity. Those involved in

workingmemory (WM) project preferentially to the PFC, whereas

those involved in reward/motivation signaling project prefer-

entially to the nucleus accumbens and orbitofrontal cortex

(OFC) (Lammel et al., 2008). Finally, optogenetic activation of

their respective input (lateral habenula versus laterodorsal

tegmentum) elicits aversion- versus reward-related behaviors

(Lammel et al., 2012, 2014). Whether similar distinctions

exist in primates is unclear and additional work in rodents is

required to test the hypothesized relationships between these
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anatomically segregated connections and the specific signals

they might carry. Regardless, it is now well established that DA

signals have a variety of different effects on cortical networks,

and importantly they serve different functions. These are,

at least in part, segregated into specific anatomical subdivisions.

Together these multiple effects of DA on cognitive functions

helps to strengthen specific aspects of mental representations

(Arnsten, 2011), for example, sculpting representation of sensory

inputs, and biasing outputs in favor of choices that have a good

history of yielding rewards. Within this context, it may not matter

whether the mental representation is rule based, WM related, or

a top-down attention monitoring signal. It seems clear that DA

contributes to all of these, and all of these mental operations

are impaired in psychiatric and neurological disorders of putative

dopaminergic origin. Given the illness burden associated with

these disorders, there is a clinical imperative for the ongoing

development of more selective DA agents. Significant advances

have been made in this space with the development of selective

D1 agonists (e.g., dihydrexidine), which offer the promise of

remediating WM and attention deficits in disorders such as

schizophrenia (Arnsten et al., 2017).

Attention and the Noradrenergic System
The noradrenergic (NA) system affecting the cortex arises from

neurons located in the locus coeruleus (LC, Loizou, 1969). Theo-

rizing around the function of the noradrenergic system has par-

alleled that of the other neuromodulatory systems, being argued

to be non-specific in its projection and in its function. It was

assumed that the cortical projection had very limited anatomical

specificity, other than possibly at the level of right hemisphere

dominance in humans (Grefkes et al., 2010). Moreover, the

assumption was that the level of activity in NA neurons, which

varied between different sleep and wake states determined the

level of ‘‘arousal’’ (for review, see, e.g., Aston-Jones and Cohen,

2005; Aston-Jones and Waterhouse, 2016). Neurons fire toni-

cally at low rates during sleep, at higher rates during normal

wake states, and at yet higher rates when under stress (Aston-

Jones and Bloom, 1981; Aston-Jones et al., 1991; Foote et al.,

1980). These different rates of activity can be linked to differ-

ences in the ability to perform cognitively demanding tasks,

with low performance when tonic activity is either low or very

high (Aston-Jones and Cohen, 2005; Aston-Jones et al., 1999).

Formulating a coherent theory around NA functions is compli-

cated by that fact that NA has different and sometimes opposite

effects dependent on the circuit examined. For example, in sen-

sory cortex NA affects its target neurons through a1, a2, and b

adrenergic receptors. a1 receptor activation generally causes

excitation, a2 activation causes inhibition (reviewed in Berridge

and Waterhouse, 2003), and b adrenergic activation generally

increases excitability (McCormick et al., 1991). The overall effect

of NA release at the cellular level is a reduction in spontaneous

activity and an increase in input-driven activity provided the

stimulus is salient (or preferred), thereby improving the SNR

(in a manner similar to the filter gain change in Figure 1A;

Foote et al., 1980; Waterhouse et al., 1988, 1998). This specific

behavior sets it apart from the action of, e.g., ACh or DA, which,

if excitatory, result in either no change of spontaneous activity, or

even mild increases of spontaneous activity (i.e., akin to the
‘‘response gain’’ change illustrated in Figure 1A). At the single-

cell level, NA might thus cause a shift toward saliency detection,

where weak stimuli are filtered out, and salient stimuli elicit

strong responses (Figure 1A; for an example, Servan-Schreiber

et al., 1990). ACh has been hypothesized to cause similar action,

not necessarily by altering single-cell filter gain mechanisms

uniformly, but rather by network reconfiguration (Thiele, 2013).

However, in primate dlPFC a2 receptor stimulation of layer III

increases delay cell firing (Li et al., 1999) and reduces distracti-

bility (Arnsten and Contant, 1992), while a1 receptor stimulation

decreases delay cell firing (Arnsten, 2011). This discrepancy

between the effects of NA on sensory cortex and PFC suggests

that NA in PFC may be involved in top-down control (attention,

WM) through a2 activation, whereas it is involved in bottom-

up state control through a1 activation in sensory cortex. These

control mechanisms would be differentially activated based on

levels of NA release, as a2 and a1 receptors have differential

NA affinity.

As stated previously, one of the main arguments against impli-

cating neuromodulators in top-down attentional signaling is the

fact that top-down attention is highly specific in the spatial

and/or the feature domain, which affects very localized (or at

least very specific) neuronal populations. Although the spatial

specificity of the NA projections are insufficient to yield the

required top-down resolution, the NA system neverthelessmedi-

ates the spatial specificity of WM signals, by dynamically sculpt-

ing local network interactions (reviewed in Arnsten et al., 2012).

Moreover, the NA projection system is ‘‘less unspecific’’ than

previously argued. For example, certain subsets of NA neurons

exclusively project to the insular cortex, where they aid in the

analysis of enteroception, and these NA neurons in turn are

affected by afferents from the enteroceptive system (Chandler

et al., 2014a;Waterhouse and Chandler, 2016). Moreover, a sub-

set of LC neurons project only to the PFC and not tomotor cortex

in the rat (Chandler et al., 2014a). LC projections to the PFC

differ from those to the orbitofrontal cortex. The former support

attention and extradimensional shifting, whereas the latter sup-

port reversal learning (Chandler et al., 2014b). Finally, specific

prefrontal neurons, even if localized in the immediate vicinity

of one another, are differently affected by neuromodulation,

such that layer 5 cells, which project to the brainstem, show

different general response properties and are affected differently

by NA activation (through a2A receptor activation), than intra-

cortically projecting neurons (Dembrow and Johnston, 2014;

Dembrow et al., 2010). These results are testament that the

brainstem neuromodulator system, even if comparatively unspe-

cific, can mediate very specific and localized effects at cortical

target sites.

As is the case for other neuromodulators, NA neurons also

engage in a phasic response mode, where they respond to

behaviorally relevant stimuli with brief bursts of activity (Aston-

Jones et al., 1991, 1994, 1997; Clayton et al., 2004). Given that

the phasic activity is task dependent (larger when the animal

performs the task well, and larger on correct than on error trials),

and it temporally precedes the behavior, it has been suggested

that it provides a ‘‘temporal attention filter, that facilitates task

relevant behaviour’’ (Aston-Jones and Cohen, 2005). Alterations

in baseline (tonic) activity are also linked to behavior, but in a very
Neuron 97, February 21, 2018 777
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different manner. Higher baseline NA activity is accompanied by

reduced task performance and increased distractibility (Rajkow-

ski et al., 1994). Based on this discrepancy, it has been argued

that strong phasic task-related activity (in conjunction with low

tonic LC-NA activity) helps the animal to stay task focused

(and thereby exploit current reward contingencies; ‘‘exploita-

tion’’), whereas the high tonic activity (in conjunction with low

phasic LC-NA activity) supports a mode where task focus is

low and alternative behaviors are explored for their potential

benefits (‘‘exploration’’, Aston-Jones and Cohen, 2005; Usher

et al., 1999; for an interpretation in terms of uncertainty resolu-

tion, see also Yu and Dayan, 2005). This distinction can also

be couched in terms of high versus low neural gain, which is

increasingly thought to influence attention and decision making

(Eldar et al., 2013). In the context of attractor networks, the

former would be associated with a stabilized state, while the

latter would be associated with a less stable state.

Which of the two NA modes directly affect PFC-dependent

cognitive signals is not entirely clear, but the tonic mode is a

likely candidate. The role of NA on cognitive signals in the PFC

has best been studied in relation to spatial WM (Arnsten, 2011,

2013; Arnsten and Jin, 2014; Robbins and Arnsten, 2009). At

moderate (non-stressed) levels, NA improves WM performance

through a2A receptor activation (Arnsten and Goldman-Rakic,

1985). High levels of NA impair PFC activity and WM perfor-

mance through stimulation of a1 (Mao et al., 1999) and b1 recep-

tors (Ramos et al., 2005), which have lower NA affinity. The WM

delay activity in the prefrontal cortex, while mediated through

recurrent excitation dependent on NMDA receptor activation

(Wang et al., 2013), is strongly modulated by a2A receptor

activation (Wang et al., 2007). The a2A receptor activation im-

proves spatial tuning of WM-related delay activity in PFC neu-

rons, by increasing preferred spatial memory locations, without

affecting non-preferred locations (see Figure 3A for a schematic).

Although a number of studies in humans have also manipulated

a2A signaling during tasks of spatial attention, results are incon-

clusive with some studies reporting effects of clonidine (Coull

et al., 2001), but not others (Gratton et al., 2017).

A role for NA in other aspects of top-down attention, such as

sustained attention, is, however, supported. Low-dose cloni-

dine, which acts pre-synaptically to reduce NA cell firing and

release, increases attentional lapses (Smith and Nutt, 1996).

Notably, this effect was reversed by treatment of a selective

alpha-2-adrenoceptor antagonist. Moreover, methylphenidate,

a psychostimulant used in the treatment of ADHD, which en-

hances NA and DA signaling and improves sustained attention

(Dockree et al., 2017). It is plausible that this effect is at least

partially attributable to modulation of a2A receptors, sincemeth-

ylphenidate robustly modulates these receptors in PFC.

In summary, multiple lines of evidence support the view that

the LC-NA system exerts an important neuromodulatory influ-

ence on attention. Although animal work shows potent modula-

tions of cells and circuits supporting spatial WM and attention by

NA agents, identifying specific cognitive effects of these agents

in humans has been a challenge. Part of the challenge in human

work results from the sedating effects of acute dosing of a2A

agents (e.g., clonidine, guanfacine). This yields noisy behavioral

performance and difficulty in discriminating between task-spe-
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cific effects of the drug and the non-specific effects of sedation.

Although sedation wanes with chronic dosing, such regimens

are ethically hard to justify in the non-clinical cohorts that are

often employed in psychopharmacology. Establishing specific

effects of a2A agents on top-down attention is therefore likely

to require the recruitment of clinical cohorts with a clinical indica-

tion (e.g., guanfacine in ADHD).

Attention and the Serotonergic System
The contribution of 5-HT to top-down attention may be less

direct than that described for ACh, DA, and NA. However, vary-

ing levels of 5-HT do affect the ability to engage and performwell

in top-down attention and spatial WM tasks.

For example, 5-HT affects spatial tuning of putative pyramidal

cells in a memory-guided saccade task in macaque dlPFC.

Blockade of 5-HT2A receptors resulted in reduced spatial tuning,

whereas activation of these receptors caused increases in

spatial tuning by either increasing activity for preferred target

locations, and/or reducing activity for non-preferred target loca-

tions (Williams et al., 2002). Given the proposed link between

spatial WMand spatial attention, we would speculate that similar

effects will be found in top-down attention tasks in dlPFC (and

possibly the FEF). However, it is equally possible that very

different effects occur when using an attention task, as the

5-HT 1A/2A agonist psilocybin impairs attentional tracking in

humans, without affecting spatial WM. The former was inter-

preted as resulting from reduced ability to suppress distracting

stimuli, rather than reduced attentional capacity per se (Carter

et al., 2005).

Reduced attentional performance is also seen under other

conditions. Systemic injection of a 5-HT2A agonist in rats results

in reduced accuracy (attention) and increased impulsivity

(response disinhibition) in 5-CSRTT (Koskinen et al., 2000). How-

ever, direct infusion of a 5-HT2A/C antagonist into rodent mPFC

only reduced impulsivity, without affecting attention (Passetti

et al., 2003). This discrepancy could indicate that effects on

attention/accuracy are induced by 5-HT action in areas different

from mPFC. Blockage of 5-HT1A and 5-HT2A receptors offsets

the 5-CSRTT performance deficits seen when NMDA receptors

are blocked (Carli et al., 2006; Ceglia et al., 2004). Despite this

common effect on accuracy overall, the two receptor subtypes

have dissociable functions in relation to attention (accuracy).

5-HT1A blockade improves accuracy by reducing NMDA recep-

tor blockade-induced perseverance, whereas 5-HT2A blockade

affected accuracy by reducing impulsivity. Based on this disso-

ciation, it has been suggested that 5-HT2A receptors are critical

to modulate attentional control of response inhibition (Aznar and

Hervig, 2016).

A role of 5-HT in attentional processes has also been demon-

strated in a reversal learning task. Reversal learning describes

the phenomenon where subjects have to inhibit responses that

are no longer rewarding, shift attention to alternative stimuli,

which could be associated with reward, and evaluate the risk/

benefit in responding to these novel stimuli. It requires cognitive

flexibility and is often assessed using the Wisconsin card sorting

test in human and non-human primates (Grant and Berg, 1948;

Nakahara et al., 2002), or the attentional set shifting task in

rodents (Kesner and Churchwell, 2011). The main anatomical
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area involved in reversal learning is the orbitofrontal cortex, with

its projections to the medial and ventral striatum. Reversal

learning requires adequate 5-HT levels, which helps updating

of the value/utility of responding to novel (not previously

rewarding) stimuli and allows inhibition of previously rewarded

responses (Roberts, 2011). In addition to the orbitofrontal cortex,

rodent mPFC (or primate dlPFC) are also involved in reversal

learning, when extra-dimensional shifts or new stimulus reward

association learning (a shift in attention) is required. Extradimen-

sional shifting is improved by 5-HT2A receptor blockade (Passetti

et al., 2003), or generally reduced 5-HT input to mPFC (dlPFC).

Thus, 5-HT2A receptors in mPFC/dlPFC would be involved in

attentional control, whereas 5-HT2A receptors in orbitofrontal

cortex are involved in cognitive flexibility and reversal learning

(Aznar and Hervig, 2016). Attentional control would, however,

be affected by 5-HT2A in an indirect (or negative) manner,

whereby low levels of 5-HT improve attention. Unsurprisingly,

5-HT depletion results in improved attentional control in humans

(Scholes et al., 2007). Activation of 5-HT receptors results in

increased distractibility (associated with reduced focus on

recently rewarded items or behaviors) and in increased cognitive

flexibility when reward contingencies have changed (Baker et al.,

2011; Terry et al., 2005). This is reminiscent of the exploitation

versus exploration functions that have been discussed in relation

to NA, but by different mechanisms. Exploitation would be

governed by low tonic 5-HT in mPFC and orbitofrontal cortex,

whereas exploration would be induced when 5-HT levels are

high in either area. Potential cellular mechanisms for this effect

have been described by Tian et al. (2016). These authors report

that 5-HT inhibits mouse layer 6 mPFC pyramidal cells through

5-HT1A and 5-HT2A receptors. This inhibition results in reduced

activity in layer 5 interneurons, thereby increasing what the au-

thors define as ‘‘noise’’ in the layer 5 output layers. A conse-

quence thereof could be an overall reduced threshold to engage

in ‘‘untested’’ exploratory behaviors, i.e., a form of exploration.

Overall, the above may fit the notion that 5-HT neurons in the

dorsal raphe nucleus contain information of the ‘‘state value’’ or

‘‘reward value’’ of the current situation (Roberts, 2011). However,

the neurons in the dorsal raphe nucleus encode positive as well

as aversive future outputs (Bromberg-Martin et al., 2010; Li et al.,

2016; Miyazaki et al., 2014), and these can even involve highly

specific pathways (Marcinkiewcz et al., 2016). Thus, the coding

of dorsal raphe 5-HT neurons appears more diverse than simply

representing ‘‘reward value.’’

Summary and Outlook
Here, we have reviewed the critical role played by neuromodula-

tors (ACh, DA, NA, and 5HT) in mediating attention-induced

modulations of neuronal activity at the single-neuron and circuit

level. Similarities of action exist across these neuromodulators,

such as the common existence of phasic versus tonic modes,

with effects that follow U-shaped dose-response relationships,

whereby too little or too much neuromodulator drive is detri-

mental to cognition. However, important differences between

their actions also exist.

ACh

Arguably, the classical view is that neuromodulation of attention

occurs via cholinergic mechanisms. Yet as we have reviewed,
significant gaps in our knowledge exist regarding the specific

roles of receptor and cell subtypes, release mechanisms, and

local control thereof. At the single-neuron level, ACh mediates

attention-induced rate changes that vary regarding their specific

receptor involvement between lower (e.g., V1) and higher

cortical areas (e.g., FEF). It will be important to delineate these

differences in more detail for different excitatory and inhibitory

cell types, at different levels of the cortical hierarchy. At the

circuit level, ACh reduces rate variability and co-variability

via enhanced gain and stabilized attractor dynamics, thereby

improving population coding abilities. Behaviorally, stabilized at-

tractors may reduce moment-to-moment distractibility as well

as promoting longer-term task engagement.

DA

A role for DA in top-down spatial attention is supported by animal

work, but ultimately receptor- and cell-type specificity requires

further clarification. For example, the relative expression of D1

andD2 receptors in supragranular (derived fromSN-DA neurons)

versus infragranular (derived predominantly from VTA-DA neu-

rons) layers of FEF is important for attention. The supragranular

layers send feedback to V4 and passive infusion of D1, but not

D2, agonists into FEF engendered attention-like modulations of

V4 activity (e.g., increased firing rates; reduced rate variability).

However, how D1 activation/blockade shapes attention feed-

back signals at the local level in FEF is currently unknown, and

it is unclear whether these effects differ for tonic versus phasic

release modes. Overall, these and other data support a view

that DA signals arising from SN and terminating in supragranular

layers of FEF allow specific local networks to strengthen feed-

back attention signals. Conversely, those arising from VTA and

terminating in the infragranular layer of FEF are related to

reward/prediction error signals and directly bias choice signals

without necessarily affecting upstream processing.

NA

Despite the diffuse projection of the NA system to the cortex, NA

influences a range of discrete cognitive processes (e.g., spatial

specificity of WM signals) mediated by specificity in both the re-

ceptor subtypes and projections of the NA system. An overall in-

crease in NA release at the cellular level decreases spontaneous

activity and increases input-driven activity to salient (behaviorally

relevant) stimuli, thereby enhancing signal. NA release modes

also vary, whereby a low tonic, high phasic release enables an-

imals to stay task focused and exploit existing (predictable)

reward contingencies. How phasic release affects sensory pro-

cessing, or attentional (feedback) and motor/choice planning

(feedforward) signals in cortical areas will be an important area

for future studies.

5-HT

Although the role of 5-HT in attention has been less intensively

studied, varying levels of 5-HT do influence top-down attention

and spatial WM. Some evidence for receptor level dissociation

of function exits, with 5-HT1A blockade improving accuracy

by reducing NMDA receptor blockade-induced perseverance,

whereas 5-HT2A blockade affects accuracy by reducing impul-

sivity. Expression of 5-HT2A in mPFC/dlPFC appears involved

in attentional control, whereas 5-HT2A receptors in orbitofrontal

cortex are involved in cognitive flexibility and reversal learning.

Current evidence suggest that attentional control is affected by
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5-HT2A in an indirect (or negative) manner, whereby low levels

of 5-HT would improve attention, by promoting task focus,

whereas high 5-HT levels support disengagement.

Overall, this review highlights much greater functional and

anatomical specialization in subcortical neuromodulator sys-

tems than previously argued. Neuronal subpopulations of the

different neuromodulators appear to control separable aspects

of attention. Their main role is to allow for enhanced flexibility of

cortical coding. Thereby these neuromodulators configure how

(and which) specific cortical areas affect behavior. This added

flexibility and specificity is recapitulated within cortical layers

of an area (e.g., D1 supragranular versus D2 infragranular layers

within FEF). Further, as described for NA, specificity of receptor

expression and thus neuromodulator influences even exist at

the level of local layer 5 pyramidal cells, provided they differ in

their output connectivity. Novel genetic tools that allow the

tracing and interrogation of specific sub-circuits within these

neuromodulator systems have provided invaluable insights at

the single-cell, population, and behavioral level. These tools

have mostly been employed in rodents, as cell-type-specific

targeting is more advanced in these species than currently

possible in non-human primates. However, progress is also be-

ing made in non-human primates to advance these tools. These

advances should ultimately inform our understanding of human

attention. Developing these techniques in non-human primates

will be necessary because cell-type-specific expression of neu-

romodulator receptors can differ radically between rodents and

primates (Disney and Reynolds, 2014). Innervation pattern can

also differ. For example, the dopaminergic innervation of ‘‘atten-

tion areas’’ such as the parietal cortex differs radically between

rodents and primates (Berger et al., 1991). Critically, the

absence of a dlPFC homolog in rodents—a key area controlling

attention and WM in primates—(Preuss, 1995) is yet another

strong argument for the necessity of non-human primate

research.

Important future insights into the mechanistic roles of neuro-

modulators can also be obtained from modeling studies (Dayan,

2012). Many of the models involved are based on architectures,

which exhibit the described attractor dynamics andwinner-take-

all characteristics and have been successfully implemented, for

example, to disentangle the mechanistic roles of muscarinic and

nicotinic receptors on attentional bias in macaque V1 (Deco and

Thiele, 2011).

Although the field eagerly awaits these advances, it is clear

that the extant data refute the prevailing classical view that

brainstem neuromodulator systems simply modulate global

brain states. Rather, the emerging view is one in which receptor

and cell-subtype-specific effects of neuromodulators influence

the efficiency of large- and small-scale neuronal networks to

instantiate the top-down control of attention.
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