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Abstract: Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute
and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and
cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant
number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections
and leading to worse outcomes for patients. In this review, we summarize studies demonstrating
the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe
how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for
synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve
changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced
uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression
or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases
through horizontal gene transfer; and changes to biofilm formation and metabolism. The current
understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified,
and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa
infections are considered.

Keywords: antibiotic resistance; nosocomial infection; cystic fibrosis; carbapenem; cephalosporin;
β-lactamase; carbapenemase; PBP3; AmpC; antibiotic efflux

1. Introduction

Pseudomonas aeruginosa is a Gram-negative bacillus that is found in many environments
including water and soil, and in association with animals [1]. It is also a major oppor-
tunistic pathogen, being one of the most frequent causes of acute infections in hospitalised
patients and in patients with predisposing conditions such as severe burns, catheterisa-
tion, or neutropenia, causing septicaemia, urinary tract infections, and bacteraemia [2–5].
P. aeruginosa is a primary cause of hospital- and ventilator-acquired pneumonia [6–8]. It
also causes severe eye infections and chronic infections in patients with cystic fibrosis
or chronic obstructive pulmonary disease [9–11]. Infections with P. aeruginosa are often
associated with higher mortality and morbidity than those with other pathogens [12,13].

Examples of P. aeruginosa infections that have been intensively studied include chronic
infections in people with CF and acute infections in burns patients. Chronic infections in the
lungs of people with CF can last for many years and are the leading cause of morbidity and
reduced life expectancy in these individuals [14]. The eradication of P. aeruginosa infections
in individuals with CF is associated with a better long-term outcome [15,16]. P. aeruginosa
infections in CF are also strongly associated with mortality in childhood [17]. Acute
P. aeruginosa infections are the leading cause of death in burn victims [18,19]. Treatment of
burn wounds becomes increasingly difficult when P. aeruginosa infection occurs [20]. In
a study of over 5000 patients over twenty years, 55% of burn victim mortality was due
to multidrug-resistant P. aeruginosa [18]. Other acute P. aeruginosa infections, in particular
bloodstream infections, also have very high mortality rates [21–25].
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P. aeruginosa infections can be acquired from most aquatic and damp environments,
with these bacteria being commonly isolated from showers, sinks, drains, and even liquid
soap [26,27]. For example, in one between 9.7% and 68.1% of tap water samples from
intensive care units were contaminated with P. aeruginosa [27]. Wash hand basins and other
moist areas are a source of hospital outbreaks of P. aeruginosa infections [28,29]. Outbreaks
have also been linked to a P. aeruginosa-contaminated hand soap dispenser [30] and bottled
water supplied to an intensive care unit [31]. Analysis of P. aeruginosa isolated from newly
infected CF patients found that for 13 of 25 patients, the P. aeruginosa genotype matched
that of isolates obtained from a sink in their house, while one of the isolates matched to
the patient’s nebuliser used for antibiotic inhalation, identifying these environments as
possible sources of infection [32].

Infections by multidrug-resistant (MDR) isolates (bacteria resistant to one antibiotic
from three or more antibiotic classes [33]; Table 1) are particularly problematic. Acute
infection with antibiotic-resistant P. aeruginosa results in thousands of deaths worldwide
each year [5,34,35]. In a meta-analysis of 23 studies of over 10,000 P. aeruginosa infections,
mortality was 34% in patients with antibiotic-resistant P. aeruginosa compared with 22% in
those infected with antibiotic-susceptible P. aeruginosa [5]. Similar findings resulted from a
separate meta-analysis, with hospital patients who had non-MDR P. aeruginosa infections
having a mortality rate of 24.8% (of 2388 cases) and patients with MDR infections having
a mortality rate of 44.6% (of 813 cases) [36]. A factor contributing towards mortality of
P. aeruginosa infections is the time between the onset of infection and treatment. Treatment
within 24 h had a mortality rate of 27.7% compared to a mortality rate of 43.4% if effective
treatment was delayed for 24 h [23]. Initial treatment with antibiotics to which the bacteria
were resistant was associated with a mortality rate of 40.6%, emphasising the importance
of early treatment with antibiotics that are effective against the infecting P. aeruginosa [23].
Isolation of infecting bacteria followed by antibiotic susceptibility testing is used to deter-
mine which antibiotics are likely to be efficacious. However, the timeframe involved in this
process (about two days) can delay effective treatment. For some bacterial species, genomic
sequencing and analysis provides a more rapid method to identify effective antibiotics [37]
but this approach is not yet available for P. aeruginosa.

The frequency of P. aeruginosa infections, the clinical challenges and poor outcomes
associated with these infections, and in particular the proportion of P. aeruginosa isolates
that are resistant to antibiotics have resulted in these bacteria being classified as one
of a group of six pathogens (the ESKAPE pathogens) that are the most problematic to
treat [38,39]. P. aeruginosa that have become resistant to the carbapenem class of antibiotics
are classified by the World Health Organisation as one of the three “Priority 1: Critical”
groups of bacteria for which new treatment strategies are most critically needed [40].

2. Antibiotics Used against P. aeruginosa

Oral and intravenous delivery of antibiotics can be used to treat a wide range of
P. aeruginosa infections including septicemia, lung infections, and bone infections, while in-
halation of specific antibiotics is also used for the treatment of lung infections in individuals
with CF or other forms of lung disease [11,41–43]. There are a variety of antibiotic classes
used to treat P. aeruginosa (Table 1), each having different targets within the bacterial cell.

β-lactams, the topic of this review, inhibit the synthesis of peptidoglycan, a key
component of the cell envelope [54]. This inhibits the ability of bacteria to replicate
and divide while also reducing the integrity of the cell wall leading to cellular lysis [54].
Aminoglycosides and fluoroquinolones inhibit protein and DNA synthesis, respectively,
and polymixins disrupt the bacterial cell membrane. Antibiotics from different classes
can be used in combination to increase the likelihood of effectiveness when resistance
phenotype is not known and to suppress the emergence of resistance [3].
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Table 1. Key antibiotics used in the treatment of P. aeruginosa [2,42–53].

Antibiotic Class Antibiotic Subclass Antibiotic Antibiotic Use

β-lactams a

Penicillins Ticarcillin
Piperacillin

Parenteral or intravenous for treatment
of infections

Monobactams Aztreonam

Inhalation for long-term treatment of
chronic lung infections and

intramuscular injection for the treatment
of acute infections

Carbapenems Imipenem b meropenem
Intravenous for treatment of acute or

chronic infections

Cephalosporins
Ceftazidime

Cefepime
Ceftolozone

Inhalation or intravenous for treatment of
acute or chronic infections

Aminoglycosides 4,6-di-substituted
deoxystreptamine ring

Tobramycin Gentamicin
Amikacin

Inhalation or intravenous for treatment of
acute or chronic infections

Quinolones Fluoroquinolones Ciprofloxacin
Levofloxacin

Oral or intravenous intake for treatment
of acute infections

Lipopeptides Polymyxins Colistin Inhalation for treatment of chronic
lung infections

a β-lactams are often paired with a β-lactamase inhibitor. b Imipenem is generally administered with cilastatin (inhibitor of DHP-1 an enzyme that
metabolises imipenem).

3. The Problem of P. aeruginosa Antibiotic Resistance

The low outer membrane permeability of P. aeruginosa, coupled to the presence of
efflux pumps and other genetic features and its ability to form biofilms, provides it with
intrinsic resistance to moderate concentrations of antibiotics including β-lactams [55,56].
Biofilms involve the attachment of cells to a surface by adhesins and encasing the bacterial
cells in an extracellular matrix [57]. Biofilms contribute to antibiotic resistance by being
difficult for antibiotics to penetrate, because the biofilm lifestyle alters the metabolism
of the bacteria, and because biofilms can contain dormant antibiotic-insensitive persister
cells [56–60]. Nonetheless, P. aeruginosa isolated from the general environment are generally
susceptible to antibiotics including β-lactams [61]. However, isolates from clinical settings
are frequently resistant to antibiotics, and a high proportion of P. aeruginosa infections are
by antibiotic-resistant bacteria [62,63]. For example, in one study of hospitalised patients,
37% of 826 P. aeruginosa isolates from a CF unit, and 49% of 224 isolates from an intensive
care unit were antibiotic-resistant [64]. These isolates were resistant to a wide variety of
antibiotics, including gentamicin (58%), carbapenems (55%), and colistin (6%) [65]. In
a study of over 1000 P. aeruginosa infections in neonatal and paediatric patients, over
10% of isolates were resistant to carbapenems (imipenem, meropenem, doripenem), and
approximately 15% to cephalosporins (cefepime and ceftazidime) [66]. Large case studies
and meta-analyses have found that people infected with carbapenem-resistant P. aeruginosa
often [67–69] though not always [70], have a significantly higher risk of death than people
infected with carbapenem susceptible isolates.

The US Centers for Disease Control and Prevention (CDC) has estimated that there
were 32,600 hospitalizations and 2700 deaths from multidrug-resistant P. aeruginosa infections
in the USA in 2019 [34]. In Europe, there were on average approximately 72,000 infections
with antibiotic-resistant P. aeruginosa and 4155 attributable deaths per million people in
the period 2007–2015 [71], with the numbers of such infections increasing by about three-
fold over the time period. The median cost per hospitalization and treatment of patients
with antibiotic-resistant P. aeruginosa infections was US$99,672, while for patients with
susceptible P. aeruginosa infections the median cost was US$69,502 [5]. Contributing factors
of the increased financial burden of antibiotic-resistant P. aeruginosa infections are the
increased price of drug regimens and increased days of mechanical ventilation (15 versus
11 days) and increased hospitalization length [5,72]. The total healthcare costs associated
with infections by antibiotic-resistant P. aeruginosa in the USA were estimated at US$767
million in 2017 [34].
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P. aeruginosa is capable of developing resistance to all classes of antibiotics through
chromosomal mutations [73]. This is well studied in chronic CF infections, where patients
are commonly infected with an antibiotic-sensitive P. aeruginosa isolate that develops resis-
tance over the course of prolonged infection and treatment [74,75]. Likelihood of infecting
P. aeruginosa being β-lactam resistant increases with age in CF patients, supporting a model
whereby antibiotic resistance develops over the course of treatment [76]. Eradication
of P. aeruginosa infections becomes increasingly difficult as antibiotic resistance occurs,
resulting in worsening patient conditions [15,16].

Severe acute burn wounds can be directly infected with antibiotic-resistant P. aeruginosa [77].
Outbreaks of MDR and extensive drug-resistant (XDR; resistant to all but one or two classes
of antibiotics) strains are a large issue in burn care units as treatment becomes increasingly
difficult [78,79]. A 2016 outbreak of an XDR P. aeruginosa infected 10 patients within a
burn unit resulting in the death of two patients from septic shock [78]. Although the
development of antibiotic resistance is not commonly observed in burn wound infections
with sensitive P. aeruginosa strains (because of shorter infection times), a case study has
shown that a sensitive P. aeruginosa strain became resistant within 14 days from the begin-
ning of treatment [13]. Analysis of wastewater from a burns hospital found that out of
100 P. aeruginosa isolates 66% were MDR [64], illustrating how antibiotic-resistant isolates
can be spread into the general environment.

4. Penicillin-Binding Proteins and Peptidoglycan Synthesis

Penicillin-binding proteins (PBPs) are, as their name suggests, the key targets of
β-lactam antibiotics. They are involved in the synthesis of the layer of peptidoglycan
that forms part of the cell envelope and provides structural integrity to P. aeruginosa
cells [80]. The peptidoglycan layer consists of linear β(1–4)-Linked disaccharides of N-
acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) strands containing on average
about 24 NAG-NAM units that are cross-linked together by amide bonds between peptide
side chains [81,82]. This structure resists internal cellular pressures while also giving cells
their inherent shape [82]. The peptide side chains are synthesised as pentapeptide pre-
cursors, with cross-linking between diaminopimelic acid and D-alanine residues bridging
different strands of NAG-NAM polymers [83] (Figure 1). Cross-links are formed in a
process involving the removal of a terminal D-alanyl residue. In mature peptidoglycan,
approximately 50% of the peptide units are cross-linked. In uncross-linked peptides, ap-
proximately 40% of all D-alanine have been removed by LD-carboxypeptidases that remove
the D-alanine at position four of the peptide sidechain, preventing cross-linking [83].

PBPs are involved in the later stages of peptidoglycan synthesis and remodelling
of peptidoglycan during cell growth and division [84,85]. P. aeruginosa has eight PBPs,
numbered 1a, 1b, 2, 3, 3a, 4, 5, and 7 in order of decreasing molecular mass. The PBPs
fall into two categories, high molecular mass (HMM) PBPs (1a, 1b, 2, 3, and 3a) and
lower molecular mass (LMM) PBPs (4, 5, and 7) [86]. PBPs play a role in cellular division
and controlling cellular morphology through the incorporation of NAG-NAM units into
growing peptidoglycan chains via a glycosyltransferase activity, cross-linking of different
NAG-NAM units through their peptide side chains, and modifying peptidoglycan pep-
tide chains (Figure 1) [87,88]. There is functional redundancy of PBPs, with only PBP3
being essential for growth [79]. The transpeptidase domains of all PBPs contain three
amino acid sequence motifs Ser-XX-Lys (catalytic serine), Ser-X-Gln, and Lys-Ser-Gly-
Thr [89], which all play a role in DD-transpeptidase activity (cross-linking of NAG-NAM
chains), DD-carboxypeptidase activity (cleaving terminal D-Ala from peptide chains), and
DD-endopeptidase activity (cleaving the peptide cross-link made by DD-transpeptidase
activity) [87,90]. HMM PBPs 1a and 1b have both glycosyltransferase and transpeptidase
domains, while PBPs 2, 3, and 3a only have transpeptidase domains [86,91,92]. Glycosyl-
transferase domains catalyse the extension of NAG-NAM polymers by incorporation of
NAG-NAM units and DD-transpeptidase domains catalyse peptide cross-linking. The
DD-transpeptidase domains bind to the pentapeptide precursor and catalyse the formation
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of a cross-link between the D-alanine residue at the fourth position of a pentapeptide
side chain and a diaminopimelate residue of a tri-, tetra-, or penta-peptide of an adjacent
peptide sidechain, on a different NAG-NAM strand (Figure 1) [84]. During the formation
of this cross-link, the terminal D-Ala of the pentapeptide is removed [84].
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LMM PBPs in P. aeruginosa have DD-carboxypeptidase activity [93,94]. Deletions of
genes encoding LMM PBPs increased the presence of pentapeptides in peptidoglycan
which indicates the lack of DD-carboxypeptidase activity [93]. PBP5 is the main DD-
carboxypeptidase, followed by PBP4 and, lastly, PBP7 [93]. The LMM PBP PBP4 also
regulates ampC (β-lactamase) expression [95]. Although deletion of all three LMM PBPs (4,
5, and 7) cause a significant increase in pentapeptide levels, there was no significant effect
on cell morphology [93].



Pathogens 2021, 10, 1638 6 of 32

As well as being required for peptidoglycan synthesis, PBPs play a role in peptido-
glycan recycling. Recycling occurs as part of the process of peptidoglycan turnover and
remodelling that is required for cell growth and division. Recycling of peptidoglycan
components released during hydrolysis by lytic transglycosylases and carboxypeptidases
reduces the metabolic burden of peptidoglycan synthesis [96], as described below. LMM
PBPs with endopeptidase activity form an important part of this process [96]. PBP4 has
both a DD-endopeptidase and DD-carboxypeptidase activity [97,98].

5. β-lactam Antibiotics: Inhibitors of PBPs

Antibiotics in the β-lactam class have bactericidal activity against a broad spectrum of
bacteria [99]. The bactericidal properties of β-lactams are due to their ability to inhibit the
transpeptidase and DD-carboxypeptidase activities of PBPs [54]. β-lactams are structural
mimics of the terminal D-alanine-D-alanyl residues of peptidoglycan pentapeptide precur-
sors which PBPs bind to perform their catalytic functions (Figure 2) [100,101]. Once the
β-lactam has entered the active site of a PBP, it covalently binds to the catalytic serine in the
Ser-XX-Lys motif permanently, inactivating the PBP [102,103]. The inhibition of PBPs can
result in filamentation and can also reduce the structural integrity of the cell wall resulting
in lysis of the bacteria [104–106].
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β-lactam antibiotics all have a core structure of a four-membered lactam ring which is
closed by an amide bond (Figure 2) [108]. β-lactams are assigned into subclasses on the
basis of the nature of the chemical groups attached to this core structure, with subclasses
containing multiple members [100]. The differences in side chains affect many characteris-
tics of the β-lactams, including the affinity towards different penicillin-binding proteins
PBPs, ability to cross cell envelopes, their chemical stability, and resistance to degradation
by β-lactamases [100].

The affinities of anti-Pseudomonal β-lactams for different PBPs are shown in Table 2.
Several β-lactams have a high affinity for a number of different PBPs. Notably, however,
all of those that have a low minimum inhibitory concentration (MIC) and are used in
clinical practice have a high affinity for PBP3, the only essential PBP in P. aeruginosa.
Conversely, cephalexin that is not clinically effective has a low affinity towards PBP3 and is
not effective at killing P. aeruginosa (high MIC). Faropenem has a high affinity for PBP3 but
nonetheless is inefficient at killing P. aeruginosa demonstrating that affinity for PBP3 is not
by itself sufficient to ensure effectiveness. This high MIC for faropenem is attributed to a
combination of intrinsic resistance mechanisms [109].

As well as causing cell lysis and filamentation, in E. coli, inhibition of PBPs can lead
to unnecessary recycling of the cell wall, depleting cellular resources and contributing to
cellular death [104]. This process depends on the product of the slt gene, a transglycosy-
lase [104]. The slt gene product of P. aeruginosa appears to have an equivalent function
to its E. coli homologue [113–115] and may contribute to cellular resource depletion in
P. aeruginosa in the presence of β-lactams.
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Table 2. Binding affinities of β-lactams for PBPs of P. aeruginosa.

Antibiotic a

DOR IMI MER CEF AZT CEN CEP FAR
PBP Binding Affinity IC50 (µg/mL) b

1a 0.5 0.1 0.5 0.5 0.2 0.2 0.8 2 2 19 35 0.23
1b 0.6 0.2 0.5 0.5 3 5 6 2 2 2 0.7 0.15
2 0.06 0.1 0.1 0.05 >32 >32 25 16 16 >250 ND 0.19
3 0.07 0.09 0.1 0.08 0.1 0.1 0.1 0.03 0.03 0.3 41 0.20
4 0.008 0.008 0.01 0.008 2 2 ND 16 16 ND ND 0.13
5 8 2 2 16 >32 >32 ND >16 >16 ND ND >1

MIC (µg/mL) for P. aeruginosa c

0.25 1 1 0.5 1 1 0.5 4 4 0.03 16 512
Reference [110] [110] [111] [110] [110] [111] [112] [110] [111] [112] [112] [109]

a DOR, doripenem; IMI, imipenem; MER, meropenem; CEF, ceftazidime; AZT, aztreonam; CEN, Cefsulodin; CEP, Cephalexin; FAR,
Faropenem; b IC50: Half maximal inhibitory concentration, determined through competition assays with the fluorescent β-lactam bocillin
FL. ND, not determined. c MIC: Minimum inhibitory concentration (µg/mL).

The mode of antibiotic delivery and the use of combinations of different antibiotics
have been found to be important in the treatment of P. aeruginosa infections. Continuous
infusion of meropenem, aztreonam, and ceftazidime can eradicate MDR P. aeruginosa
infections [116,117]. This finding is supported by a meta-study which found that continuous
infusion of meropenem had a higher success rate than intermittent dosages for MDR
P. aeruginosa [118]. Recent studies have indicated that dual antibiotic regimens improve the
survival of patients with MDR P. aeruginosa. The combination of a carbapenem antibiotic
with colistin increased the eradication of P. aeruginosa infections [42]. Dual β-lactam therapy
also has been shown to have enhanced efficacy in killing P. aeruginosa [119], with an example
being ceftazidime-avibactam paired with meropenem [120].

6. Mechanisms of β-lactam Resistance

Antibiotic-resistant isolates of P. aeruginosa arise through genetic changes in antibiotic-
susceptible bacteria (acquired resistance). Acquired resistance can occur through mutations
affecting a wide range of cellular functions. The primary mechanisms for the development
of β-lactam resistance through mutation include alterations to the PBP3 target protein,
decreased antibiotic uptake, increased export, and degradation of antibiotic molecules
(Figure 3) [121]. In addition, horizontal gene transfer can lead to the acquisition of antibiotic-
degrading enzymes (β-lactamases) from other bacteria [122]. Metabolic changes and in-
creased biofilm production may also play a role in resistance [123]. Resistance mechanisms
are described in detail below.

β-lactam resistance can arise from genetic changes that reduce antibiotic uptake
through porins, increase degradation of β-lactams, alter the PBP3 target protein, or increase
antibiotic efflux. Resistance often involves a combination of these mechanisms. CM,
cytoplasmic membrane; P, periplasm; OM, outer membrane.

The availability of methods for relatively inexpensive whole-genome sequencing
has greatly accelerated the discovery of genetic changes that contribute to resistance.
A number of studies have used experimental evolution to develop β-lactam-resistant
P. aeruginosa from sensitive strains, followed by whole-genome sequencing to identify
the mutations causing resistance [124–127]. Whole-genome sequencing of isolates from
chronically-infected patients has shown that genes acquiring mutations during resistance
development in vitro also acquire mutations that are likely to contribute to resistance
during infection [128]. Whole-genome sequencing of clinical isolates has also enhanced
understanding of the contributions of horizontally acquired genes to β-lactam resistance.
Collectively, these studies allow a good understanding of the mechanisms of β-lactam
resistance in P. aeruginosa. Different resistance mechanisms are discussed in detail below.
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7. Target-Site Modification: Changes to PBP3

Mutational changes to PBPs that are associated with resistance act by reducing the
affinities of PBPs for β-lactams [129–132]. PBP3 is encoded by the ftsI gene. The essential
nature of PBP3 in P. aeruginosa was shown through the conditional expression of the ftsI gene
using an inducible promoter [86]. Inhibition of ftsI expression led to long filaments of cells,
indicating a defect in cell division. As the only essential PBP in P. aeruginosa, PBP3 is the
primary target for β-lactams [86]. Experimentally-evolved mutants of P. aeruginosa resistant
to β-lactams frequently have mutations in ftsI [124,126,132], and PBP3 sequence variants are
also common in isolates from patients that have reduced β-lactam susceptibility [133–135].

The structure of PBP3 bound to different β-lactams has been determined [102]. PBP3 is
comprised of a short cytoplasmic N-terminal domain, a transmembrane helix, a domain pre-
dicted to play a role in protein-protein interactions, and a transpeptidase domain [136,137]
(Figure 4). The active site of PBP3 contains the protein sequence motifs Ser-XX-Lys (residues
294–297), Ser-x-Asn (residues 349–351), and Lys-Ser-Gly-Thr (residues 484–487) that are
present in all PBPs [136,137]. β-lactams bind to the catalytic serine (S294) of the Ser-
XX-Lys motif [102]. Ceftazidime, aztreonam, meropenem, and imipenem all bind at the
active site but cause different conformational changes [102]. β-lactams that are effective
anti-Pseudomonas agents, including aztreonam, meropenem, imipenem, doripenem, cef-
tazidime, and ceftolozane, all have a high affinity for PBP3 [42,43] (Table 2) emphasising
that PBP3 is a key β-lactam target.

Variants of PBP3 likely to contribute to β-lactam resistance in clinical isolates were
identified by comparing the PBP3 sequence of antibiotic-resistant clinical isolates with
those of antibiotic naive strains (environmental or pre-treatment) [126,128,135,138–147].
The most frequent PBP3 variants that are likely to affect β-lactam activity are amino
acid substitutions that, as might be expected, are centred around the active side and, in
particular, are near the catalytic serine of the Ser-XX-Lys motif (Figure 4, Supplementary
Table S1). Variants in experimentally-evolved resistant bacteria also cluster around the
active site and are often at the same residues as those in clinical isolates [124–127,148].
Variants around the active sites of PBPs also contribute to β-lactam resistance in other
species [131,149,150], and some cases have been shown to reduce the affinity of β-lactams
for the PBP [150,151]. It seems likely that sequence variants around the active sites in PBPs
cause slight confirmational changes that reduce the ability of β-lactams to bind and the
active site and react with the catalytic serine [129,132]. Consistent with this prediction,
the PBP3 variant F533L reduces the affinity of PBP3 for meropenem [132]. It is currently
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not known whether, or how, PBP3 variants away from the catalytic domain, such as the
frequently observed G63C/D variants (Figure 4, Supplementary Table S2), contribute to
β-lactam resistance.
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image is based on protein structure PDB 3PBR_1 [102].

As different β-lactams bind slightly differently to the PBP3 active site, mutations
around the active site are likely to have different effects with different β-lactams. There is
some evidence to support this prediction. Analysis of isolates from a CF patent with PBP3
variants V465G or A244T showed that both variants were associated with aztreonam and
cefsulodin resistance, whereas only the V465G variant was associated with ceftazidime and
piperacillin resistance [140]. In a separate study, the PBP3 variant R504C was associated
with ceftazidime and cefsulodin resistance, whereas the variant P527S was associated with
resistance to aztreonam, cefepime, ceftazidime, and cefsulodin [134]. Biochemical assays
are limited, but in one study the sequence variant A539T reduced affinity for meropenem
and ceftazidime, and sequence variant F533L selectively reduced affinity for meropenem
but not ceftazidime [132]. Collectively these findings support the notion that different
PBP3 sequence variants can have different impacts on different antibiotics, but more work
is needed to fully understand the relationships between PBP3 sequence variants and
β-lactam resistance.

8. Reduced Uptake of β-lactams: The Role of Porins

Variants in the oprD gene are commonly found in isolates of P. aeruginosa that are
resistant to carbapenems [76,152–158]. The oprD gene encodes the OprD porin that plays
a role in the uptake of small basic amino acids and small peptides. OprD also mediates
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uptake of carbapenems other than faropenem [153,159]. Basic amino acids act as com-
petitive inhibitors towards the uptake of carbapenems, and so the growth environment
influences carbapenem susceptibility [160]. Disruption of the oprD gene via point muta-
tions, frameshifts, premature stop codons, or large deletions all contribute to carbapenem
resistance [153,155–157]. These mutations reduce or abolish the uptake of carbapenems
through OprD [152,157,158]. In addition to contributing to carbapenem resistance, loss of
oprD increases the ability of P. aeruginosa to colonize mucosal environments, and increases
resistance towards acidic environments in a mouse model of infection [161].

Mutations to OprD do not affect susceptibility to other classes of β-lactams, indicating
that this porin is not involved in their uptake [159,162,163]. How antibiotics in these classes
access the periplasm of P. aeruginosa is not fully understood [162]. Most porins (other than
OprD) do not mediate antibiotic uptake [162]. However, loss of porin OpdP confers a
reduced susceptibility to meropenem and, in an OprD-lacking strain, to imipenem and
doripenem [163]. Heterologous expression assays confirmed that OpdD can contribute to
susceptibility to carbapenems presumably by providing a channel into the periplasm [163].
Loss of OprF may cause a slight increase in piperacillin resistance [162], and loss of OpdH
reduced susceptibility to ceftazidime but not to other cephalosporins [164], suggesting that
these porins may also play a role in the entry of β-lactams into P. aeruginosa. Diffusion
through the lipid layer of the outer membrane likely also plays a role in the uptake of
β-lactams [165].

9. P. aeruginosa Efflux Systems

Most isolates of P. aeruginosa contain 12 Resistance-Nodulation-Division efflux system
pumps, which play a role in virulence, stress response, and both intrinsic and acquired
antibiotic resistance [109,166–168]. Each of these efflux pumps is comprised of a protein
that spans the cytoplasmic membrane, an outer membrane protein, and a periplasmic
component that links the two [169]. Efflux pumps form channels from the cytoplasm to
the outside of the cell that export a wide range of substrates, in a process driven by proton
motive force [169]. As well as compounds in the cytoplasm, chemicals present in the
periplasm can be exported. Different pumps export different compounds, although how
substrate selection occurs is not well understood. Overexpression studies have shown that
efflux pumps MexAB-OprM, MexXY-OprM, and MexCD-OprJ are the most important in
the context of β-lactam resistance [170–174], although each pump can export a wide range
of antibiotics (Table 3). These efflux systems are clinically relevant as they are overexpressed
in many antibiotic-resistant clinical isolates [76,138,152,156,166,175–179]. For example, in
one multicentre study, 39 of 80 CF isolates overproduced at least one of these efflux systems,
with 65 having increased expression of MexXY-OprM, 36 of MexAB-OprM, and two of
MexCD-OprJ [76].

Table 3. Antibiotic resistance associated with increased expression of efflux pumps.

Efflux System Antibiotics Affected by Increased Expression

MexAB-OprM
Aztreonam, other β-lactams a, quinolones,
tetracyclines, macrolides, novobiocin and

chloramphenicol [172,173]

MexXY-OprM Aminoglycosides, tetracyclines, β-lactams b

and macrolides [171,172,174,180,181]
MexCD-OprJ β-lactams c and fluoroquinolones [170,174]
MexEF-OprN Imipenem d and fluoroquinolones [172,177]

a MexAB-OprM exports all β-lactams except imipenem [174,182]. b MexXY-OprM exports all β-lactams except
carbenicillin, sulbenicillin, cefsulodin, ceftazidime, moxalactam, flomoxef, aztreonam, and imipenem and has
low substrate specificity for other carbapenems [174]. c MexCD-OprJ exports all β-lactams except carbenicillin,
sulbenicillin, ceftazidime, moxalactam, aztreonam, and imipenem and has low substrate specificity for other
carbapenems [174]. d Increased expression of mexEFoprN reduces oprD expression [183,184].

The MexAB-OprM efflux pump plays a role in the intrinsic resistance of P. aeruginosa
to a wide range of β-lactams, with deletion of the mexABoprM operon increasing sus-
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ceptibility to faropenem, sulopenem, ritipenem, temocillin, and ticarcillin [109,167]. In-
creased mexABoprM expression (acquired resistance) is often observed in carbapenem-
resistant clinical isolates–for example, 16 of 23 isolates and 28 of 32 isolates in two separate
studies [152,175]–and contributes to resistance to a wide range of β-lactams including
meropenem, ceftazidime, aztreonam, ticarcillin and carbenicillin [185,186].

Overexpression of the mexABoprM genes occurs because of mutations affecting the
repressor proteins MexR, NalC, or NalD [179]. Deletion of the mexR gene leads to the
highest levels of mexABoprM expression, followed by deletion of nalD and nalC [186,187].
MexR, the primary regulator of the mexABoprM operon, plays a role in sensing oxidative
stress. MexR binds to the promoter of the mexAoprM operon repressing expression, but
under conditions of oxidative stress, MexR disassociates increasing expression of the efflux
pump [188,189]. Mutations in the DNA-binding domain of MexR inhibit its ability to
bind to the mexABoprM promoter, increasing expression [190]. Overexpression of mexR
significantly increases susceptibility to aztreonam consistent with its role in the repression
of mexABoprM and the involvement of this efflux pump in aztreonam resistance [190]. NalD
is a second repressor of the mexABoprM operon, acting similarly to mexR, and mutations in
nalD cause increased expression of the mexABoprM genes and are associated with β-lactam
resistance [186,187]. Mutations in nalC lead to overexpression of gene PA3719, which in
turn leads to mexABoprM overexpression [191].

Increased mexXYoprM expression also contributes to resistance to multiple β-lactams
(Table 3). Expression of the mexXY operon is regulated by the repressor MexZ that binds to
the promoter of the mexXY operon [192]. Disruption of protein synthesis causes increased
synthesis of the AmrZ protein that interacts with MexZ, dislodging it from the promoter of
the mexXY operon and inducing expression [171]. MexXY uses OprM from the mexABoprM
as the outer membrane component [193]. Mutations in mexZ are the most common cause
of mexXY overexpression in clinical isolates [194,195].

MexCDOprJ is capable of exporting a wide variety of antibiotics (Table 3). The mex-
CDoprJ operon is regulated by the repressor NfxB [73,196], and expression is induced by
membrane-damaging agents [197]. Mutations in nfxB can cause mexCDoprJ overexpres-
sion, although this is infrequently observed in clinical isolates [76,198,199]. Mutations in
mexD can lead to increased resistance to cephalosporin-β-lactamase inhibitor combinations
(ceftolozane-tazobactam and ceftazidime-avibactam) through altered substrate specificity
of MexCDOprJ [200].

Increased expression of the efflux pump mexEF-oprN is associated with imipenem
resistance [201], although MexEF-OprN does not export β-lactams [202]. Overexpression
of the mexEF-oprN genes occurs because of mutations affecting the repressor protein
NfxC and MexS that influence the expression of the mexABoprM operon and the oprD
gene [76,183,184,203]. Increased expression of mexEF-OprN is, therefore, likely to be a
consequence of mutations that affect antibiotic susceptibility, rather than a direct contributor
to β-lactam resistance.

It should be noted that overexpression of efflux pumps can also increase antibi-
otic susceptibility, with overexpression of both MexEF-OprN and MexCD-OprJ mak-
ing P. aeruginosa more susceptible to imipenem, ticarcillin, aztreonam, and aminoglyco-
sides [172,204]. Therefore, the benefits of overexpressing efflux pumps are likely dependent
on the environment, with different antibiotics selecting for or against the expression of
different efflux pumps.

10. Degradation of β-lactams by β-lactamases

β-lactamases are enzymes that cleave open the β-lactam ring of β-lactam antibiotics
through hydrolysis, inactivating the antibiotic [205]. They are categorised into four classes
(A to D) based on their amino-acid sequence similarity [205,206]. Within each class, en-
zymes are further categorised into families based on the protein sequence. Families are
named on the basis of substrate β-lactam, or geographic location where they were first
identified. Enzymes in classes A, C, and D have a catalytic serine for substrate hydrolysis.
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Class B enzymes are metallo-β-lactamases that catalyse the hydrolysis of β-lactam rings
in reaction mechanisms involving a metal ion, most commonly a zinc ion [206–208]. Due
to their different mechanism of action metallo-β-lactamases have likely had different evo-
lutionary origins from the other classes of β-lactamases [207]. Metallo-β-lactamases have
a broad activity spectrum degrading all β-lactams except monobactams [209]. The pres-
ence of Metallo-β-lactamases is significantly associated with carbapenem resistance [210].
β-lactamases that are capable of degrading carbapenems (carbapenemases) are especially
problematic because of the critical role of carbapenems in managing P. aeruginosa infec-
tions [211]. Carbapenemase-producing isolates are often a cause of severe infections and
are becoming more frequently detected in hospitals [67–69,212–216]. Almost all carbapen-
emases are class A, B, or D β-lactamases as class C β-lactamases have only low activity
against carbapenems. For a detailed review of carbapenemases, see [217].

The effectiveness of β-lactamases is reduced by enzyme inhibitors and these are often
co-administered with β-lactam antibiotics, increasing antibiotic efficacy. β-lactamase in-
hibitors used in treating P. aeruginosa infections include clavulanate, tazobactam, avibactam,
and vaborbactam for Class A β-lactamases, relebactam for Class A and Class C enzymes,
and avibactam for class C and a limited number of class D β-lactamases [217–221]. Class B
enzymes can be inhibited by metal ion chelators, but currently, these are not in clinical use
as β-lactamase inhibitors [217,222].

11. β-lactamases Encoded by the Core Genome

Like many other Gram-negative bacteria, P. aeruginosa has a chromosomally encoded
Class C β-lactamase, AmpC [73,205]. Class C β-lactamases have high activity against
penicillins and cephalosporins [206,223]. AmpC contributes to intrinsic resistance to many
penicillins, including faropenem, ritipenem, and sulopenem, as shown by increased sus-
ceptibility to these antibiotics when the ampC gene is deleted [109]. Antibiotic-resistant
P. aeruginosa clinical isolates often have high levels of ampC expression, reducing suscepti-
bility to ceftazidime, cefepime, aztreonam, and piperacillin, although having little or no
effect on susceptibility to carbapenems [224,225]. Expression of the ampC gene is regulated
through a complex signalling pathway. Increased expression of ampC can occur through
activation of this pathway by the presence of β-lactams (Figure 5), or by mutations that
alter the pathway.

The expression of ampC is controlled by the transcriptional regulator AmpR
(Figure 5A) [226]. During peptidoglycan synthesis and recycling, the peptidoglycan pre-
cursor UDP-NAM pentapeptide is formed and binds to AmpR. The D-Ala-D-Ala of the
pentapeptide plays a primary role in interacting with AmpR [227]. The resulting complex
binds to the divergent ampC-ampR promoter and inhibits transcription of ampC [95,228]. In
the presence of β-lactams, there are increased amounts of NAG-NAM pentapeptide units
formed following hydrolysis of mature peptidoglycan (Figure 5B). These are imported
into the cytoplasm through the AmpG permease and they, as well as NAM penta- and
tri-peptides generated by removal of the NAG moiety, bind to AmpR. The binding of these
molecules causes AmpR to activate the expression of ampC [95,228].

Peptidoglycan fragments that have been imported into the cytoplasm are processed
for recycling by NagZ, AmpD, and other enzymes [95,226,228–230] (Figure 5). Inhibition
of PBPs increases the intracellular concentrations of NAG-NAM pentapeptide, NAM
pentapeptide, and NAM tripeptide [95]. Excess pentapeptides arising from the action of β-
lactams are thought to saturate AmpD, raising the intracellular concentration of the AmpR-
activating compounds [95,228]. The cytoplasmic concentration of NAG-NAM pentapeptide
is also influenced by LMM PBPs, in particular the PBP4 protein [95]. Inhibition of PBP4 by
mutation or β-lactams is a major inducer of ampC expression [93]. Inhibition of PBP4 does
not significantly increase NAG-NAM pentapeptide levels in the periplasm [83]. Instead,
inhibition of PBP4 is thought to increase peptidoglycan recycling [95,97] resulting in an
increase in the intracellular concentration of NAG-NAM pentapeptide.
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Figure 5. Regulation of ampC expression. (A) Under normal cellular conditions expression of ampC
is repressed. LMM PBPs such as PBP4 hydrolyse uncross-linked peptidoglycan pentapeptides to
tetrapeptides. During recycling of peptidoglycan, peptidoglycan fragments (the majority being NAG-
NAM tetrapeptide cleaved from the NAG-NAM chains by lytic transglycosylases) are imported into
the cytoplasm. NAG is removed by NagZ, after which NAM is cleaved from the peptide side chain
by AmpD. NAG, NAM and the peptide side chains are used in synthesis of new peptidoglycan.
Excess peptidoglycan precursor UDP-NAM pentapeptide formed through recycling as well as de novo
synthesis binds to the AmpR regulator protein, which acts as a repressor inhibiting ampC expression.
(B) β-lactams cause upregulation of ampC. Increased peptidoglycan recycling occurs because of the
presence of β-lactams, which also inhibit conversion of tetrapeptides to pentapeptides by LMMs PBPs.
The resulting peptidoglycan fragments (primarily NAG-NAM pentapeptide but also NAG-NAM
tripeptide [not shown]) are imported into the cytoplasm. In the recycling pathway, AmpD becomes
saturated because of increased amounts of peptidoglycan fragments, increasing the intracellular
concentrations of the AmpR activator molecules NAG-NAM pentapeptide, NAM-pentapeptide and
NAG-NAM tripeptide. Increased export of UDP-NAM pentapeptide for peptidoglycan synthesis
also occurs. The activator molecules outcompete UDP-NAM pentapeptide for binding to AmpR
and the AmpR-activator complexes trigger increased expression of ampC. UDP, uridine diphosphate;
NAG, N-acetyl glucosamine; NAM, N-acetyl muramic acid; pentapeptide, L-alanine-γ-D-Glutamate-
meso-DAP-D-Ala-D-Ala.

Mutations in ampR contribute to β-lactam resistance [231,232]. These mutations
inhibit the UDP-NAM pentapeptide from binding to AmpR leading to constitutive ex-
pression of ampC at high levels [97,233,234]. Mutations in dacB that encodes PBP4 are
also found commonly in β-lactam resistant clinical isolates and lead to increased ampC
expression [178,235]. PBP4 inhibition also activates the CreBC signalling [236], which is a
global regulator of bacterial fitness, biofilm development, and ampC expression. It is not yet
known how PBP4 inhibition activates CreBC signalling or how CreBC signalling regulates
ampC expression [236].
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Mutations in ampD are also often found in clinical isolates, increasing β-lactam re-
sistance [97,230,234,237,238]. AmpD plays a role in recycling peptidoglycan by cleaving
NAG-NAM from the peptide side chains that are imported from the periplasm into the
cytoplasm [229,230]. Disabling or impairing the function of AmpD through mutation
results in increased quantities of partially recycled peptidoglycan building up especially
the NAG-NAM tripeptide [95].

As well as reduced β-lactam susceptibility through increased expression of the ampC
gene, the catalytic activity of AmpC towards many penicillins and most cephalosporins
can be increased by mutations altering the enzyme (Figure 6) [238–240]. Additionally,
ampC mutations can reduce the affinity of inhibitors such as avibactam and tazobactam for
AmpC [239–242]. For a full review on ampC point mutations see [240].
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Two other β-lactamases are encoded in the core genome of P. aeruginosa. One is
a class A β-lactamase PIB-1 (PA5542) capable of degrading imipenem [243], and the
second is a class D OXA-50 like β-lactamase (PA5514/poxB) capable of degrading car-
bapenems [244,245]. Inactivation of PIB-1 increases the susceptibility of P. aeruginosa to
carbapenems, and overexpression of PoxB reduces susceptibility to meropenem [243–245].
The contributions of these enzymes to antibiotic resistance in clinical settings, if any, has
not yet been studied.

The structure of AmpC is shown with avibactam (blue) bound to the catalytic serine
(pink) at the active site. Deletions that contribute to β-lactam resistance [240] are shown in
black. The locations of amino acid variants that contribute to β-lactam resistance [240] are
shown in red with the side chains displayed. Sequence variants P180L and F147L reduce
susceptibility to ceftazidime and ceftolozane-tazobactam. Variants V239A, G242R, E247K,
E247G, and Y249H reduce susceptibility to ticarcillin, ceftazidime, ceftolozane-tazobactam,
piperacillin-tazobactam and cefepime, and except for E247K aztreonam. Variants L320P,
N373I, and ∆T316-∆Q321reduce susceptibility to a wide range of cephalosporins. Variants
that reduce the effectiveness of the AmpC inhibitor tazobactam are G183V, E247K (shown in
red), and the deletion ∆G229–∆E247 [242]. Variant N347Y (cyan) reduces the effectiveness
of the inhibitor avibactam [241]. Amino acid residues are numbered relative to the start
codon. The image is based on the crystal structure 4HEF_1 [246].
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12. β-lactamases Acquired by Horizontal Gene Transfer

Many clinical isolates of P. aeruginosa have additional β-lactamases that have been
acquired by horizontal gene transfer [209,210,247–249]. Enzymes in classes, A, B, and D can
all be acquired in this way. The most prevalent horizontally acquired class A β-lactamases
in P. aeruginosa include enzymes in the SHV, TEM, KPC, and GES families [250,251]. For
example, a study in 88 isolates of P. aeruginosa from patients in Germany found that 44%
had a SHV, 23% had a TEM, 14% had a KPC, and 2% had a GES [250]. A novel class A
carbapenemase, GPC-1, has also been recently discovered in P. aeruginosa [252].

Amongst class B Metallo-β-lactamases, which include carbapenemases, two of the
most prevalent horizontally acquired enzymes are VIM and IMP [210,250,253,254]. Of
207 isolates of P. aeruginosa from patients in China, 55% had a class B β-lactamase, of which
32% were a VIM and 29% an IMP with the remainder being in the SIM, NDM SPM, and
GIM families [255]. In the previously mentioned study of isolates from German patients,
IMP had a prevalence of 16%, and VIM was present in 6% of isolates [250]. The difference
in prevalence between the two studies may be due to factors such as a differing distribution
of β-lactamases around the globe and different treatment protocols.

Transferable Class C β-lactamases are relatively rare in species such as P. aeruginosa
that have chromosomally encoded ampC [256,257]. Transferable Class C β-lactamases can
have activity against penicillins, cephalosporins, and monobactams [256]. These enzymes
are thought to have originated from chromosomally-encoded enzymes that have been
transferred to mobile elements [257]. Class C β-lactamases present in P. aeruginosa as
a result of horizontal gene transfer include FOX-4 in a high-risk strain of P. aeruginosa
(ST308) [258] and CMY-2 that was found in a variety of clinical isolates [259].

Class D β-lactamases that are increasingly problematic in P. aeruginosa include the OXA
family of β-lactams, named for their high activity against oxacillin [209,249]. Class D β-
lactamases have a broad activity spectrum capable of degrading all β-lactams [260]. Many
Class D OXA β-lactamases, such as the OXA-10-like β-lactamase that confers resistance to
ceftazidime, were first discovered in P. aeruginosa [249]. In one study, of 1173 P. aeruginosa
isolates from patients, 15.4% had OXA β-lactamases [261]. In a separate study, of 75 β-
lactamase-producing isolates, OXA-1 was the most common β-lactamase being found in
37.3% of isolates, followed by OXA-4 (in 32%), GES-1 (in 16%), and VEB-1 (in 13.3%) [262].
OXA-1 and OXA-4 were both present in 18.7% of isolates. In a further study of 184
carbapenem-resistant P. aeruginosa isolates, the OXA-type carbapenemases present were
OXA-23 in 6.5% of isolates, OXA-40 in 0.5% and OXA-58 in 0.5% [263].

The acquisition of carbapenemases by P. aeruginosa has contributed towards a signifi-
cant proportion of overall carbapenemase resistance [264]. In a study of 232 carbapenem-
resistant P. aeruginosa isolates, 71 isolates had carbapenemases that had likely been acquired
through HGT [265]. In P. aeruginosa acquisition of β-lactamase genes by horizontal transfer
occurs via plasmids or through integrative and conjugative elements (ICEs) that integrate
into the chromosome of recipient cells following transfer. For example, the gene encoding
an OXA-198 enzyme in isolates of P. aeruginosa from Belgium was carried on an IncP-type
plasmid [266]. IMP was the first transferable Metallo-β-lactamase found in P. aeruginosa (in
1991) and was on a conjugative plasmid [247]. In a separate study, 11 VIM β-lactamases
and one IMP β-lactamase from P. aeruginosa isolates were found on self-mobilizing plas-
mids [248]. Conversely, the gene encoding a class A GES-6 enzyme was present on an
ICE element in a P. aeruginosa [267], and bioinformatic analysis shows that β-lactamases
are commonly located on ICEs in P. aeruginosa [268]. Multiple antibiotic-modifying genes
can be present on a single mobile genetic element [269–271]. β-lactamases are often
present on integrons that facilitate their capture by mobile genetic elements [270–272]. This
can result in the presence of multiple β-lactamase genes, such as carbapenemase- and
cephalosporinase-encoding genes, on a single mobile element conferring resistance to a
wide range of β-lactams [261,269–271]. Compounding the problem, integrons can also
carry genes conferring resistance to other antibiotic classes such as aminoglycosides, so
that horizontal gene transfer can result in multidrug-resistant bacteria [273,274].
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Horizontal gene transfer can occur between as well as within species, providing
the potential for P. aeruginosa to acquire β-lactamases from unrelated bacteria such as
the Enterobacteriaceae. KPCs first discovered in Klebsiella pneumoniae are now found
in P. aeruginosa and many other gram-negative bacteria such as Enterobacter spp., E. coli,
Proteus mirabilis, and Salmonella spp. [122]. Conversely, VIMs were first discovered in
P. aeruginosa and are now found widely spread amongst gram-negative bacteria [122].

Carbapenemase-producing bacteria have been found in hospital drainage systems
(wastewater) and sewage systems and in the general wastewater downstream of hospital
treatment systems [216,275–278]. This indicates that hospitals may be a large source of
the dissemination of carbapenemase-producing isolates into the general environment,
providing potential for inter-species gene transfer. However, carbapenemases have also
been found in many other environments. Carbapenemase-producing bacteria have been
found in most aquatic environments including rivers, the sea, well water, sewage, and
drinking water [279,280]. Non-aquatic environments also harbour carbapenemases. In
one study, 4 out of 856 bacterial isolates from samples of vegetables had carbapenemases-
encoding genes [281]. The widespread presence of carbapenemase-encoding genes in the
general environment increases the risk of acquisition of carbapenemase resistance genes by
P. aeruginosa.

13. Lifestyle and Metabolism: Other Contributors to Resistance

The primary mechanisms of β-lactam resistance are outlined above, but mutational
changes affecting other pathways can also influence susceptibility to β-lactams. Bacteria
near the centre of a biofilm have low metabolism and growth because of low oxygen and
nutrient levels, factors that contribute towards β-lactam resistance as β-lactams only kill
actively growing cells [57]. Mutations in genes that regulate biofilm production are ob-
served in many clinical isolates of P. aeruginosa from the lungs of patients with CF [282–284]
and may reduce the susceptibility of the bacteria to β-lactams. For example, mutations in
wspF were present in 68% of clinical isolates that have increased production of extracellular
matrix [285]. wspF belongs to the Wsp signalling complex, a major regulator of biofilm
formation [286]. The loss of wspF via mutations is predicted to leave the Wsp signalling
complex in an active conformation leading to a signalling cascade upregulating genes re-
sponsible for adhesion and biofilm formation [286]. Similarly, point mutation and deletions
of rpoS increase adhesion and biofilm production [287,288]. In experimental evolution
studies, rpoS was commonly mutated in P. aeruginosa grown as biofilms and then exposed
to imipenem [287]. Mutations in rpoS have also been found in many clinical isolates [287].

Experimental evolution studies have shown that mutations in a wide variety of other
genes are also associated with an increased ability to tolerate β-lactams [55]. Many of these
mutations affect lipopolysaccharide (LPS) synthesis (e.g., wapR/galU) [289] or alter other
aspects of metabolism (e.g., aroB/acyl-CoA thiolase) [124,290] or membrane composition.
Mutations in the galU gene that plays a role in the synthesis of lipopolysaccharide occur in
CF clinical isolates of P. aeruginosa [135] and increase ceftazidime and meropenem toler-
ance [74]. How these mutations contribute towards β-lactam resistance is not well studied.
It may be that altered LPS synthesis reduces the permeability of the outer membrane
for β-lactams. There is some evidence that mutations affecting LPS synthesis can reduce
bacterial fitness in vitro [291] but whether they affect fitness in vivo is not known.

Mutations that lead to enhanced activity of AlgU, a regulator of alginate biosynthe-
sis, are predicted to cause a metabolic burden, and mutations in rpoN which nitrogen
metabolism, reducing the growth rate in many clinical isolates [292]. Slower growth rates
in P. aeruginosa are associated with antibiotic resistance [292]. Mutations in genes encoding
enzymes of metabolism, such as triosephospate isomerase (central carbon metabolism),
N-acetylglutamate synthase (arginine metabolism), and 3-dehydroquinate synthase (syn-
thesis of aromatic amino acids) also increase tolerance to β-lactams [55,124,289]. Whether
these mutations act by reducing growth rate by altering antibiotic susceptibility because of
reduced cellular respiration [293] is not yet clear.
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During chronic infection, P. aeruginosa can also evolve morphotypes termed small
colony variants (SCVs) because of their appearance during growth on agar plates [294].
SCVs have an increased ability to resist antibiotics. SCVs arise from changes to signalling
pathways, including the Wsp signalling pathway described above, and also to changes in
metabolic pathways [295]. However, the relationship between metabolic changes, the SCV
phenotype, and the increased ability to tolerate β-lactams is not yet fully understood.

14. Conclusions and Prospects for the Future

β-lactam antibiotics are a key tool in the treatment of P. aeruginosa infections and will
remain so for the foreseeable future. However, the occurrence of resistant isolates of this
major and problematic pathogen, complicating treatment, is a major concern. Clinical
isolates that have acquired carbapenemases are a serious problem as carbapenems are
one of the last lines of defence against P. aeruginosa [211]. The importance of β-lactams
in treating P. aeruginosa infections, and the widespread occurrence of antibiotic-resistant
bacteria, has led to a large amount of research into the mechanism of β-lactam action and
bacterial resistance. Consequently, we have a good understanding of how β-lactams act
and on resistance mechanisms, including mutations that reduce carbapenem uptake or
upregulate efflux pumps, target site mutations that alter PBP3 or increase AmpC expression
and activity, and acquisition of antibiotic modifying enzymes through HGT.

Nonetheless, there are still some important knowledge gaps. Sequence variants in
PBP3 are an important contributor to resistance, but the effects of different variants on
affinity for, and effectiveness of, different antibiotics are not yet fully understood. A better
understanding of the effects of PBP3 variants on β-lactam affinity will be important in
the design of new β-lactams, as well as helping to understand cross-resistance between
currently used antibiotics. Some other resistance mechanisms are class-specific. For exam-
ple, mutations altering OprD contribute to carbapenem resistance but not cephalosporin
resistance, whereas mutations affecting PBP4 increase resistance to cephalosporins but not
carbapenems. β-lactamases acquired by horizontal gene transfer also exhibit specificity
for different classes of β-lactams, as well as different susceptibilities to β-lactam inhibitors.
Refining our understanding of class-specific resistance mechanisms has the potential to
allow fine-tuning of β-lactam use in clinical practice.

More broadly, while the primary contributors to β-lactam resistance are relatively well
understood, the relationship between genotype (genome sequence) and phenotype is not
yet fully clear. How do different combinations of resistance mechanisms affect β-lactam
susceptibility, what is the contribution of intrinsic resistance and to what extent does it
vary between isolates? It is especially difficult to determine if variants in gene promoters
and regulatory regions or non-coding RNAs have an effect. Fully understanding the
relationship between genotype and phenotype has the potential to allow the development
of genome-based tools for rapid prediction of antibiotic susceptibility [296,297], as has been
done for other bacterial species [37,298–300]. More rapid treatment with antibiotics would
reduce the mortality associated with P. aeruginosa infections.

How can the occurrence of P. aeruginosa resistant to β-lactams be minimised? One
approach that has already been implemented in a variety of settings is antimicrobial
stewardship–limiting β-lactam use to cases where there will be a clear benefit [301]. Initial
studies applying this approach to P. aeruginosa are encouraging, with the rate of antibiotic
resistance (including β-lactam resistance) being lowered once stewardship programmes
were implemented [302,303].

Additional approaches to minimise the emergence of resistant bacteria are to use
combinations of antibiotics or to avoid prolonged exposure to an antibiotic in chronic
infections by alternating between different antibiotic classes–“antibiotic cycling” [304]. The
first of these relies on the principle that if an infecting bacterium has become resistant
to one antibiotic, it will still be susceptible to a second. As well as antibiotic combina-
tions, phage therapy in parallel with antibiotic treatment is undergoing extensive testing
in clinical trials and results are encouraging [305–309]. Powdered phage cocktails are
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being specifically designed for the treatment of respiratory infections [310]. Peptides with
anti-microbial activity are also being actively explored as potential tools in overcoming
antibiotic-resistant bacteria [311] and peptide–β-lactam combinations may present another
approach to preventing the emergence of resistance.

The “antibiotic cycling” approach is based in part on the concept that mutations
that confer antibiotic resistance may reduce the fitness of the bacteria in the absence of
antibiotics, allowing resistant mutants to be outcompeted by antibiotic-susceptible bacteria.
Further research on these approaches can be expected to provide clear principles on the
most effective use of β-lactams for treatment while minimising the emergence of resistant
bacteria. More broadly, there is limited research on the circumstances in which P. aeruginosa
acquires β-lactamase genes by HGT. However, as in the clinic, the presence of antibiotics in
the general environment will promote antibiotic resistance. Minimising the discharge of
β-lactams from clinical settings such as hospitals into wastewater will reduce the selection
of antibiotic-resistant bacteria.

An alternative approach to circumventing resistance would be to develop new β-
lactams that are unaffected by resistance mechanisms such as β-lactamases, along with
new β-lactamase inhibitors. Examples of new β-lactams in development include the
carbapenem benapenem [312,313] and a monobactam BOS-228 [312,314]. Combinations
of β-lactams with a number of new β-lactamase inhibitors are undergoing clinical tri-
als [315,316]. Diazabicyclooctane-derived β-lactamase inhibitors can inhibit class A and
C β-lactamases but have limited activity against class D β-lactamases, whereas enmeta-
zobactam and LN-1-255 show activity against class A, C, and D β-lactamases [316]. Three
boronic acid-derived β-lactamases inhibitors VNRX-5236, taniborbactam, and xeruborbac-
tam are also undergoing clinical trials [316]. Of particular significance, taniborbactam and
xeruborbactam are pan-β-lactamase inhibitors that can inhibit all classes of β-lactamases,
including metallo-β-lactamases which are not targeted by other inhibitors. A novel metallo-
β-lactamase inhibitor ANT431 is also at a pre-clinical stage [317,318]. A number of other
compounds are also under development, although how many will find their way into
the clinic, and whether they will be subject to the same resistance mechanisms as existing
compounds, is not yet clear [319,320].

Rational development of new anti-Pseudomonas antibiotics is greatly enhanced by an
understanding of the mechanisms of action of, and resistance to, existing antibiotics [320].
Carbapenems can enter P. aeruginosa via OprD, but other antibiotics are thought to diffuse
through the lipid bilayer of the outer membrane. A better understanding of how β-lactams
access the periplasm may enable more effective uptake. One approach that has been
explored is to conjugate β-lactams to siderophores, low molecular weight compounds
imported into the periplasm by P. aeruginosa to enable the acquisition of iron a key nutri-
ent [321,322]. A newly approved cephalosporin-siderophore, cefiderocol (FDA 2019 and
European Union 2020), is showing promising results against P. aeruginosa [323,324] shown
to be active against greater than 95% of P. aeruginosa isolates [325] Resistance towards cefide-
rocol can arise through mutations in AmpC and in TonB-dependent transporters required
for entry of the antibiotic into bacterial cells [237,326,327] and the extent to which resistance
becomes a clinical problem remains to be determined. Encapsulating β-lactams into lipo-
somes or loading them into nanoparticles for targeted antibiotic release may also increase
the local concentration of antibiotics, enhancing entry into the bacterial cells [315,328,329].

As well as β-lactamases, other P. aeruginosa proteins contribute to resistance and are
potential targets for antibiotics. For example, inhibitors of AmpR would be expected
to increase the susceptibility of P. aeruginosa to AmpC-susceptible β-lactams, and inhi-
bition of the MexABOprM efflux pump would also increase susceptibility. Phe-Arg-β-
naphthylamide (PAβN) is a broad-spectrum efflux inhibitor that reduces MICs towards
antibiotics in vitro [330,331]. PAβN is toxic to humans but its effectiveness in vitro demon-
strates the potential of efflux pump inhibitors as targets for anti-Pseudomonal therapy.
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In conclusion, β-lactams will be key members of the anti-Pseudomonas armamentarium
for many years to come. Future research on their modes of action and or how to overcome
the threat of resistant bacteria will be essential to maintain and maximise their usage.
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