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Abstract. Diabetic retinopathy (DR) is a frequent microvas‑
cular complication of advanced‑stage diabetes. Endothelial 
cell dysfunction (ED) induced by diabetes plays an important 
role in the development of DR. It is considered that inflam‑
mation and mitochondrial homeostasis are associated with 
the progression of ED. Takeda G protein‑coupled receptor 5 
(TGR5) is a membrane receptor for bile acids (BAs) that plays 
an important role in regulating BA metabolism. Recent studies 
have shown that TGR5 is involved in regulating various 
mediators of ED and improving the dysfunction of vascular 
endothelial cells in DR; however, the exploration of specific 
related mechanisms remains an active research area in this 
field, which suggests that TGR5 may be one of the potential 
targets for the treatment of associated ED in DR. In the present 
review, the association between TGR5 and mitochondrial 
homeostasis was investigated. The extent of inflammation in 
DR‑induced ED was assessed to provide possible evidence for 
the development of targeted therapies against DR.
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1. Introduction

Diabetic retinopathy (DR) is a common microvascular compli‑
cation that presents at the late stages of diabetes. Approximately 
80% of diabetic patients experience DR 20 years following 
onset, and its incidence is increasing worldwide (1,2). It has 
become one of the most important causes of blindness and 
visual impairment in working‑age individuals (3,4). The 
initial stage of DR does not present with apparent symptoms; 
however, as the disease progresses, patients may experience 
blurred vision or even blindness (5,6). Early lesions in DR are 
characterized by loss of retinal capillary pericytes, resulting 
in increased vascular permeability, the presence of decel‑
lularized capillaries and microaneurysms, and rupture of the 
blood‑retinal barrier (BRB) (7). Progression of DR to its later 
stage is followed by neocapillary proliferation, which signifi‑
cantly increases the likelihood of visual loss (8,9). Endothelial 
cell dysfunction (ED) is the key element to the development 
of microvascular lesions. Certain studies have shown that 
hyperglycemia‑induced oxidative stress is increasing, which 
stimulates the inflammatory pathways and promotes vascular 
dysfunction of the retina leading to increased capillary perme‑
ability and vascular leakage (10). In addition, mitochondrial 
homeostasis is associated with ED (11). The enzyme, endo‑
thelial nitric oxide synthase (eNOS), also plays a vital role in 
maintaining the function of endothelial cells (ECs) (12).

Bile acids (BAs) are a class of endogenous molecules 
synthesized in the liver; they are present in the bile as ionic 
salts derived from the metabolism of cholesterol (13). The 
main role of cholesterol is to promote the digestion and 
absorption of lipids. In the case of diabetes mellitus (DM), 
lithocholic acids and deoxycholic acids, formed by the 
enterohepatic cycle of BAs, have a high affinity for Takeda G 
protein‑coupled receptor 5 (TGR5); the BA‑induced activa‑
tion of TGR5 increases glucagon‑like peptide‑1 (GLP‑1) and 
insulin release (14). In recent years, a high number of studies 
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have shown that BAs can be used as a signaling molecule to 
bind to the corresponding receptors and participate in the regu‑
lation of various metabolic diseases (15,16). TGR5 is a widely 
studied signaling molecule involved in this process. TGR5 is 
expressed in a variety of tissues and organs, such as the liver, 
kidney, brain, and heart (17,18). It is also widely expressed in 
almost all types of ECs and is involved in the regulation of 
glucose and lipid metabolism processes present in various 
metabolic diseases, such as obesity, non‑alcoholic fatty liver 
disease, and type 2 diabetes mellitus (T2DM) (19,20).

Currently, farnesoid X receptor (FXR) is mainly reported to 
be related to the function of macrovessels, while TGR5 is less 
relevant (21). In addition, as a small tissue in the eyeball, the 
blood vessels distributed on the retina are mainly microvessels. 
From an etiological point of view, the specific pathogenesis 
of DR remains unelucidated, but the current view accepted 
widely by researchers is that DR is a retinal microvascular 
complication induced by the long‑term hyperglycemic envi‑
ronment. Therefore, in the present review, the role TGR5 plays 
in microvessels was investigated and an attempt was made to 
elucidate the underlying possible mechanisms.

To date, various studies on BAs and their receptors have 
implicated their possible roles in the regulation of EC func‑
tion (22). Previously, it has been revealed that TGR5 is highly 
expressed in retinal microvascular ECs (23), which may 
produce BAs through the ‘alternative’ pathway (24). It has also 
been found that intermittent fasting increases the production 
of taurodeoxycholic acid (TUDCA), a metabolite of BAs in 
the retina, and protects retinal ECs to delay the progression 
of DR (23). A previous study has shown that TGR5 agonists 
are beneficial in diabetes and TGR5 has become a promising 
target for the treatment of this disease (25). Therefore, it was 
hypothesized that TGR5 activation may delay the progression 
of DR by improving ED, which plays a protective role in the 
retina; however, the underlying mechanism remains to be 
elucidated in further studies.

In the present review, the role of TGR5 in delaying the 
progression of DR was summarized by its effect on maintaining 
mitochondrial homeostasis and counteracting inflammation to 
protect ECs from damage. Therefore, the present study aimed 
to provide possible evidence for the application of the targeted 
therapy of DR.

2. DR and ED

ECs are a layer of squamous epithelial cells covering the 
inner surface of blood vessels, which constitute a barrier 
between blood vessels and tissues and control the transport 
of substances between tissues and blood vessels. ECs act as 
a metabolic interface between the blood and the tissues and 
are important in maintaining the stability of the intravascular 
environment (26). ED occurs when ECs are unable to main‑
tain homeostasis of the vascular environment. It is a systemic 
pathological condition characterized by changes in the 
phenotype of ECs, which leads to diminished vasoconstriction 
and the formation of a proinflammatory and prothrombotic 
state (27). ED forms the basis of the chronic microvascular 
and macrovascular complications of diabetes. In recent 
years, significant progress has been made in understanding 
the mechanism of ED and its pathogenesis in patients with 

type 1 diabetes mellitus (T1DM) and T2DM. Several factors 
that cause ED have been identified and the common causes 
include hypoxia, aging, hyperglycemia, hypercholesterolemia, 
and hypertension (28). Previous studies have shown that patho‑
physiological processes caused by a high glucose environment 
found in diabetics, such as inflammation, oxidative stress, 
and endoplasmic reticulum (ER) stress are responsible for the 
continuous progression and aggravation of ED in the course of 
the disease (29). As a common microvascular complication in 
the late stage of diabetes, the risk factors for the development 
of DR are mainly related to the severity and exposure time of 
hyperglycemia, hypertension, and hyperlipidemia (30). ED is 
the pathological basis of diabetic microvascular complications 
and plays an important role in the pathological progression 
of DR. Progressive dysfunction of ECs will certainly lead 
to changes in morphological structures, such as capillary 
basement membrane thickening, perivascular cell loss, BRB 
damage, and neovascularization, which accelerates the 
progression of DR (31,32).

3. DR and mitochondrial homeostasis and inflammation

The specific mechanisms leading to DR have not been fully 
elucidated. However, disruption of mitochondrial homeostasis 
and inflammation are considered to be closely related to the 
pathogenesis of DR (33,34).

Diabetes can disturb mitochondrial dynamic homeo‑
stasis, causing impaired mitochondrial function, which in 
turn causes the development of related diseases (35,36). 
Under high glucose conditions, the electron flux through 
the electron transport chain increases, eventually leading 
to increased reactive oxygen species (ROS) production, 
which in turn causes retinal damage (37,38). The mitochon‑
drial fusion division mechanisms are also compromised in 
diabetes; swollen retinal mitochondria decrease mitofusin 2 
(Mfn2) expression and increase dynamin‑related protein 1 
(Drp1) expression (39). Decreased mitosis and inflamma‑
some activation can be observed in the retina of diabetic 
patients (40), which further leads to deterioration of mito‑
chondrial homeostasis.

In addition, several studies have implicated various 
systemic and local inflammatory factors in DR (41,42). 
Diabetes causes increased local and systemic expression of 
inflammatory cytokines, chemokines, and growth factors, all 
of which are involved in the development of DR (43‑45). It 
has been shown that fortified extracts of red berries, ginkgo 
biloba leaves, and white willow bark containing carnosine and 
α‑lipoic acid can significantly reduce cytokine levels in the 
retina and inhibit lipid peroxidation, which is associated with 
diabetes (46). Another study has demonstrated that curcumin 
can protect against high glucose‑mediated retinal pigment 
epithelial cell injury due to induction of an anti‑inflammatory 
pathway (47). Purinergic signaling has been shown to be a key 
factor in regulating the inflammatory status in different organ 
tissues. P2X purinergic receptor 7 (P2RX7) is a common 
purinergic ionotropic receptor; its activation leads to the 
release of proinflammatory mediators and the induction of cell 
damage. This receptor is considered to be a target for restoring 
BRB and reducing inflammation. It has been experimentally 
demonstrated that the inhibition or downregulation of P2X7R 
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expression plays a protective role in inflammation‑induced cell 
damage (48‑50).

4. Structure of TGR5

TGR5, also known as G protein‑coupled BA receptor 1 
(GPBAR1) (51), belongs to the class A G‑protein coupled 
receptor (GPCR) subfamily. The receptor comprises seven 
transmembrane helices (TMH1‑7), three extracellular loops 
(ECL1‑3), contributing to ligand binding, and three intracel‑
lular loops (ICL1‑3) involved in mediating the signal to 
downstream signaling molecules (52). Substantial evidence 
has demonstrated that purinergic receptor P2Y9 in posi‑
tion 3.33 and chemokine receptor CXC3 in position 5.43 is 
involved in key ligand interactions. In addition, the receptor 
around Ser270 in TGR5 is able to recognize the acidic side 
chain of BAs, and the hydrophobic pocket hosting the C6 and 
C7 positions of the BA steroid nucleus was defined by hydro‑
phobic residues including Phe96, Cys236, and Trp237 (53). 
BA impacts TGR5 activity through those structures. TGR5 
functions primarily through the TGR5‑Gαs complex, a case in 
point is that the activation of TGR5 by oleanolic acid (OA) and 
INT‑777 selectively activates Gαs and then the levels of intra‑
cellular TGR5‑cyclin AMP (cAMP) will be increased (54). 
The interaction sites of TGR5 and Gαs are the intracellular 

terminal of TM6 on TGR5 and the GαsRas domain (mainly 
the C‑terminal of the α5‑helix). In addition, other than stabi‑
lizing the N‑terminal α helix of Gαs, Gβ may also be involved 
in receptor binding (55) (Fig. 1).

5. TGR5 and ED

TGR5 is a common membrane receptor during BA metabo‑
lism and has been demonstrated to be expressed in a variety 
of tissues and organs (54). The role of TGR5 in regulating 
homeostatic metabolism is also well documented. A previous 
study has shown that TGR5 can delay the occurrence and 
development of portal hypertension by reversing ED (56). 
It was also found that activation of TGR5 could reverse the 
injury of liver sinusoidal ECs in a mouse model of cirrhosis and 
could reverse cardiovascular injury by reducing the secretion 
of inflammatory factors in aortic intimal cells (56,57). These 
studies indicate that activation of TGR5 may be a potential 
therapeutic strategy to delay ED caused by DR.

6. TGR5 and mitochondrial homeostasis

Previous studies have confirmed a close association between 
the damage of ECs and mitochondrial damage. Under 
damaged conditions, mitochondria generate large amounts 

Figure 1. Structure of TGR5. TGR5 comprises seven transmembrane helices (TMH1‑7), three extracellular loops (ECL1‑3) and three intracellular loops 
(ICL1‑3). Purinergic receptor P2Y9 in position 3.33 and chemokine receptor CXC3 in position 5.43 is involved in key ligand interactions. In addition, the 
receptor around Ser270 can recognize the acidic side of BAs and the hydrophobic pocket (including Phe96, Cys236, and Trp237) in TGR5 can host the C6 
and C7 positions of BAs. The intracellular terminal of TM6 on TGR5 and GαsRas domain can interact with each other and activate the second messenger. 
TGR5, Takeda G protein‑coupled receptor 5; BAs, bile acids.
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of ROS, such as superoxide anion (O2
‑), hydrogen peroxide 

(H2O2), peroxyl radical (ROO·), and reactive hydroxyl radical 
(·OH), which are generally considered harmful to cells (58,59). 
Concomitantly, oxidative stress can cause changes in mito‑
chondrial dynamics, such as activation of mitochondrial 
fission, inhibition of mitochondrial fusion, and an increase in 
the levels of mitophagy (60,61). Mitochondrial fusion involves 
three proteins, namely Mfn1, Mfn2, and optic atrophy 1 
(OPA1), while mitochondrial fission is mediated by Drp1 and 
its receptors, including mitochondrial fission factor (MFF) and 
fission 1 (Fis1) (62,63). High levels of ROS can generate the 
release of inflammatory factors, such as vascular endothelial 
growth factor (VEGF), IL‑1β, and TNF‑α. For example, 
TNF‑α can cause leakage of blood vessels by upregulating 
NK‑κβ to activate ICAM‑1 (64) and induce EC damage. 
Numerous experiments have demonstrated that the produc‑
tion of a series of inflammatory cytokines and the changes in 
mitochondrial dynamics in diabetic rats contribute to retinal 
microvascular endothelial cell (RMEC) dysfunction in this 
animal model (65,66) (Fig. 2).

Mitochondria are the main site of energy production and 
play a crucial role in energy conversion and metabolism. 
In addition, mitochondria perform various functions that 
are essential for cell survival and have to maintain these 
processes and also adapt to the changing cellular environment. 
Mitochondria, as highly mobile double‑membrane organelles, 

can form dynamic and extensive cellular networks that main‑
tain homeostasis through fusion, fission, and mitophagy (62). 
Normally, fusion and division of mitochondria exist in a 
dynamic equilibrium. Mitochondrial dynamics are essential 
for the regulation of mitochondrial function and mitochondrial 
fragmentation has been shown to be involved in the induction 
of pathological processes including DM (67‑69).

Substantial evidence has demonstrated that therapies that 
improve mitochondrial function can ameliorate damage to 
retinal ECs. D‑Arg‑dimethylTyr‑Lys‑Phe‑NH2 (SS‑31) is a 
mitochondria‑targeted antioxidant peptide, which effectively 
reverses the decreased visual acuity in a streptozotocin‑induced 
diabetic mouse model (70). Huang et al (71) demonstrated that 
diabetic rats treated with SS‑31 exhibited improved retinal 
ganglion cell structure, thinner capillary basement membrane, 
and reduced inner BRB leakage. Therefore, the improvement of 
mitochondrial damage may become a new strategy to treat DR.

ECs rely on glycolysis for energy supply, which may be 
a misleading concept suggesting that adenosine triphosphate 
(ATP) derived from mitochondria has no important role in 
ECs (72). However, recent evidence suggests that while the 
energy requirements between ECs are not as large as those 
of cardiomyocytes and smooth muscle cells, intracellular 
ATP may play an important role in mediating the normal 
physiological functions of ECs (73). Mitochondrial oxida‑
tive phosphorylation plays an integral role in energy stores 

Figure 2. Major mechanisms of RMEC injury in DR. The hyperglycemic environment impairs mitochondrial homeostasis in REMCs, inhibits mitochondrial 
fusion, accelerates mitochondrial division, and causes mitochondrial damage. Damaged mitochondria generate large amounts of ROS and the generated 
inflammatory factors cause vascular leakage through the NF‑κβ‑ICAM‑1 pathway. RMEC, retinal microvascular endothelial cell; DR, diabetic retinopathy; 
ROS, reactive oxygen species; ICAM, intercellular adhesion molecule 1.
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and mitochondrial dysfunction can enhance oxidative stress 
sensitivity and lead to EC death (65). Therefore, a decreased 
mitochondrial function also contributes to ED. Recently, it 
has been shown that EC injury can be delayed by reducing 
mitochondrial division and/or enhancing mitophagy via the 
activation of TGR5.

It has been shown that INT‑777, an agonist of TGR5, 
prevents mitochondrial division by decreasing calcium concen‑
tration, attenuating protein kinase C (PKC) activation, and 
inhibiting the Ca2+‑PKCδ/Drp1 pathway (65). It has also been 
found that PKCδ can lead to Drp1 phosphorylation and trans‑
location of phosphorylated Drp1 to mitochondria can promote 
mitochondrial division (74). Intracellular calcium can activate 
calcineurin to promote mitochondrial division and induce acti‑
vation of Ca2+/calmodulin‑dependent protein kinase II, which 
can mediate p‑S616 expression in Drp1 (75,76). Activation 
of TGR5 can reduce intracellular Ca2+ concentrations by 
blocking the influx of extracellular Ca2+, thereby inhibiting 
mitochondrial division. Concomitantly, decreased intracel‑
lular Ca2+ inhibits the extracellular regulated protein kinases 
(ERK1/2) signaling pathway, which can cause a decrease in 
Drp1 expression; this, in turn inhibits mitochondrial division 
and promotes Mfn1 oligomer formation, thereby promoting 
mitochondrial fusion (77‑79).

Physiologically, a low number of damaged mitochondria are 
formed during mitochondrial fission, and damaged mitochon‑
dria are degraded by mitochondria‑targeted autophagy termed 

mitophagy (80). TGR5 can activate the PTEN‑induced kinase 
(PINK)/Parkin pathway and inhibit the PKCδ/Drp1‑hexokinase 
(HK)2 pathway to enhance mitophagy. HK is a positive modu‑
lator of Parkin recruitment and glycolysis (81,82). As the major 
HK isoform in insulin‑sensitive tissues including retinopathy, 
HK2 binds to voltage‑dependent anion channels and localizes 
to the outer mitochondrial membrane. HK2 translocates from 
the mitochondria into the cytosol in response to high glucose 
conditions in diabetic mice. Treatment with INT‑777 promotes 
recruitment of HK2 to the mitochondria and further activation 
of the PINK1/Parkin signaling pathway. The use of the Drp1 
inhibitor Mdivi‑1 can promote, in a similar manner, the trans‑
location of HK2 from the cytosol to the mitochondria. This 
suggests a role for TGR5 in enhancing mitophagy and inhib‑
iting cell division in vitro. In vivo, capillary degeneration and 
pericyte loss has been shown to be milder in TGR5‑knockdown 
rats injected with the mitochondrial fission inhibitor Mdivi‑1 
or the mitophagy agonist rapamycin compared with that noted 
in control animals (65). In summary, TGR5 maintains mito‑
chondrial homeostasis by reducing mitochondrial division and 
enhancing mitophagy, which in turn improves ED to delay the 
progression of DR (Fig. 3).

7. TGR5 and inflammation

DR is classified as a chronic low‑level inf lammatory 
process and accumulating evidence has shown that minor 

Figure 3. Possible mechanisms of the ability of TGR5 to ameliorate DR by maintaining mitochondrial homeostasis. TGR5 alleviates DR by affecting mito‑
chondrial dynamics through the Ca2+‑PKCδ/Drp1 pathway, including inhibition of mitochondrial fission and augmented mitophagy and mitochondrial fusion 
in retinal cells. (The small red arrows in the figure indicate the effect exerted by TGR5 on the pathway.) TGR5, Takeda G protein‑coupled receptor 5; 
DR, diabetic retinopathy; Drp1, dynamin‑related protein 1; PKCδ, protein kinase Cδ.
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inflammation is responsible for the vasculopathy of DR. In the 
presence of oxidative stress caused by hyperglycemia, the 
levels of inflammatory factors, such as cytokines, VEGF, 
IL‑1β, and TNF‑α in the serum and local microenvironment 
are increased. This increase in inflammatory factors leads 
to retinopathy (83). Previous studies have demonstrated 
that activation of the TGR5 receptor can delay the produc‑
tion of IL‑1, TNF‑α, and other inflammatory factors by 
macrophages; it may also reduce the production of proin‑
flammatory factors by inhibiting the Toll‑like receptor 
(TLR)4/NK‑κβ pathway and can play a role in inhibiting the 
phosphorylation of STAT3 (21,84,85). Among all inflamma‑
tory factors, TNF‑α was first implicated in the progression 
of insulin resistance, as well as in abnormal glucose metabo‑
lism associated with T2DM. Therefore, the association 
between inflammation and DR was assessed with regard to 
the contribution of TNF‑α.

It has been reported that TNF‑α can activate various 
caspases leading to apoptosis of inflammatory cells in the 
chronic inflammatory response. TNF‑α can also activate 
NK‑κβ, thereby causing an upregulation in the expression 
levels of related genes involved in inflammation and resulting 
in increased intercellular adhesion molecule 1 (ICAM‑1) 
synthesis. A large amount of ICAM‑1 will damage vascular 
ECs following binding to activated leukocytes, resulting in 
vascular leakage at the corresponding site (64). Several lines 
of evidence suggest that the elevation of TNF‑α is significantly 

associated with diabetic angiopathy in diabetic complications. 
The experiments indicated higher TNF‑α levels in the serum 
of diabetic rats than those noted in normal mice in vivo. 
Following treatment with apigenin and ramipril, the increase 
in the levels of TNF‑α was inhibited. Moreover, glomerular 
hypertrophy, fibrosis, and matrix expansion were improved, 
and the degree of inflammation was reduced in diabetic 
rats (86). In vitro, it has been demonstrated that the mRNA 
expression and secretion of TNF‑α are markedly upregulated 
in human glomerular EC cells (HRGECs) treated with high 
concentrations of glucose (87). A recent study has also demon‑
strated that TNF‑α levels are elevated in the early stages of 
retinopathy and remain high throughout the process; therefore, 
it is speculated that TNF‑α can be used as a marker to predict 
DR (88).

TGR5 has been found to regulate TNF‑α by modulating the 
Rho/Rho‑associated protein kinase (ROCK) signaling pathway. 
As an agonist of TGR5, INT‑777 can block TNF‑α‑induced 
RMEC proliferation and migration and inhibit the effect of 
TNF‑α on promoting vascular permeability (66,89). In addi‑
tion, previous evidence has shown that TGR5 agonists can 
upregulate IL‑10 expression to exert anti‑inflammatory and 
immunosuppressive effects and reduce the expression of the 
proinflammatory cytokines IL‑1β, IL‑6, and TNF‑α by acti‑
vating the TGR5‑cAMP‑protein kinase A (PKA) signaling 
pathway (90,91). In addition to the two classical signaling 
pathways described above, GLP‑1, an intestinal hormone with 

Figure 4. TGR5 regulates inflammation to improve vascular endothelial dysfunction in DR. TGR5 activation can in turn activate the cAMP‑PKA pathway 
through the cAMP pathway, which leads to the upregulation of the expression and the activity levels of CREB, ultimately causing downregulation of the 
expression levels of IL‑1β and IL‑6 and upregulation of the expression of IL‑10. Stimulation of the TGR5‑Rho‑ROCK pathway and GLP‑1 secretion can inhibit 
inflammatory transforming factor production and the inflammatory response (shown by the red downward arrows in the figure), ultimately delaying EC injury. 
TGR5, Takeda G protein‑coupled receptor; DR, diabetic retinopathy; EC, endothelial cell; cAMP, cyclin AMP; PKA, protein kinase A; CREB, cAMP response 
element binding protein; ROCK, Rho‑associated protein kinase; GLP‑1, glucagon‑like peptide‑1.
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a short half‑life, has been shown to inhibit inflammation and 
improve EC function (92). A study has shown that GLP‑1 can 
delay the damage of ECs by inhibiting NF‑κB, which in turn 
inhibits the secretion of inflammatory factors, such as IL‑1β, 
IL‑6, and TNF‑α (93). While various studies confirm that 
GLP‑1 is one of the targets of TGR5; its secretion is dependent 
on TGR5 (93,94). Therefore, it was speculated that activation 
of TGR5 may be an effective way to stimulate GLP‑1 secretion 
and delay RMEC injury (Fig. 4).

8. Discussion and future perspectives

As previously mentioned, oxidative stress, inflammation, and 
mitochondrial damage are important mechanisms of DR that 
lead to EC damage. The activation of TGR5 can reduce TNF‑α 
expression via the Rho/ROCK pathway as well as promote the 
secretion of GLP‑1 (66,94). TGR5 affects microsomal kinetics 
by inhibiting the Ca2+‑PKCδ/Drp1 pathway, upregulating the 
PINK/Parkin pathway, and regulating the PKCδ/Drp1‑HK2 
pathway to alter DR. Therefore, the ability of TGR5 to amelio‑
rate EC function may be one of the potential mechanisms 
responsible for its inhibitory effect on DR.

In addition to the aforementioned mechanisms, activation 
of TGR5 stimulates vascular ECs to produce eNOS to main‑
tain vascular health and function; this mechanism has also the 
potential to improve DR (95). Previous studies have shown 
that activation of TGR5 can effectively increase eNOS expres‑
sion; and its expression level is increased through the bile 
salt‑TGR5‑cAMP pathway and the TGR5‑GLP‑1‑PI3K‑eNOS 
pathway. (17,27). In addition, a study has also shown that 
taurolithocholic acids (TLCAs), taurocholic acid (TCA), and 
taurochenodeoxycholic acid (TCDCA) as agonists of eNOS 
has been shown to elevate eNOS expression and Ser1177 
phosphorylation of this enzyme, leading to increased nitric 
oxide (NO) production (96). The increase in NO production 
can effectively protect the vascular endothelium.

Exchange proteins directly activated by cAMP (EPACs), 
consisting of Epac1 and Epac2, are cAMP mediators inde‑
pendent of PKA. As a mediator of cAMP, Epacs take part 
in numerous biological functions (97,98). Increasing studies 
in recent years have demonstrated the role cAMP/Epac 
signaling plays in endothelial cell barrier function (99,100). 
It has been found that Epac‑1 expression is significantly 
reduced in mouse models of DR, suggesting that Epac‑1 
is a critical regulator of endothelial function in diabetic 
microangiopathy involving endothelial dysfunction associ‑
ated with hypoxia. Activation of Epac‑1 by forskolin or the 
cAMP analog 8‑pCPT reduces its sensitivity to oxidative 
stress, restores the endothelial permeability barrier, rescues 
NO production by eNOS and inhibits ROS formation (101), 
suggesting that Epac‑1 may be a potential target for the 
treatment of ED during DR. It has also been revealed that 
activation of Epac inhibits VEGF receptor signaling through 
the Ras/MEK/ERK pathway to improve BRB perme‑
ability (102). In addition, Epac has also been demonstrated 
to reduce inflammatory mediators in retinal endothelial 
cells, potentially mediating anti‑inflammatory responses in 
endothelial cells (103). In the present review, it was indicated 
that TGR5 can activate cAMP, from which it can be specu‑
lated that TGR5, after activating cAMP, may improve retinal 

endothelial cell function through cAMP/Epac signaling, 
thereby delaying the progression of DR.

To date, insufficient evidence has been reported 
supporting the notion that TGR5 can delay vascular 
endothelial injury in DR through ER stress. Therefore, it 
is possible that a new mechanism may be responsible for 
this process. Achieving a relatively balanced state of mito‑
chondria by maintaining the homeostasis of the ER has the 
potential to be a novel mechanism by which TGR5 delays 
EC injury. ER stress, such as interference in Ca2+ homeo‑
stasis, redox imbalance, and defects in protein folding can 
cause disorders in ECs (104). In ER stress, the unfolded 
protein response (UPR) can be triggered and the UPR is 
an adaptive process to restore ER stress. It has been shown 
that oral administration of TUDCA can reduce ED triggered 
by hyperglycemia. Moreover, activation of the UPR by the 
use of the chemical chaperone TUDCA can alleviate the 
glucose‑induced increase in inflammatory cytokines and 
endothelin‑1, as well as the decrease in NO levels (105,106). 
It has been demonstrated that ER stress is associated with 
TGR5 and that TGR5 mRNA levels are upregulated in 
skeletal myotubes in response to the UPR inducers thapsi‑
gargin (ER‑specific Ca‑ATPase inhibitor) and tunicamycin 
(N‑glycosylation inhibitor), demonstrating that TGR5 is 
a novel UPR target gene (107). Additional studies have 
demonstrated that TUDCA can reduce ER stress by stimu‑
lating the TGR5 signaling pathway (108,109). It has been 
shown that upregulation of TGR5 expression inhibits the 
TLR4/NF‑κB pathway to reduce oxidative stress, which 
may delay endothelial injury (85). TGR5 may alleviate ER 
stress through the protein kinase R (PKR)‑like endoplasmic 
reticulum kinase (PERK)/eukaryotic initiation factor 
2(eIF2)/NF‑κB pathway and activating transcription factor 
4‑CCAAT‑enhancer‑binding protein homologous protein 
(ATF4‑CHOP); therefore, these targets have the potential to 
be used for delaying necrosis of diabetic RMECs (104).

Since the activation of the TGR5 receptor improves 
EC injury caused by mitochondrial injury, oxidative stress, 
inflammatory factors, and ER stress, it may play a role in 
delaying DR‑induced ED. Therefore, the TGR5 receptor can 
be used as a new target to ameliorate DR. Quinoa can cause an 
upregulation of the expression of GLP‑1 via increased expres‑
sion levels of TGR5 and it may be useful in the treatment of 
DR (85). Therefore, it is possible that certain components in 
Chenopodium album may act as agonists of TGR5. This appli‑
cation can be supported further by in vivo studies and clinical 
trials in humans.
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