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Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory
processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account
for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when
combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes
ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we
tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on
directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method
through the case study of a bacterial photoautotroph–heterotroph consortium that was used to provide data needed for a community-
level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic
cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.
J. Cell. Physiol. 231: 2339–2345, 2016. � 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

The role of microbial communities has been increasingly
recognized in a multitude of scientific disciplines, including: soil
ecology, environmental engineering, agriculture, food safety,
and human health. Researchers have been keen to reveal the
organizational principles in microbial communities and to
predict their response to environmental cues, which requires a
mechanistic understanding of interspecies interactions. Such
understandings are also essential for designing and engineering
microbial ecosystems for controllable outputs (Bernstein and
Carlson, 2012; Lindemann et al., 2016). Advancements in multi-
omics analyses have significantly expanded the volume of
biological data at hand, as well as our collective biological
knowledge. However, experimental determination of diverse
forms of microbial interactions in a community still remains a
challenge. As a complementary tool, metabolic network
analysis provides comprehensive predictions that can serve as
ab initio hypotheses on cross-species metabolite exchanges
(Song et al., 2014; Biggs et al., 2015; Cardona et al., 2016).

Reconstruction of reliable microbial community networks is
a challenging task. Even in the single-species case, genome-scale
metabolic network reconstruction is an iterative process that
takes a substantial period of time (Thiele and Palsson, 2010).
Community modeling is a more challenging process due to the
increased complexities involving interacting, non-independent
species. A conventional practice to build community metabolic
networks focuses on the reconstruction of high-quality
individual networks so that their combination provides
quantitative predictions of metabolic interactions and
community behaviors (Shoaie et al., 2015). This approach

becomes ineffective; however, if sufficient data required for
curating individual networks are not available. This is often the
case with environmental communities whose member species
are not axenically cultivable or do not grow on defined media,
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for which we may lack high-quality complete genome
sequences.

To address this issue, we proposed an approach that directly
refines metabolic networks at a community level. Community
metabolic network reconstruction is primarily driven by a
community-level data, which is readily collectible even when
member species are not isolable or individually cultivable. For
testing the proposed approach, we considered a binary
consortium composed of a Thermosynechococcus elongatus BP-1
and Meiothermus ruber Strain A (hereafter T. elongatus and
M. ruber, respectively) as a model photoautotroph–heterotroph
consortium. We evaluated the qualities of resulting networks
with a focus on automated reconstruction and refinement of
draft networks. For this purpose, we used the DOE Systems
Biology Knowledgebase (KBase) platform (www.kbase.us).
Below, we describe reconstructionworkflows for single species
and extension of such protocols to the building of models of
microbial communities, using our case study for illustration.

Protocols of network reconstruction from single
genomes

Current sequencing methods are unable to read a whole
genome at a time, so all sequencing protocols first shear DNA
into smaller fragments that the sequencer can read. To
reassemble these fragments,many copiesof the genomemust be
fragmented. That way, the shreds from one copy might overlap
with the shreds from another copy so that the original DNA
sequence can be reconstructed (Lander andWaterman, 1988).
These contiguous stretches of overlapping fragments are called
contigs. If the sequencing is deep enough, then these contigs can
be assembled into one or more scaffolds that cover the full
genome. Next, we need to know where genes are located and
what their functions are. The most important genes to identify
for a metabolic reconstruction are those that function as
enzymes and transporters. The set of all reactions catalyzed by
these enzymes comprises the intracellular metabolic network,
and the transported substrates define the interface with the
extracellular environment. The final step—formulation of a
biomass synthesis equation—creates a testable metabolic
model. If the metabolic network can produce all the essential
compounds necessary for biomass from a set of extracellular
metabolites, this is a prediction that the organism can grow in
that nutrient condition. If we remove a reaction or transporter
from the network, and it is no longer capable of producing
biomass, then this is a prediction that the gene encoding that
function is essential. By proceeding in this manner, metabolic
network predictions of biomass production can be validated
against growth or no-growth phenotype observations.
Procedures for network reconstruction of single genomeswere
summarized in Table S1.

Strategies for community network construction

Community networks can be constructed from individual
species’ genomes in many different forms. At the simplest level,
we can take a mixed-bag (or gene-soup) approach by treating a
microbial community as a single supra-organism (Abubucker
et al., 2012; Faria et al., 2016). The metabolic pathways and
transmembrane transport reactions, resulting from all
members, are combined by ignoring species boundaries. The
mixed-bag network has one cytosolic compartment and one
extracellular compartment, analogous to a single species
prokaryotic network. The primary usage of the mixed-bag
approach is to analyze environment-community interactions.
Construction of a mixed-bag network requires the full genome
sequences of all member species or a deep metagenome
sequence. The growth conditions of the microbial community
are also useful but species level resolution is not required.

Prediction of cross-species metabolic interactions requires
species-resolved network modeling. This can be achieved by
treating species networks as compartments of a community,
the structure of which is similar to those of eukaryotic
metabolic networks where inter- and intra-compartmental
activities are assumed to be in a quasi-steady state. To predict
non-steady-state microbial interactions, we require multi-
species dynamic models that account for kinetics of nutrient
uptake and metabolite production for individual species. By
overlaying species-resolved kinetic expressions we can
interrogate the dynamic interplay between members in a
community. Multi-species metabolic modeling (for a
compartmentalized or kinetically connected model) starts with
the construction of metabolic models for the individual species
comprising the community. The methods of obtaining species-
resolved networks depend on the nature of the microbial
community involved. For a defined community composed of
isolated and cultivable microbes, we can use a single-organism
pipeline like the ModelSEED (Henry et al., 2010), RAVEN
(Agren et al., 2013), or COBRA (Thiele and Palsson, 2010) to
produce a separate model of each species. In contrast, for an
undefined community derived from natural environment, we
need a process to build species-level metabolic models from
themetagenomics data by separating out the assembled contigs
into species-level bins and subsequently performing gene
calling, annotation, and model building on each bin. In Figure 1,
we illustrated the three alternative approaches for building
microbial community metabolic models described in this
section.

A binary consortium to model
photoautotroph–heterotroph communities

With a focus on steady state analyses (i.e., methods shown in
Fig. 1B and C), we will explore the advantages and
disadvantages of the various strategies for constructing
microbial community models through the use of a model
microbial consortium, comprised of the photoautotrophic
cyanobacterium T. elongatus and an obligate aerobic
heterotroph M. ruber. Cyanobacteria are essential
contributors to primary productivity in natural ecosystems and
are frequently associated with dependent populations of
heterotrophic bacteria. These phototrophic-heterotrophic
communities are of keen interest to biologists seeking to
uncover mechanisms of interaction that drive global
biogeochemical cycles (e.g., involving C, N, and O2). They are
also attractive bioprocess hosts because of their inherent
robustness, diverse metabolisms, and fast growth rates. We
selected these specific taxa to demonstrate community
modeling because of the obligate dependency of M. ruber on
T. elongatus, when cultured under autotrophic conditions.
Depending on the environment, M. ruber relies upon
cyanobacterial derived organic-carbon, fixed nitrogen,
vitamins, and O2.

T. elongatusBP-1 is a thermophilic, unicellular cyanobacterium
that has been studied extensively (Onai et al., 2004; Zhang et al.,
2005; Arai and Kino, 2008; Abed et al., 2009; Eberly and Ely,
2012). Hence, it is amodel cyanobacterium and has a completely
sequenced and annotated genome (Nakamura et al., 2002). T.
elongatus was isolated from a cyanobacterial mat environment
near Beppu, Japan (Yamaoka et al., 1978).M. ruber Strain A is an
aerobic, heterotrophic, thermophile that was isolated from an
enrichment culture originally sampled from the cyanobacterial
mat inhabiting Octopus Spring in Yellowstone National Park
(WY, USA) (Thiel et al., 2015). It shares 98.6% nucleotide
identity to the 16S rRNA gene sequence ofM. ruberDSM 1279
(Loginova et al., 1984) and displays strong functional relatedness
with regard to central carbon and energy metabolism genes
(Thiel et al., 2015). Similar toM. ruberDSM 1279, Strain A lacks
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the nitrate assimilatory pathway. Hence, it depends upon
reducedN-sources produced by T. elongatuswhen growing in an
environment that is depleted of fixed/reduced nitrogen.

Reconstruction of single species metabolic models using
the KBase platform

Before we can construct a community model of T. elongatus
and M. ruber, we first need to construct individual metabolic
models for each of these species. The KBase platform offers
two alternative pipelines for the generation and refinement of
metabolic models from sequence data as described in the
following. One pipeline enables the direct reconstruction of a
new draft model from a genome sequence, consisting of four
steps: (i) import of the genome into KBase; (ii) structural and
functional annotation of the genome using the RAST
annotation algorithm (Aziz et al., 2008); (iii) reconstruction of
a draft metabolic model using the ModelSEED algorithm
(Henry et al., 2010); and (iv) gapfilling the model on a
specified growth condition using optimization-based
approaches (Dreyfuss et al., 2013; Latendresse, 2014). The
final gapfilling step can be performed iteratively on multiple
media conditions if a capacity for growth under multiple
conditions has been confirmed experimentally.

We applied this pipeline to build a model of the heterotrophic
member from our example community,M. ruber (https://narrative.
kbase.us/narrative/ws.13807.obj.1). We created three versions of
ourM. rubermodel: (i) anungapfilled version (dMr729); (ii) a version
gapfilled on a rich LB media in which M. ruber is known to grow
(lbMr729); and (iii) a version gapfilled on glucose minimal media
(mmMr729), on which it is known not to grow.

Table I shows the number of reactions, genes, transporters,
transportable metabolites, and gapfilled reactions contained in
each model. Flux balance analysis (FBA) of the model gapfilled
on LB media predicted that this species lacks a capacity to
synthesize several vitamins/cofactors (niacin, pantothenate,
riboflavin, and heme) and amino acids (proline, valine,
isoleucine, lysine, and histidine). These results are largely (albeit
not totally) consistent with experimental data on the nutrients
required for culturing M. ruber Strain A. While this result is
encouraging, it is also well-established that draft models
constructed directly from genome sequence data typically
require substantial curation before they can be truly predictive
(Thiele and Palsson, 2010).

Fortunately, it is not always necessary to start from scratch
when building amodel from a genome sequence. KBase offers an
alternative pipeline in cases where a curated model already
exists for a close relative of the genome of interest. This pipeline
consists of five steps: (i) import the genome; (ii) annotate the
genome; (iii) import a curated model and genome of a closely
related species; (iii) perform bi-directional all-versus-all BLAST
comparison of the genes in the primary genome and the well-
curated relative; (iv) propagate the curated model to the
genome of interest based on bi-directional best gene hits; and
(v) optionally gapfill the model on a specified growth conditions
using optimization-based approaches. We applied this second
pipeline in KBase to build a model of T. elongatus based on the
previously published iJN678model of Synechocystis sp. PCC 6803
(Nogales et al., 2012) (https://narrative.kbase.us/narrative/
ws.13806.obj.1). As it is known that T. elongatus is autotrophic,
we only generated two versions of this model (Table I): (i) an
ungapfilled model (dTe583) and (ii) a model gapfilled on
autotrophic media (aTe583).

Reconstruction of consortium metabolic models using
the KBase platform

Now that we have single species models constructed for both
of the members of our example consortium, we can combine
these models into either a mixed-bag community model
(Fig. 1C) or a compartmentalized community model (Fig. 1B).
As before, we applied the KBase platform to build both model
types. When constructing a mixed-bag model, the reactions
from each single-species model are merged together into a

Fig. 1. Alternative strategies for building community metabolic models for a binary consortium: (A) multi-species dynamic modeling,
(B) compartmentalizednetworkmodeling, (C)mixed-bag networkmodeling.Colors representmetabolic pathways that are specifically associatedwith
species 1 (purple) and species 2 (green), and that are common in both organisms (orange). Solid and open circles indicate extracellular and intracellular
metabolites; solid lineboxes represent compartments outsideofwhich thequasi-steady state assumptionmaynothold, anddashed lineboxes represent
compartments outside of which the steady-state assumption continues to hold. In A, r1’s and r2’s denote exchange rates that are kinetically modeled.

TABLE I. Statistics on all individual and community metabolic models
constructed

Model Reactions Genes Transporters
Transported
metabolites

Gapfilled
reactions

dMr729 1163 729 68 61 0
lbMr729 1253 729 76 71 95
mmMr729 1257 729 71 65 98
dTe583 889 583 88 86 0
aTe583 917 583 89 87 28
mbMrTe1312 1707 1312 124 93 74
preMrTe1312 2174 1312 160 91 126
mixMrTe1312 2175 1312 168 100 128
postMrTe1312 2168 1312 164 98 123
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single intracellular compartment. Gene associations are
preserved from the original models, and they are merged in
the cases where the same reaction appears in multiple models.
The biomass objective functions from all individual models are
combined together into a single consortium biomass objective
function by summing the stoichiometric coefficients from each
individual biomass reaction, and rescaling the coefficients by
the number of models being combined. Like individual models
in KBase, mixed-bag models can be gapfilled in a specified
growth condition. We applied this capability in KBase to
combine our ungapfilledM. ruber and T. elongatusmodels into a
mixed bag model (https://narrative.kbase.us/narrative/
ws.13838.obj.1), which we subsequently gapfilled in autotro-
phic media.We call this modelmbMrTe1312 (Table I). Here we
see that themixed-bagmodel has fewer total reactions than the
sumof the two constituentmodels. Additionally, themixed-bag
model required more gapfilled reactions than either single
model, but fewer than both models combined.

Next we applied tools in KBase to construct a
compartmentalized model of our model consortium. When
constructing a compartmentalized community model in KBase,
the two individual models are still combined into a single
model, but in this case, the reactions from each individual
model are integrated into distinct cellular compartments in the
new consortium model. These two compartments share a
single common extracellular compartment that permits the
exchange of metabolites between the species models. As with
all models in KBase, compartmentalized community models
can be gapfilled. In this case, gapfilling is distinctive in that the
entire database of candidate reactions is added to each
separate species compartment in the consortium model,
meaning the number of candidate reactions considered by the
gapfilling scales with the number of species models combined in
the consortium model, which in turn results in a greater
complexity to the gapfilling formulation and a longer run-time
in finding an optimal solution. However, this formulation offers
a decisive advantage over gapfilling of individual models, as the
algorithm now considers the possibility that metabolic
functions may be delegated among the species comprising the
consortium, and as such, will propose solutions that involve
interactions between species in the cases where such
interactions result in the greatest parsimony. This is
particularly valuable for gapfilling models of species that cannot
be grown in isolation, because the only phenotypic data
available for these species involves multiple organisms
operating in concert. We now explore the impact of applying a
range of gapfilling strategies when constructing a
compartmentalized model of a microbial consortium.

Alternative gapfilling strategies in reconstruction of
consortium metabolic models

Because it is possible to gapfill models on a variety of growth
conditions, and because it is possible to gapfill models both
before and after they have been merged together into a
compartmentalized consortium model, we are presented with
a wide range of potential strategies for constructing a
consortium model. We summarize the many potential options
with three fundamental alternative approaches: (i) pre-
gapfilling individual models on minimal media prior to merging
into a community model (Fig. 2A); (ii) merge ungapfilled
individual models into a community model, then gapfill the
community model (Fig. 2B); or (iii) pre-gapfill individual models
on rich media, merge into a community model, then post gapfill
the community model (Fig. 2C).

We applied all three alternative strategies in KBase (https://
narrative.kbase.us/narrative/ws.13838.obj.1), resulting in the
development of three alternative compartmentalized models
of our M. ruber and T. elongatus consortium: (i) pre-gapfilled
preMrTe1312; (ii) post-gapfilled postMrTe1312; and (iii)
gapfilled mixMrTe1312 (Table II). We then simulated the
growth of these three consortiummodels in autotrophic media
using FBA and identified the interspecies interactions predicted
by each model (Fig. 3). As expected, the preMrTe1312 model
predicts the fewest interactions with only 9 metabolites
exchanged, while postMrTe1312 predicts the most interac-
tions, with 15 metabolites exchanged. The mixMrTe1312
model splits the difference, predicting 13 metabolites exc-
hanged. Thus, we see that typically more interactions are
predicted when more of the gapfilling is conducted after the
individual models have been merged into a community model.
This trend occurs because gapfilling conducted on merged
community models will consider solutions that involve trophic
interactions between species, and where such trophic
interactions may actually be occurring, these solutions will
typically be lower cost than the non-interactive alternative of
adding all biosynthetic pathways to constituent species. We
also highlight that the pre-gapfilling approach may be ineffective
in a typical situation where some of the members are cultivable
only on rich media, because choosing to gapfill their networks
on rich media alone may be insufficient to identify microbial
interactions that enable community growth.

Of our three compartmentalized community models, the
interactions predicted by the postMrTe1312 model also best
match our experimental understanding of the dependencies
between M. ruber and T. elongatus growing on autotrophic
media, although it is worth noting that the pantothenate

Fig. 2. Alternative gapfilling strategies when constructing compartmentalized consortium metabolic models: (A) individual gapfilling (igf),
(B) community-level gapfilling (cgf), (C) combination of A and B. N1 and N2 denote draft networks of species 1 and 2, respectively.
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exchange predicted by the mixMrTe1312 is more
physiologically reasonable than the exchange of CoA predicted
by postMrTe1312.

Evaluation of community networks in comparison with
gene expression profiles

In addition to evaluating our models based on the number and
type of gapfilled reactions and the predicted trophic
interactions, we can also evaluate the capacity of our models to
accurately predict which pathways will be active in our
organisms while they are growing together in a consortium. To
accomplish this, we gathered RNA-seq data for our M. ruber
and T. elongatus consortium growing in autotrophic conditions.
Wemapped the reads to our individualM. ruber and T. elongatus
genes and loaded the expression profile into KBase. We also
called each gene “active” or “inactive” based on its expression
level (see the next section). Finally, we ran transcriptomic FBA
(Seaver et al., 2015) to fit the flux predictions made by our
models to gene activity computed fromour RNA-seq data. This
approach attempts to force reactions associated with inactive
genes off, while forcing reactions associated with active genes
on, without preventing themodel from producing biomass.We
thus compared our models’ flux predictions with active/
inactive gene activity based on gene expression data for
enzymes catalyzing reactions in our models.

We ran this analysis on our two gapfilled M. ruber models:
mmMr729 and lbMr729 (Table II). The mmMr729 model
performed better at predicting active reactions, correctly
predicting 35% of reactions associated with actively expressed
genes as active (vs. 33% predicted by the model in LB media).
However, the lbMr729 model performed much better at

predicting inactive reactions, correctly predicting 74% of
reactions associated with poorly expressed genes as inactive
(vs. 68% predicted by the model in glucose minimal media).
These results show that minimal media activates too much of
the metabolic network, while LB media activates too little.
However, these results also show that both models suffer from
inaccuracies in their capacity to produce flux profiles that are
consistent with observed patterns in gene expression. Much of
this inaccuracy is likely due to comparing the flux of a single
species model with the gene expression data generated from a
community in which it is metabolically dependent on another
member. However, some inaccuracy will typically be the case
from draft models constructed directly from genome
sequence, which was unavoidable in the case ofM. ruber, as no
published curated model currently exists for this species or any
close relatives of this species.

We conducted the same analysis on our T. elongatus aTe583.
For this model, we saw significantly improved accuracy
compared with the M. ruber model (Table II). Our T. elongatus
model correctly predicted 72% of reactions associated with
highly expressed genes as active; and it correctly predict 61% of
reactions associated with poorly expressed genes as inactive.
This result clearly shows the value of starting analysis with a
curated model whenever one is available. In this case, the gene
expression data are also more directly comparable to the case
of a single genome model as T. elongatus is not dependent upon
M. ruber and can grow in isolation on the media condition used
to generate the expression profile.

Finally, we ran the analysis with our gapfilled mixed-bag
model, as well as all three compartmentalizedmodels (Table II).
The mixed-bag model performed the best of our community
models, but this model type provides no information on
potential interactions among the species in our consortium.
Among our compartmentalized models, the postMrTe1312
performed the best, although all three compartmentalized
models produced very similar levels of performance. We can
also see a pathway-by-pathway breakdown of the agreement
between model flux and expression data (Fig. 4). This analysis
shows that the riboflavin and quinone pathways showed the
poorest agreement, indicating potential flaws in the biomass
equation of the M. ruber model.

Calling genes “on” or “off” based on expression level

In order to compare the reaction activity predicted by our
models with our gene expression data, it was necessary to
classify genes as either “on” or “off” based on their level of
expression in our RNA-seq data. To accomplish this, we
started with a list of 80 functional roles from the SEED that we
have identified as universally active, largely from translation and
transcription. We then determined the genes in our genomes
that have been annotated with these functions, and obtained
the expression values associated with these genes. We
ranked these genes based on their expression values, and
selected the expression value located at the 10th lowest

TABLE II. Consistency between reaction flux and gene expression in various model versions

þFlux, þExp
(%)

�Flux, �Exp
(%)

þFlux, �Exp
(%)

�Flux, þExp
(%)

Accuracy for active genes
(%)

Accuracy for inactive genes
(%)

Overall accuracy
(%)

mmMr729 16.1 37.0 17.5 29.5 35.3 67.9 53.1
lbMr729 25.5 15.9 5.6 53.0 32.5 74.0 41.4
aTe583 54.5 14.9 9.4 21.2 72.0 61.2 69.4
mbMrTe1312 20.5 35.2 20.4 23.9 46.2 63.3 55.7
preMrTe1312 17.5 37.1 25.0 20.4 46.2 59.7 54.6
mixMrTe1312 17.4 37.0 25.2 20.5 45.9 59.5 54.4
postMrTe1312 17.6 37.1 25.0 20.4 46.3 59.7 54.6

Fig. 3. Interactions between M. ruber and T. elongatus predicted by
consortium models.
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percentile as the threshold for calling genes “on” or “off.”
Genes with expression values higher than this threshold are
called “on,” and genes with expression values lower than this
threshold are called “off.”

Summary and future directions

Here, we provided a new approach that uses community-level
data for microbial community network reconstruction, and we
demonstrated tools that implement this approach in a user-
friendly manner in the DOE Systems Biology Knowledgebase.
Development of this approach was motivated by:
(i) community data provides key information on microbial
interactions, which are not necessarily obtainable from axenic
cultures and (ii) the conventional approaches that require high-
quality individual networks are ineffective when member
species in a community cannot be sufficiently characterized in
isolation. In the case study of a binary consortium, metabolic
networks reconstructed using this method led to predictions
of phototroph–heterotroph interactions that are consistent
with experimental data. Manual curation is a necessary next
step for more accurate predictions. Further developments

using KBase are in progress to extend the proposed method to
more complex communities beyond simple binary consortia.
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