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A B S T R A C T

Automatic identification of brain lesions from magnetic resonance imaging (MRI) scans of stroke survivors
would be a useful aid in patient diagnosis and treatment planning. It would also greatly facilitate the study of
brain-behavior relationships by eliminating the laborious step of having a human expert manually segment the
lesion on each brain scan. We propose a multi-modal multi-path convolutional neural network system for au-
tomating stroke lesion segmentation. Our system has nine end-to-end UNets that take as input 2-dimensional
(2D) slices and examines all three planes with three different normalizations. Outputs from these nine total paths
are concatenated into a 3D volume that is then passed to a 3D convolutional neural network to output a final
lesion mask. We trained and tested our method on datasets from three sources: Medical College of Wisconsin
(MCW), Kessler Foundation (KF), and the publicly available Anatomical Tracings of Lesions After Stroke (ATLAS)
dataset. To promote wide applicability, lesions were included from both subacute (1 to 5 weeks) and chronic
( > 3 months) phases post stroke, and were of both hemorrhagic and ischemic etiology. Cross-study validation
results (with independent training and validation datasets) were obtained to compare with previous methods
based on naive Bayes, random forests, and three recently published convolutional neural networks. Model
performance was quantified in terms of the Dice coefficient, a measure of spatial overlap between the model-
identified lesion and the human expert-identified lesion, where 0 is no overlap and 1 is complete overlap.
Training on the KF and MCW images and testing on the ATLAS images yielded a mean Dice coefficient of 0.54.
This was reliably better than the next best previous model, UNet, at 0.47. Reversing the train and test datasets
yields a mean Dice of 0.47 on KF and MCW images, whereas the next best UNet reaches 0.45. With all three
datasets combined, the current system compared to previous methods also attained a reliably higher cross-
validation accuracy. It also achieved high Dice values for many smaller lesions that existing methods have
difficulty identifying. Overall, our system is a clear improvement over previous methods for automating stroke
lesion segmentation, bringing us an important step closer to the inter-rater accuracy level of human experts.

1. Introduction

Neuropsychological studies of brain lesion-deficit relationships are
an indispensable means of determining what brain areas are critical for
carrying out particular functions. This contrasts with functional brain
imaging techniques such as functional magnetic resonance imaging
(fMRI). While fMRI is extremely popular and useful, it cannot make
strong claims about what brain areas are necessary for the functions
being investigated. A major impediment to progress in brain lesion-

deficit studies, however, is the labor-intensive and ultimately subjective
step of having an expert manually segment brain lesions from MRI
scans.

This has been highlighted in previous studies comparing inter-rater
variability and speed of human compared to automatic lesion identifi-
cation. Fiez et al. (2000) report a 67% ( ± 7%) agreement in over-
lapping voxels between two expert raters across ten subjects. More re-
cently, other groups have reported an inter-rater overlap of 0.73 ±
0.2 between experts performing manual lesion segmentation for the
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Anatomical Tracings of Lesions After Stroke (ATLAS) database
(Liew et al., 2018). When brain lesion segmentation is performed ex-
clusively by experienced neuroradiologists, median inter-rater agree-
ment has been shown to be as high as 0.78 (Neumann et al., 2009).
However, their involvement of only a small number of patients (N =
14) and their use of lower-resolution scans (6.5 mm slices rather than
the typical 1 mm slices used in research) suggests that an inter-rater
agreement of 0.78 may be inflated relative to the 0.67 to 0.73 range
that seems typical for research studies.

Aside from concerns with inter-rater reliability, manually seg-
menting lesions is also time consuming, often taking between 4.8 to 9.6
hours. Methods developed for automating this process, however, can
segment lesions in roughly a minute (Wilke et al., 2011). However,
manual lesion segmentation remains the method of choice, presumably
due to the relatively poor accuracy of available automated methods (Ito
et al., 2019; Wilke et al., 2011). Clearly what is needed is a fast, au-
tomated method for brain lesion segmentation with a better accuracy
than currently available methods.

Automated statistical inference methods for segmentation of med-
ical images have been proposed in previous work (Aslan et al., 2013a;
2013b; Farag et al., 2006; Soliman et al., 2016). These are mainly based
on modeling Gaussian distributions on the data. They can be easier to
train than sophisticated deep learning ones. And since they are gen-
erative, they can be used for simulation. Indeed, identifying lesions in
brain MRI images is a key problem in medical imaging (Akkus et al.,
2017; Bernal et al., 2019). Previous studies have examined the use of
standard machine learning classifiers (Griffis et al., 2016; Maier et al.,
2015; Pustina et al., 2016) and convolutional neural networks (CNN)
(Guerrero et al., 2018; He et al., 2016a; Kamnitsas et al., 2017;
Ronneberger et al., 2015) for solving the problem of automating lesion
segmentation. Machine learning methods like random forests tend to
perform competitively (Maier et al., 2015) but fare below convolutional
neural networks (Rachmadi et al., 2017).

The first convolutional UNet (Ronneberger et al., 2015) and sub-
sequent models such as UResNet (Guerrero et al., 2018) take as input
2D slices of the MRI image in a single orientation. They predict the
lesion for each slice separately and then combine the predictions into a
volume. This approach has limited accuracy because it does not con-
sider the other two planes in the image volume. Without some method,
such as a post-processing mechanism, for considering views from other
orientations, models such as this will be inherently limited by how well
a lesion can be detected in a single orientation view. For example, a
wide and flat lesion might be readily distinguishable from healthy
tissue in an axial but not coronal view. Indeed, a lesion that is more
visible in sagittal and coronal views than in the axial view is shown in
Fig. 13.

To address this limitation, CNN systems have been introduced that
can accommodate multiple 2D slice orientations. The dual-path CNN,
DeepMedic (Kamnitsas et al., 2017), while not considering multiple 2D
orientations, does have two pathways. One is for high and one is for low
resolution slices. Lyksborg et al. (2015) use a three-path network, one
for each of the canonical axial, sagittal and coronal views. Indeed,
multi-path systems with up to eight different network paths have been
explored previously (de Brebisson and Montana, 2015). Adding paths,
however, comes with a cost of having to fit many additional parameters
for each path. Fitting these additional parameters leads to an increased
risk of over-fitting, as has been reported for multi-path systems
(Bernal et al., 2019).

Multi-path systems must also combine the predictions from each
path into a final output. One approach to combining path predictions is
a simple majority vote. This was the approach used by
Lyksborg et al. (2015). However, this approach risks ignoring important
but less frequently represented information, as the outputs from dif-
ferent paths are combined into a final voxel prediction by a simple
majority vote. Also, the goal of their network was to segment tumors,
where the pathology may present a somewhat different problem than

stroke. Indeed, in the current work we show that majority vote per-
forms less well on stroke lesion segmentation than a more inclusive 3D
convolutional approach to combining outputs across paths.

We address shortfalls in previous approaches by proposing a novel
nine-path system, where each path contains a custom U-Net to ac-
commodate multiple MRI modalities or views, depending on the use
case. For example, having both T1 and fluid-attentuated inversion re-
covery (FLAIR) modalities could be useful for segmenting subacute
strokes that have occurred within, say, the last 5 weeks. For more
chronic strokes having occurred more than 6 months previous, multiple
T1 views might be more useful than combining with FLAIR. This pos-
sibility is tested in Table 1 below. Our system considers three different
normalizations of the images along each of the three axial, sagittal and
coronal views. Our custom U-Net is weak on its own but powerful as a
component of our multi-path system. This makes sense in the context of
ensemble learning where weak learners can perform better in an en-
semble (Freund and Schapire, 1997). We also use a 3D convolutional
kernel to merge 2D outputs from each path and show that it gives a
better accuracy than majority vote. It is because of this combination of
2D and 3D approaches that we refer to our system as 2.5D.

More generally, a major motivation for the current study was our
experience with existing tools that report performing well within their
own cross-validation samples (Griffis et al., 2016; Pustina et al., 2016),
yet perform poorly when applied to scans acquired at a different site.
These tools largely fail to converge with lesion segmentations from a
different human expert tracer (systematic comparisons are in the Re-
sults below). We sought to address this issue by developing a model for
automatic lesion segmentation based on state-of-the-art deep learning
techniques. Critically, this process involved evaluating it in a way that
is highly rigorous but rarely used. That is, we compared its performance
on one set of MRI acquisition sites when it was trained on data from a
different set of acquisition sites. Such an evaluation is challenging be-
cause models such as ours with many free parameters can easily over-fit
the data on which they are trained, leading to poor generalization to
new, previously unseen data. We addressed the challenging issue of
model over-fitting by performing a rigorous cross-study validation to
evaluate accuracy of lesion identification across sites that differ in nu-
merous ways such as scanner model, patient sample, time of scan ac-
quisition after stroke, and use of different expert tracers. Specifically,
the process involves training a model on one set of patient MRIs and
then testing the ability of those trained parameters to identify lesions in
a separate validation (test) set. Cross-study validation gives a better
estimate of the model’s true accuracy compared to cross-validation,
where train and test samples are simply re-shuffled from the same da-
taset (Bernau et al., 2014).

Details of the datasets and our model are provided below in the
Methods section, followed by experimental results across three different
datasets. We show that our system has significantly higher agreement
with ground-truth segmentations by human experts compared to the
recent CNN-based methods DeepMedic (Kamnitsas et al., 2017), the
original UNet (Ronneberger et al., 2015), a residual UNet
(Guerrero et al., 2018), and two non-CNN based machine learning
methods using either random forests (Pustina et al., 2016) or naive
Bayes (Griffis et al., 2016).

Table 1
Mean Dice coefficients of our method on T1 vs. T1+FLAIR images on Kessler
+MCW. Also shown are Wilcoxon rank test p-values and average lesion size of
images in the combined and individual datasets.

Data T1 T1+FLAIR Wilcoxon rank test p-
value

Average lesion size (in
pixels)

KF+MCW 0.59 0.63 0.2 58,388
KF 0.47 0.58 0.004* 34,054
MCW 0.74 0.68 0.002* 88,804
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2. Methods

2.1. Imaging data

We obtained whole-brain MRI scans in the form of high-resolution
(1 mm3) T1-weighted images and FLAIR images with the same in-plane
resolution but with 3 mm thick slices. These scans were performed on
25 patients from the Kessler Foundation (KF), a neuro-rehabilitation
facility in West Orange, New Jersey. We also obtained 20 such high-
resolution scans from the Medical College of Wisconsin (MCW). Data
heterogeneity is important for widespread applicability of the model.
To that end, we included data from a variety of time points: subacute (1
to 5 weeks post stroke) and chronic ( > 3 months post stroke). Note
that despite the inclusion of scans from different post-stroke time
points, our current model makes no attempt to track the change in le-
sions over time. Rather, different time points were included with the
aim of enhancing the generalizability of the model. Strokes of both
hemorrhagic and ischemic etiology were included. Only cases of left-
hemisphere stroke were included. The lesions visualized on the scans
were hand-segmented by a trained human expert, as described for the
KF scans in (Boukrina et al., 2015) and the MCW scans (Binder et al.,
2016; Pillay et al., 2014).

To move these scans into standard Montreal Neurological Institute
(MNI) reference space (Fonov et al., 2011), we used the non-linear
warping tool, 3dQwarp, from the AFNI software suite (Cox, 1996). The
alignment parameters were calculated first for the T1 images, as their
resolution and contrast profile most closely match that of the MNI atlas
brain. Those parameters were then applied to align the FLAIR images to
MNI space using the AFNI software 3dNwarpApply. As an automatic
step in that process, the FLAIR images are resampled to match the di-
mensions of the MNI atlas reference space. This spatial transformation
was also applied to the hand-traced lesion mask. The original seg-
mented lesion was used as an exclusion mask so that the lesioned ter-
ritory would be excluded from the warping procedure. This prevents
non-lesioned brain tissue from being distorted to fill in the lesioned
area. This transformation resulted in skull-stripped T1 and FLAIR
images, as well as lesion masks, for each patient in MNI space.

Scans and stroke lesion masks were also obtained from the public
ATLAS database (Liew et al., 2018). We processed these in the same
way as described for the KF and MCW data, with the exception that no
FLAIR images were provided in the ATLAS database. Stroke lesions in
the MRI scans from this dataset were hand-segmented by different
human experts than for the KF and MCW data. These hand-drawn
binary masks provide ground-truth for lesion location and extent ac-
cording to a detailed protocol followed by multiple trained experts
(Liew et al., 2018). We selected images according to the following
criteria to focus on cases with single lesions in the left hemisphere:

This resulted in 54 images being selected from the ATLAS set. Thus
we included a total of 99 images altogether across the three datasets.
We divided these into two groups, ATLAS or KF+MCW, for cross-study
comparisons. We then combined them to perform a five-fold cross-va-
lidation across all 99 images.

2.2. Convolutional neural networks

Convolutional neural networks are the current state of the art in
machine learning for image recognition (Krizhevsky et al., 2012; LeCun
et al., 1998), including for MRI (Bernal et al., 2019). They are typically
composed of alternating layers for convolution and pooling, followed
by a final flattened layer. A convolution layer is specified by a filter size
and the number of filters in the layer. Briefly, the convolution layer
performs a moving dot product against pixels given by a fixed filter of
size k× k (usually 3 × 3 or 5 × 5). The dot product is made non-linear
by passing the output to an activation function such as a sigmoid or
rectified linear unit (also called relu or hinge) function. Both are dif-
ferentiable and thus fit into the standard gradient descent framework
for optimizing neural networks during training. The output of applying
a k × k convolution against a p × p image is an image of size

+ × +p k p k( 1) ( 1). In a CNN, the convolution layers just de-
scribed are typically alternated with pooling layers. The pooling layers
serve to reduce dimensionality, making it easier to train the network.

2.2.1. Convolutional U-network
After applying a series of convolutional filters, the final layer di-

mension is usually much smaller than that of the input images. For the
current problem of determining whether a given pixel in the input
image is part of a lesion, the output must be of the same dimension as
the input. This dimensionality problem was initially solved by taking
each pixel in the input image and a localized region around it as input
to a convolutional neural network instead of the entire image
(Ciresan et al., 2012).

A more powerful recent solution is the Convolutional U-Net (U-Net)
(Ronneberger et al., 2015). This has two main features that separate it
from traditional CNNs: (a) deconvolution (upsampling) layers to in-
crease image dimensionality, and (b) connections between convolution
and deconvolution layers. Another popular U-Net method is the re-
sidual U-Net (also known as UResNet (Guerrero et al., 2018)). It has
residual connections to prevent the gradient from becoming zero (also
called the vanishing gradient problem (Hochreiter, 1998)).

2.2.2. U-Net systems
Since the introduction of the original U-net, several systems have

been proposed for analyzing MRI images. DeepMedic is a popular multi-
path 3D CNN model that combines high and low resolutions of input
images. Previous systems like Lyksborg et al. (2015) consider the three
axial, sagittal, and coronal planes in a multi-path ensemble. A potential
limitation is that they use a majority vote approach to combine outputs
from each path. Multi-path systems can be challenging to train, as can
be seen in the work of de Brebisson and Montana (2015). There they
train eight networks in parallel to capture various aspects of the input

image but report overfitting due to large number of parameters.
Post processing is another important component of U-Net systems to

reduce false positives. Post processing methods range from simple ones
like connected components and clustering (Havaei et al., 2017; Lai,
2015) to using 3D CNNs and conditional random fields
(Kamnitsas et al., 2017). The latter methods also end up accounting for
dependencies between slices, resulting in a higher accuracy.
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2.3. Our CNN system

2.3.1. Overview
We developed a modified U-network in a multi-path multi-modal

system with a 3D convolutional kernel for post-processing shown in
Fig. 1. A 3D kernel is like a 2D one except that it has a third dimension
that it convolves into as well. For example, in a 2D system kernels are
typically 3 × 3 whereas in a 3D kernel it would be 3 × 3 × 3. Details
of our system are provided below, highlighting differences in our ap-
proach compared to previous ones.

2.3.2. Multiple paths
Our primary motivation for taking a multi-path approach is to op-

timize the ability of the model to identify brain lesions by capturing
image information from all three planes as well as their normalizations.
Shown in the overview of our system in Fig. 1(A) are the three different
normalizations for each of the three axial, sagittal, and coronal planes.
For each plane we normalize (1) in the same plane, (2) across the third
plane, and (3) both in the same plane first and then across the third,
thus giving nine paths. These choices were motivated by our pre-
liminary results shown in the Supplementary Material. There we see the
test accuracy of six paths across nine different samples from the KF
dataset. We see that no one path gives the highest accuracy. This has
also been shown previously. For example, ensemble methods have been

applied where three separate networks are learnt for 2D slices in each of
the three axial planes (Lyksborg et al., 2015). This led to improvement
over use of a single axial plane. Effects of normalizing on different
image views have been recently reviewed (Bernal et al., 2019). Our
work here combines the use of both multiple planes and multiple nor-
malizations into a richer model.

2.3.3. Basic U-net
Encoder First we look at details of our basic U-net shown in Fig. 2

that makes up the system. Since we have dual modality images (T1 and
FLAIR), one way to model them in the input is with two channels. An
alternative is to have dual paths that allow for specific parameters and
thus enhanced model representation for different image modalities. In
case the image has a single modality we consider the flipped version as
an augmented synthetic modality.

The U-net we use in each path is inspired by the original U-net
(Ronneberger et al., 2015) and a more recent one (Tseng et al., 2017)
that attains state of the art accuracies on the BRATS brain tumor MRI
benchmark (Menze et al., 2014). The encoder portion of our U-net is
shown in Fig. 3. After each convolution we perform a 2 × 2 average
pooling with stride 2 to halve the image dimension. Features from the
encoder are passed to the decoder. However, since there are two en-
coders (one for the original T1-weighted image and the other for its
flipped version), corresponding features are combined using the block

Fig. 1. Overview of our entire nine-path system (A) and a zoomed in view of our 3D CNN post processor (B) for combining outputs from each path.
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Fig. 2. Overview of our dual-path U-network. We have a separate encoder for the original T1 image of the brain scan and one for its flipped version. Alternatively,
two different image modalities may also be used instead of two different hemispheres.

Fig. 3. U-Net Encoder with five convolutional blocks. Also shown are image dimensions after each convolution.

Fig. 4. Fuse features from encoding the original and flipped images (or alternatively encoding from two different image formats).
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shown in Fig. 4. Alternatively, the current network can be used with
two different MRI modalities by substituting the T1 image and its
flipped version with separate left hemisphere T1-weighted and FLAIR
images.

Feature fusion From each encoder we obtain a prediction of a lesion
(in the respective normalization and plane) that we merge with a
2 × 1 × 1 3D convolutional kernel (Lai, 2015; Tseng et al., 2017). We
take the two feature maps each of dimension 32 × x × y where 32 is
the number of convolutional filters from the encoder layer and x× y is
the input size depending upon the encoder layer (see Figs. 2 and 4).
Stacking refers to adding an extra dimension to make the input
32 × 2 × x × y for the 3D kernel. The 2 × 1 × 1 3D kernel gives an
output of 32 × 1 × x × y which is ”squeezed” to remove the un-
necessary dimension to give an output of 32 × x × y to the decoder.

Decoder The fused features are then given to the decoder, which we
add to the output of deconvolutional layers (briefly explained below), a
process shown as a ⊕ sign in Fig. 5. The image dimensions are pre-
served because of the addition. The previous U-net that served as a
starting point for our current effort (Tseng et al., 2017) performed
element-wise multiplication of fused features with deconvolved ones.
However, this is unlikely to be useful for the current system. Our fused
features and upsampled features have small values, so their product
would even be smaller. This in turn would give a gradient with zero or

near-zero values that would affect the training. Thus we prevent this by
adding instead of multiplying fused and upsampled feature values.

Convolutional blocks Shown in blue in Fig. 6 are the convolutional
blocks used in our encoder and decoder. We use 3 × 3 convolutional
blocks with a stride of 1 and padding of one extra layer in the input to
make the output dimensions match the input. The previous U-net that
inspired our design (Tseng et al., 2017) performed Relu activation be-
fore adding fused features. Here we perform Relu activation twice. In
the context of the decoder, this means Relu activation is performed after
adding fused features to upsampled ones. Performing Relu activation
after addition rather than before has been shown to be more accurate
for image classification (He et al., 2016b).

Deconvolutional blocks Deconvolutional blocks (also known as
transposed or fractionally strided convolutions) are meant to increase
the dimensionality of images (Dumoulin and Visin, 2016). The term
transpose arises from the fact that a deconvolution is simply the product
of the transpose of the convolution weight matrix with the output when
the stride is 1. If the stride is more than one we insert zeros in between
the input to obtain the correct transpose result (as explained in
(Dumoulin and Visin, 2016)) We use 2 × 2 deconvolutions with a stride
of 2 that doubles the image dimensions in both axes.

2.3.4. Post-processing
The output of each of the nine paths in our system is a 2D mask

showing the predicted location of the lesion in the same view as the
input image, as in Fig. 2. The lesion prediction mask is binarized by
rounding to 0 if the values in the mask are below 0.5, otherwise values
are rounded up to 1. We stack each predicted lesion with the original
input image and combine all slices to form a 2 × 192 × 224 × 192
volume. Since we have nine paths this becomes of size
18 × 192 × 224× 192. This is passed to our 3D CNN post-processor as
described below.

In the post-processor shown in Fig. 1(B), we have a main path
containing 36 3D 3 × 3 × 3 kernels each with 18 channels, or
equivalently 36 3D kernels each of size 18 × 3 × 3 × 3. Following
that, the second 3D CNN in the main path has 9 3D 3 × 3 × 3 kernels
each with 36 channels, and two final 3D CNNs each of dimensions
3 × 3 × 3 with 9 channels.

2.3.5. Loss function
The final output from the post-processor has two channels each of

Fig. 5. U-Net Decoder with four convolutional and deconvolutional blocks. Also shown are image dimensions after each deconvolution.

Fig. 6. Convolutional blocks used in our encoder and decoder described above.
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dimensions 192 × 224 × 192. The target lesion has the same dimen-
sions but just one channel. The first channel in our output predicts the
lesion and the second one predicts the complement of it. We convert the
outputs of each channel into probabilities with softmax
(Alpaydin, 2004) and combined them into a modified Dice loss function
(Milletari et al., 2016; Wong et al., 2018). For a single channel output
the Dice loss is defined to be D1 where

=
+

D p
p r

p r
( )

2 i i i

i i i i
2 2

pi are the predicted softmax outputs of the channel, and ri is 1 if the
voxel has a lesion and 0 otherwise. If we are predicting the complement
of the lesion then the values of ri are flipped from 0 to 1 and 1 to 0. With
our two channel output p and q our loss becomes +D p D q2 ( ( ) ( ))
where the latter D(q) is for the complement.

2.4. Comparison of CNN methods

We compared our CNN to three recently published CNNs shown
below. Our system was implemented using Pytorch (Paszke et al.,
2017), the source code for which is available on our GitHub site
https://github.com/xyzacademic/multipathbmp. In each of our ex-
periments we train our model, UNet, and UResNet with stochastic
gradient descent and Nesterov momentum (Ruder, 2016) of 0.9 and
weight decay of 0.0001. We use a batch size of 32, starting from an
initial learning rate of 0.01 with a 3% weight decay after each epoch for
a total of 50 epochs. In DeepMedic we use the default settings of
learning rate of 0.001, the RMSProp optimizer (Ruder, 2016) with a
weight decay of 0.0001, batch size of 10, and a total of 20 epochs.

• DeepMedic (Kamnitsas et al., 2017): This is a popular dual-path 3D
convolutional neural network with a conditional random field to
account for temporal order of slices. DeepMedic contains a path for
low- and a separate path for high-resolution of images. Its success
was demonstrated by winning the ISLES 2015 competition to iden-
tify brain injuries, tumors, and stroke lesions. The code for im-
plementing DeepMedic is freely available on GitHub, https://github.
com/Kamnitsask/deepmedic.
• UResNet (Guerrero et al., 2018): This is a convolutional neural

network with residual connections (He et al., 2016a). The code for
implementing UResNet is also freely available on GitHub, https://
github.com/DeepLearnPhysics/pytorch-uresnet.
• UNet (Ronneberger et al., 2015): The was the original convolutional
U-network proposed for biomedical image processing. Its code is
also available on GitHub,
https://github.com/thonycc/PFE/tree/
af9e804f71684b73cf7f3b25557edcf6a1b307b3.

Two other non-CNN-based machine learning packages were also
included because they have been made freely available to the brain
imaging community and have been developed for ease of use. Both take
a patch-based approach to automating lesion segmentation. That is,
these methods convert the input image into multiple patches that are
used to train the model. They are LINDA (Pustina et al., 2016), based on
a random forests algorithm, and a second method based on Gaussian
naive Bayes (Griffis et al., 2016).

2.5. Data analysis

2.5.1. Measure of accuracy: Dice coefficient
The Dice coefficient is typically used to measure the accuracy of

predicted lesions in MRI images (Zijdenbos et al., 1994). The output of
our system and that of other methods is a binary mask of the dimen-
sions as the input image, but with a 1 for each voxel calculated to
contain a lesion, and a 0 otherwise. Comparison of the human expert-
segmented lesion mask with that from automated methods is quantified
with the Dice coefficient. Starting with the human binary mask as
ground truth, each predicted voxel is determined to be either a true
positive (TP, also 1 in true mask), false positive (FP, predicted as 1 but 0
in the true mask), or false negative (FN, predicted as 0 but 1 in the true
mask). The Dice coefficient is formally defined as

=
+ +

DICE TP
TP FP FN

2
2 (1)

2.5.2. Measure of statistical significance: Wilcoxon rank sum test
The Wilcoxon rank sum test (Wilcoxon, 1945) (also known as the

Mann-Whitney U test) can be used to determine whether the difference

Fig. 7. Raincloud plots of Dice coefficient values of all models trained on KF+MCW and tested on ATLAS. For each method we show the distribution of Dice
coefficients across all test images as well as the five summary values: median (middle horizontal line), third quartile (upper horizontal line), first quartile (lower
horizontal line), min (lowermost bar), and max (uppermost bar). All models except for LINDA and GNB are trained on KF+MCW. The Table below the graph contains
the mean Dice coefficients of all models on the ATLAS test data.
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between two sets of measurements is significant. It is a non-parametric
test for whether two sets of observations are likely to be from different
distributions, without assuming a particular shape for those distribu-
tions. Formally, it tests for the null hypothesis that a randomly selected
point from a sample is equally likely to be lower or higher than a
randomly selected one from a second sample.

3. Results

In the results presented below, we take the rare and rigorous step of
performing cross-study validations across independent datasets
(Bernau et al., 2014). We also examine results from cross-validation in
the combined dataset from the three different sources (KF, MCW, and
ATLAS).

3.1. Cross-study validation results

To create relatively balanced sets in terms of number of T1 scans,
we combine the KF and MCW datasets into one. This yielded 45 samples
in KF+MCW and 54 in ATLAS. We first train all convolutional neural
networks (CNNs) on the KF+MCW data and test their ability to predict
lesion locations in the ATLAS set. We then repeat the same procedure
but with the train and test datasets reversed. Since LINDA and GNB
come pre-trained and were intended for out-of-the-box use rather than
re-training, we ran them as-is. Both programs have skull-removal built
into their pipelines. Because the ATLAS images were the largest dataset
with the skull still intact, we restricted our test of the LINDA and GNB
methods to the ATLAS dataset.

3.1.1. Train on KF+MCW, predict on ATLAS
Fig. 7 shows the Dice coefficient values on the ATLAS test dataset

with training performed on KF and MCW images. Results show that the
current system, with a median Dice value of 0.66, yielded the best
performance. This was not just due to a few high values, as its Dice
values generally clustered toward the higher end. The Dice values of
UNet, UResNet, and DeepMedic Dice have a more even distribution
than our system and lower median values. Both LINDA and GNB have
Dice values clustered toward the lower end. Fig. 7 also shows that our
system has the highest mean Dice value of 0.54. This value is reliably
higher than all other methods under the Wilcoxon rank test (p <
0.001). All the convolutional networks achieve better median values

than LINDA and GNB.

3.1.2. Train on ATLAS, predict on KF+MCW
Fig. 8 shows results from the other direction of the cross-study

analysis: training on ATLAS and testing on KF+MCW. In this case, al-
though our system has the highest median, its distribution of Dice va-
lues is no longer clustered toward the high end as it was previously. The
mean Dice value of our system is marginally above that of UNet alone
and not statistically distinguishable from it. Compared to UResNet and
DeepMedic, however, our method performs better, as shown from its
reliably higher Dice values (p < 0.001).

3.2. Cross-validation results on all datasets ATLAS, KF, and MCW
combined

To take full advantage or our relatively large dataset, we combined
images from all three sources to produce an overall dataset of 99
samples. We then performed a five-fold cross-validation on this com-
bined dataset to evaluate the accuracy of each method. Fig. 9 shows
that our system again has the highest median Dice value. Our system
also has the highest mean Dice value at 0.62, performing reliably better
than the next best system, UNet, at 0.58. Indeed, our system performed
better (p < 0.001) than all three of the other CNN-based systems.

In addition to reporting this advantageous numeric performance of
our system, an overall illustration of how the lesion masks produced by
the current model compared to those from the other CNN-based models
is in Fig. 10. The expert-traced lesions (A) are shown alongside those
produced by our system (B) and the other models (C-E).

One point to note is that while our system performed significantly
better in terms of overlap with human expert tracings as measured by
the Dice coefficient, visually all the automatic methods appear grossly
similar to the human expert segmentations.

3.3. Distribution of dice coefficients across lesion size

Lesions with x × y × z dimensions less than 20 × 20 × 25 mm
were classified as small, and any lesions with dimensions greater than
those were considered large. In Fig. 11 we show a raincloud plot of Dice
values obtained by our system in the cross-validation and cross-study
settings.

Smaller lesions are generally harder to identify than larger ones

Fig. 8. Raincloud plots of Dice coefficient values for all models trained on ATLAS and tested on KF+MCW. Also shown in the table are mean Dice coefficients of each
method, as tested on the KF+MCW set.
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Griffis et al. (2016); Ito et al. (2019); Pustina et al. (2016). To compare
performance between lesion sizes, we split the lesions into small and
large categories based on the distribution of lesion sizes in the overall
set.

In all three cases, our method does very well on large lesions. In
fact, when we train on KF+MCW and predict on ATLAS, the median
Dice is above 0.8 for large lesions. In the cross-validation on all data
combined, our model is significantly better than all methods except for
DeepMedic, with p-values below 0.05. An example of a larger lesion is
shown in Fig. 12. The output lesion masks in red show our method and
the other three to be qualitatively similar. An apparent exception is
DeepMedic, which misidentifies tissue in the right-hemisphere as being
lesioned. This mis-identification would seem to be an exception, how-
ever, given the similar numeric performance between our method and
DeepMedic.

Smaller lesions, on the other hand, are associated with lower
median Dice values overall, as generally expected. DeepMedic has
particular difficulty with smaller lesions, whereas our system shows
significantly greater accuracy than DeepMedic and UResNet.
Interestingly, the distribution of Dice values for small lesions clusters
towards the high end in the cross-validation setup with the most
training data (all three datasets combined). This suggests that still more
data would enable the model to achieve better accuracy at identifying
small lesions. An example of a smaller lesion classification for the
combined data cross-validation scenario is shown in Fig. 13. This figure
shows how the similarity of the overall contours of the model-based
lesion masks (C-F) match up with the hand-segmented lesion mask (B).
It also illustrates the face validity of the Dice coefficient, where higher
Dice values also qualitatively correspond better to the hand-segmented
lesion mask.

CNNs are a type of neural network, and what neural networks learn
depends on what information is in the training data Plaut et al. (1996).
In the cross-study scenario where we train on KF+MCW and test on
ATLAS, the distribution of Dice values for smaller lesions is spread
somewhat uniformly. However, when the network is trained on the
ATLAS data and tested on the KF+MCW set, performance is worse.
Thus the general rule that the information in the training dataset lar-
gely determines what the model can learn is also shown here for de-
tecting small lesions.

3.4. Consolidating multi-path outputs

Previous multi-path approaches use a majority vote to combine
outputs from different paths (Lyksborg et al., 2015). We compare our
3D CNN for combining multi-path outputs to using the majority vote
and a simple union. In the union method, if at least one pixel has a 1
across the paths then the aggregated output also has a 1 in that pixel.
Fig. 14 shows that the union clearly performs more poorly than ma-
jority vote and our 3D CNN. Between the two better performing
methods, the 3D CNN is reliably better than majority vote by a 4%
margin with a p-value of 0.004. Also compared to post-processing with
majority vote, the Dice values of the 3D CNN are concentrated more
towards the high end.

3.5. Multi-modal T1 vs. T1+FLAIR

Our basic U-Net model is multimodal (specifically, bimodal) in that
it allows for different image formats. Since the current project is fo-
cused exclusively on left hemisphere lesions, we present the model with
T1 and FLAIR image formats of the lesioned left hemisphere. Below in
Table 1 we show the cross-validation accuracy of our model on the KF
and MCW images. When presented together, there is no significant
difference between the two. However, if we look at just KF images that
contain smaller lesions (and more recent, in the less than 5-week post-
stroke range), then adding FLAIR confers a significant advantage. In the
case of MCW images only that have lesions exclusively in the chronic
epoch (at least 6 months post-stroke), the T1 images alone actually
result in better performance than when the corresponding FLAIR
images are added. This pattern corresponds with the standard clinical
observation that FLAIR scans are useful for more recent stroke lesions
but less so for those in the chronic phase (Ricci et al., 1999). Such
correspondence lends additional face validity to our model.

3.6. Training and inference runtimes

The time for our model, UNet, and UResNet to take an image and
output its predicted lesion (also known as inference time) is less than a
second. For DeepMedic the inference time is longer (but still in the
order of seconds) because it divides the image into patches and eval-
uates each patch in the model. The training times of all models however
are much longer, on the order of hours. This is typical for deep learning

Fig. 9. Raincloud plot of Dice coefficient values obtained by five-fold cross validation on all our data combined: ATLAS+Kessler+MCW. In the Table are the mean
Dice coefficients given by cross-validation.
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models. In Table 2 we show training times for our model on the ATLAS
dataset and inference time for a single patient. Each of our nine paths
was trained in parallel to reduce runtime.

4. Discussion

Here we have created, trained, and tested a new multi-path 2.5D
convolutional neural network. The fractional designation on the di-
mension comes from its use of nine different 2D paths, followed by
concatenation of the learned features across the paths, which are then
passed to a 3D CNN for post-processing. This 2.5D design combines
flexible and efficient 2D paths that process the data in different cano-
nical orientations and normalizations with a 3D CNN that combines the
2D features in a way that informs the final 3D image output.
Comparison of our system to previous efforts shows that CNN-based
systems outperform more traditional machine-learning approaches
based on random forests or Gaussian naive Bayes algorithms. Compared
to other CNN systems, our system shows reliably superior performance
in its ability to automatically segment stroke lesions from healthy tissue
in the left hemisphere.

To facilitate comparisons across multiple different CNN-based
models and machine learning methods, we used identical input images
for all models. Specifically, this facilitated comparison across a com-
bination of basic machine learning methods like Naive Bayes
(Griffis et al., 2016) and random forests (Pustina et al., 2016), and more
sophisticated convolutional neural networks such as the U-Net
(Ronneberger et al., 2015). Compared to the more general purpose
classifiers of naive Bayes and random forests, the CNN-based models
offer a greater number of parameters and techniques designed for
image processing such as convolutions (LeCun et al., 1998). As ex-
pected, Dice accuracies were generally greater for the models with
larger numbers of parameters.

The CNNs considered here include a 3D model, DeepMedic
(Kamnitsas et al., 2017), and two 2D models, which are the original U-
Net (Ronneberger et al., 2015) and the U-ResNet (Guerrero et al.,
2018). There are pros and cons to each. While 3D gives greater flex-
ibility in modeling the data by providing more parameters, it also re-
quires more data to avoid overfitting, as reflected in the relatively poor
cross-study performance of DeepMedic. A 2D model on the other hand
may not be sufficiently sensitive to the spatial information present in
the 3D input images. Our current 2.5D model strikes a balance by using
a combination of 2D and 3D convolutions. Here we achieved higher
Dice accuracy than comparison models by using 2D components for
different view planes of the 3D scan and a 3D kernel to merge the views
into a voxel segmentation for the output.

As methods for automated segmentation of brain lesions continue to
develop, a question arises. How good is good enough? An intuitive
answer comes from human expert raters. As mentioned in the
Introduction, human expert raters have been shown to produce lesion
segmentations with overlapping volumes between raters in the 67% to
78% range (Fiez et al., 2000; Liew et al., 2018; Neumann et al., 2009),
though 73% may be a more realistic upper value given the highly expert
raters and limited scope of the data used by (Neumann et al., 2009) to
obtain the 78% value. The Dice coefficient used here is a formal mea-
sure of degree of spatial overlap that ranges between 0 and 1. Therefore
a Dice coefficient in the 0.67 range can be considered to be at the edge
of the human expert gold standard. When combining the datasets and
performing iterative training and testing using standard 5-fold cross-
validation, the lesion traces from our model overlap with human ex-
perts with a mean Dice coefficient of 0.62. While the 0.67 to 0.73
human benchmark range should be interpreted with caution because
those numbers are based on data that are not identical to the data
considered here, the accuracy of our system relative to previous efforts
does suggest that deep learning-based CNN methods are beginning to
approach human expert level accuracy for stroke lesion segmentation.

Aside from comparison to human expert benchmarking, we can
roughly compare our results to recent studies that also use the ATLAS
database for evaluation. Qi et al. (2019) report a 5-fold cross-validation
Dice accuracy of 0.49 with their depthwise separable convolutional
network on the entire ATLAS dataset of 229 images. Similarly

Fig. 10. Lesion overlap map results from 5-fold cross-validation on the entire
99 scan dataset. The leftmost side of the color scale in teal shows locations with
3 spatially overlapping lesions, while the rightmost side in red shows a max-
imum of 47 overlapping lesions. Hand-segmented lesions are in panel A. Our
2.5D CNN model is in panel B, UNet in C, URestNet in D, and DeepMedic in E.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Zhou et al. (2019) report a Dice value of 0.53 on a single 5-fold split
with their dimension fusion convolutional network also on 229 ATLAS
samples. In comparison, we obtain a 5-fold cross-validate Dice accuracy
of 0.63 on the 54 ATLAS samples that we use. While this informal

comparison is not a statistical result, it is encouraging for our model to
see a high Dice value surpassing other recent results.

Fig. 11. Raincloud plot showing the
distribution and five summary statistics
of Dice coefficients in three different
scenarios. The left panel shows Dice
values given by cross-validation on all
the data combined. The middle panel
shows a cross-study scenario where the
current model is trained on KF+MCW
and tested on ATLAS. The right panel
shows results from training on ATLAS
and testing on KF+MCW. In the Table
below the plots we show the mean Dice
values of our system and the other
CNNs on small and large lesions sepa-
rately in cross-validation on all data
combined.

Fig. 12. Example of a relatively large (10,739 mm3) lesion (A) along with its hand-segmented mask (B). The remaining panels show the lesion masks derived from the
5-fold cross-validation with all 99 scans for our 2.5D model (C) and the other CNN-based approaches (D-F). The label for each model is followed by the corresponding
Dice value for the lesion mask it produced in parentheses. Lesion masks overlaid in red are rendered semi-transparent to visualize the overlap between the lesion and
the mask. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Example of a relatively small (85 mm3) lesion (A) along with its hand-segmented mask (B). The remaining panels show the lesion masks derived from the 5-
fold cross-validation with all 99 scans for our 2.5D model (C) and the other CNN-based approaches (D-F). The label for each model is followed by the corresponding
Dice value for the lesion mask it produced in parentheses. Lesion masks are overlaid in red. Note that the lesion masks derived from the DeepMedic model (F) are false
positives rather than actual lesions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Raincloud plot of Dice coefficient values of three different post-processing approaches in our system as given by five-fold cross validation on KF+MCW
images combined. Mean Dice values for each approach are presented in the accompanying table.

Y. Xue, et al. NeuroImage: Clinical 25 (2020) 102118

12



4.1. Future directions

An alternative to our system is to have a multi-modal 3D U-Net
instead of the current 2D ones. It may appear that a 3D model would be
a better option but there are advantages to a 2.5D model stemming
mainly from its simplicity. As noted above, a fully 3D model may overfit
the data since it has more parameters and require significantly more
computational resources in training. Here we show that our model can
generalize across different data sources. This may primarily be due to
the 2.5D nature since the 3D component in our model is simply used to
combine output from different modalities. A preliminary fully 3D model
that we have implemented separately performs far more poorly across
different datasets. Thus while promising, a fully 3D CNN model may be
difficult to successfully work in practice. Training a 3D CNN involves
adjusting many more parameters than for a 2D CNN, and would
therefore require more data to train.

A second future direction is to extend our current left hemisphere-
focused system to include lesions to the right hemisphere. This exten-
sion should be relatively straightforward, as nothing is preventing our
current system from being trained and tested on images with lesions to
either hemisphere.

The majority of brain lesion-deficit studies involving stroke survi-
vors are performed with participants in the chronic epoch, when most
post-stroke brain changes are thought to have stabilized (Damasio et al.,
2004; Karnath and Rennig, 2017). It is to facilitate such studies that we
have largely focused on automatically segmenting stroke lesions from
T1-weighted MRI scans. A natural extension of this work would be to
track changes in the lesion over time. Maximal changes would pre-
sumably occur relative to the acute stage (often defined as < 48 hours
post stroke), for which diffusion-weighted imaging (DWI) would be
useful (Karnath and Rennig, 2017; Ochfeld et al., 2010). Careful at-
tention would presumably need to be paid to acquiring data such as
DWI to facilitate the tracking of changes in stroke lesion volume over
time. Indeed, another source of brain pathology that changes over time
and to which CNN models have been applied with some success is
tumor. Studies such as that of (Duong et al., 2019) suggest that training
on numerous types of brain pathologies imaged with FLAIR, including
tumor, can yield Dice coefficients between human and model segmen-
tations on the order of 0.79. This apparently high level of overlap points
to the potential of a multi-pathology approach.

Other progress can likely be made even when sticking to standard
T1-weighted MRI. For example, we have concrete plans to explore the
use of synthetic multi-modalities by adding images generated from a
generative adversarial network (Goodfellow et al., 2014) or similar
images from a reference database. This would give our model addi-
tional views and information about the input images that may poten-
tially increase its accuracy. Another future avenue is to output con-
fidence values in the predictions as a step towards a fully automated
system. A naive approach of simply averaging the probabilities in the
predicted lesion as a confidence value does not work because the pre-
diction image contains values close to 0 or 1. Thus the confidence
would simply be the size of the predicted lesion. This requires addi-
tional work that we plan to explore going forward.

Because the initial application case we envisioned for this work was
research, we focused on research-quality scans. These isotropic T1 scans

are typically of higher resolution of 1mm3 compared to non-isotropic
and 2D scans that have lower out-of-plane resolution, often on the order
of 5mm thickness between slices. Automatically segmenting lesions
from such lower-resolution images (such as many clinical images)
would be a challenge. One way to address this is with generative ap-
proaches that can increase image resolution. For example
Ledig et al. (2017) introduce a generative model to increase resolution
of images that could potentially work for medical imaging as well. In
separate future work we plan to investigate non-isotropic scans, such as
using generative adversarial models (Goodfellow et al., 2014) to con-
vert non-isotropic to isotropic ones.

Another challenge is image noise. Our studies have so far considered
only relatively clean images with minimal noise. Some images in our
data do have more noise relative to others. Thus our approach may
already be robust to some degree of image noise. However, a systematic
exploration of this issue is beyond the scope of the current study and
would be the subject of important future work.

Small lesions are also a challenge. They may be hard even for a
trained practitioner to detect, so it was not surprising that they were
difficult to detect for our model and the others. We plan to address this
in future work by adding more samples with small lesions as additional
datapoints. We will explore generative models as a source of such ad-
ditional images. The challenge is not just to be able to generate MRI
images but to simultaneously generate their correct lesion map as well
so the images can be used to help train the model.

Finally, in terms of research and clinical applications, a direct test of
the usefulness of the automatic stroke lesion segmentation model would
involve applying it in studies of lesion-deficit relationships. As noted in
the Introduction, hand-segmentation of brain lesions by human experts
is the current gold standard, although some studies have begun relying
entirely on computer-generated lesion segmentations (Tyler et al.,
2005; Woollams et al., 2018). Human inter-rater reliability presumably
also represents the upper limit for inter-rater reliability between model-
based and human expert-generated lesion segmentations. To our
knowledge, however, it remains unknown whether the error profile for
humans is comparable to that of deep-learning based models such as
ours. This raises the question of whether such error would lead to
systematic differences in results from lesion-deficit analyses based on
either human or machine-segmented lesions. Such comparisons are a
concrete future direction of this work.

4.2. Conclusion

We have presented a multi-path, multi-modal convolutional neural
network system for identifying lesions in brain MRI images. Our
method is fully automatic. Given an input MRI image it outputs the
lesion without any human intervention. We show that our model
achieves significantly higher accuracies than several previous machine
learning methods (including other convolutional neural networks) on a
cohort of three different datasets. Our cross-study result also rigorously
demonstrates that our model generalizes across different datasets. In
terms of usability, our model inference times are in seconds, which
make it fast to use in practice.

While the data with which our model is trained and tested includes
exclusively left-hemisphere lesions, our model can be trained and tested
on lesions present anywhere in the brain. In cross-study and cross-va-
lidation tests, our model shows superior performance compared to ex-
isting CNN and non-CNN based machine learning methods for lesion
identification. Our method extends previous efforts showing relatively
high segmentation accuracy for large lesions. Given sufficient data, it
markedly improves on previous efforts by being able to segment smaller
lesions as well. We provide freely available open source code to train
and test our model.

This advance in performance is critically significant, as it brings the
field closer to removing the bottleneck of having human experts spend
numerous hours hand-segmenting stroke lesions on MRI brain scans.

Table 2
Total training runtime on ATLAS and inference time on a single patient for all
models in our study.

Our system UNet UResNet DeepMedic

Total train time on
ATLAS

35 mins per path
(total is 315 mins)

75 mins 45 mins 12 h

Time for inference on a
single patient

0.5 s 0.9 s 0.7 s 15 s
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Once automated methods are sufficiently accurate and widely avail-
able, they will free up researchers to focus their time on other critical
aspects of neuropsychological data acquisition and analysis. The hope is
this re-allocation of expert resources will help advance the pace at
which we can further our understanding of the critical neural bases of
cognition and behavior.
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